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Abstract: Tensile-compressive asymmetry and the ratcheting effect are two significant characteristics
of shape memory alloys (SMAs) during uniaxial cyclic tests, thus having received substantial attention
in research. In this study, by redefining the internal variables in SMAs by considering the cyclic
accumulation of residual martensite, we propose a constitutive model for SMAs to simultaneously
reflect tensile-compressive asymmetry and the cyclic ratcheting effect under multiple cyclic tests.
This constitutive model is temperature dependent and can be used to reasonably capture the typical
features of SMAs during tensile-compressive cyclic tests, which include the pseudo-elasticity at higher
temperatures as well as the shape-memory effect at lower temperatures. Moreover, the proposed
model can predict the cyclic mechanical behavior of SMAs subjected to applied stresses with different
peak and valley values under tension and compression. Agreement between the predictions obtained
from the proposed model and the published experimental data is observed, which confirms that the
proposed novel constitutive model of SMAs is feasible.

Keywords: constitutive model; shape memory alloys; simulation; tensile-compressive asymmetry

1. Introduction

Shape memory alloys (SMAs), as a new class of functional material [1–4] possessing many
unique features (e.g., biocompatibility, pseudo-elasticity, and shape-memory effect), have been
utilized in various fields over the last three decades, such as automotive engineering [5,6],
the aerospace industry [7], robotics [8,9], medical implants [10,11], intelligent control engineering [12,13],
structural reinforcement [14], and virtual reality technology [15]. In these applications, SMAs are
often used as structural components and undergo repeated tensile-compressive cycles during service.
The experimental results from some cyclic loading tests [16,17] show that SMAs demonstrate asymmetric
behavior when they are subjected to tensile-compressive loadings, as well as the cyclic ratcheting
deformation. Many attempts to capture these two significant features of SMAs have been made through
proposing constitutive models to accurately describe the mechanical behavior of SMAs.

In describing the tensile-compressive asymmetry [18–21] of SMAs, Wasilewski [22] first reported
the mechanical property variation and significant differences between the effects of tensile and
compressive loading on SMAs. Subsequently, many constitutive models [23–31] exhibiting the
tensile-compressive asymmetry of SMAs have been presented. For example, Paiva et al. [23] proposed a
constitutive model considering both the tensile-compressive asymmetry and the plastic strains that occur
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in the thermomechanical processing of SMAs. Zaki et al. [27] extended their original Zaki-Moumni model
to account for tensile-compressive asymmetry over a wide temperature range, and they developed the
asymmetry model to analyze SMA cantilever beams subjected to tip loads [32]. Poorasadion et al. [28]
further developed the original Brinson model [33] into a novel tensile-compressive asymmetry model for
SMAs and successfully applied their model in a two-dimensional (2D) Euler–Bernoulli beam to predict
its behavior through ABAQUS/Standard. Ravari et al. [30] later considered the tension-compression
asymmetry and proposed a new three-dimensional (3D) constitutive law for SMAs based on the
microplane theory. Recently, Wang et al. [31] redefined the martensite internal variable of SMAs
based on the original Brinson model [33] and proposed a new constitutive model to predict the
tensile-compressive asymmetry behavior of SMAs with better continuity and flexibility.

The ratcheting deformation, which is mainly caused by the increase in and, subsequent,
accumulation of residual martensite during multiple cyclic tests [34,35], is another significant
feature of SMAs and should be predicted in their applications. The ratcheting deformation of
SMAs during cycling has been widely investigated experimentally by researchers in the last
decade, including strain-controlled [36–39] and stress-controlled [17,40–43] cyclic loading tests.
According to the experimental observations, several phenomenological constitutive models for SMAs
have been developed to successfully predict ratcheting deformation during multiple cycles [44–50].
Tanaka et al. [44] introduced three internal variables into a macroscopic theoretical framework to
interpret the hysteresis behavior of SMAs during thermomechanical cyclic loadings, and they also
analyzed the subloops due to the incomplete transformations of the SMAs. Saint-Sulpice et al. [45]
developed the constitutive equations of a novel 3D macroscopic model for SMAs which could
reproduce all the experimental observations, in which a permanent inelastic strain occurs and increases
during cyclic tests. On the basis of Kang’s experimental observations [17] for both pseudo-elastic
and shape-memory SMAs, Kan and Kang [46] and Yu et al. [47] constructed the corresponding
constitutive models to predict uniaxial transformation ratcheting deformation of pseudo-elastic and
shape-memory SMAs, respectively. Xiao et al. [48] considered the effects of loading rate on the results
of cyclic tests and presented a 3D thermomechanically coupled constitutive model to describe the
rate-dependent cyclic performance of pseudo-elastic SMAs, in which the ratcheting deformation was
included. Recently, Ashrafi [49] developed a constitutive model that considered the permanent strain
evolution of SMAs under cyclic loading and was able to predict the hysteresis loop of SMAs and its
changes along with the evolution of the permanent strain.

As mentioned above, the existing constitutive models for SMAs have already successfully
described the features of tensile-compressive asymmetry or ratcheting deformation under multiple
cyclic loadings. However, a constitutive model that can predict both tensile-compressive asymmetry
and ratcheting deformation of the SMAs is rarely reported. In the model of Kan and Kang [46],
they tried to take into account the ratcheting effect to predict the experimental observations of SMAs in
uniaxial tensile-compressive cyclic tests [17]. Although their model reflected the tensile-compressive
asymmetry and ratcheting deformation of SMAs during cycling, they considered only the mechanical
features of SMAs at room temperature.

SMAs are a group of metallic alloys with thermal sensitivity, and therefore the models of SMAs
should be temperature dependent [1]. Therefore, we redefine the internal variables in SMAs by
considering the cyclic accumulation of residual martensite and propose a temperature-dependent
constitutive model of SMAs that reflects the tensile-compressive asymmetry and ratcheting effect under
different applied stresses. In Section 2, the temperature-dependent constitutive model for SMAs is
presented. In Section 3, the corresponding simulated results based on the proposed model are obtained
and discussed by comparing simulation results with the experimental ones. Finally, concluding remarks
are drawn in Section 5.
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2. Constitutive Model

The uniaxial transformation ratcheting of SMAs during tensile-compressive cycles is considered
and the SMA constitutive law based on the Brinson model [33] can be obtained as:

σ = D(ξ)
(
ε− ε±in

)
(1)

where ξ and D(ξ) represent the martensite volume fraction and ξ-related elastic modulus, respectively
(the martensite refers to the detwinned martensite in this study, which is distinguished from the twinned
martensite). ε±in is the total inelastic strain. The superscript ‘+’ represents the strain under tension,
while the superscript ‘-’ represents the strain under compression. The total inelastic strain consists of
two parts, i.e., the transformation strain ε±tr and the cyclic ratcheting strain ε±p . Thus, Equation (1) can
be further expressed as:

σ = D(ξ)
(
ε− ε±tr − ε

±
p

)
(2)

Since the elastic modulus D(ξ) of SMAs in Equation (2) is affected by ξ, the variation in ξ should
be known. The temperature-stress phase diagram of SMAs, as shown in Figure 1, is always used
to predict the variation of ξ given some material parameters and the critical stresses related to the
evolution of ξ. As tension-compression asymmetry is considered, some material parameters discussed
by Wang et al. [31] are defined in the left diagram in Figure 1, among them, Ms and M f are the initial
and final temperatures of the martensitic transformation, and A0

s and A0
f are the initial and final

temperatures of inverse martensitic transformation. σcr+
s and σcr+

f represent the critical transformation
stresses under tension when T < Ms, while σcr−

s and σcr−
f represent the critical transformation stresses

under compression. C+
M0 and C+

A0 are the stress-temperature slopes, respectively, for the martensitic
and inverse martensitic transformations under tension, and C−M0 and C−A0 are the corresponding slopes
under compression. Moreover, the tensile parameter and the corresponding compressive parameter
are most likely different, for example, σcr+

s , σcr−
s and C+

M0 , C−M0 [31]. Based on these parameters,
the critical transformation stresses under tension (red lines in the left diagram in Figure 1, which are
marked by σ+1 (T), σ

+
2 (T), σ

+
3 (T) and σ+4 (T)) and under compression (blue lines in the left diagram in

Figure 1, which are marked by σ−1 (T), σ
−

2 (T), σ
−

3 (T) and σ−4 (T)), as well as the phase transformation
regions under tension (light red areas in the left diagram in Figure 1) and under compression (light blue
areas in the left diagram in Figure 1) can be well determined. Additionally, the areas representing
fully austenite, fully martensite (i.e., fully detwinned martensite), and fully twinned martensite are
divided by these critical stresses (see the left diagram in Figure 1). The variation in ξ, which is affected
by temperature and stress, can be reflected during phase transformation according to Figure 1.

With the consideration of the ratcheting effect, some material parameters of SMAs in the left
diagram in Figure 1 can change after cyclic tests, as shown in the right diagram in Figure 1. Therefore,
more material parameters for stable cycles should be defined. According to some studies [17,51,52],
the material parameters σcr±

s , σcr±
f , Ms, and M f change minimally when the state of the SMAs changes

from unstable to stable (i.e., ratcheting deformation hardly occurs when T < Ms) after cyclic tests,
and therefore we only redefine C±A0, C±M0, A0

s and A0
f as the corresponding initial unstable material

parameters (left diagram in Figure 1) and regard C±A1, C±M1, A1
s and A1

f as the corresponding stable
parameters after certain cycles (right diagram in Figure 1). Critical stresses of SMAs after the cyclic
tests (black dotted lines in the right diagram in Figure 1) can be obtained by these stable parameters.
In addition, two green dash-dotted lines in Figure 1 are controlled by Ms and M f and represent
the critical temperatures, between which the phase transformation of austenite-twinned martensite
occurs. With the consideration of all these parameters shown in Figure 1, the critical stresses of SMAs
during evolution can be obtained and the variation in ξ that takes into account the tensile-compressive
asymmetry and the ratcheting effect under multiple loading cycles can be effectively predicted.
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Figure 1. Asymmetric tensile-compressive phase diagram predicting the critical stresses for shape
memory alloys (SMAs) before cycling tests (left) and after cycling tests (right). The solid lines represent
the critical stresses for SMAs in the initial unstable state and the dotted lines represent the critical
stresses for SMAs in the final stable state.

Due to the ratcheting effect, the martensite partially remains in the SMAs after each unloading
process and accumulates for multiple loading cycles. Therefore, the martensite volume fraction
ξ in Equation (2) can be divided into the following two parts: ξir which is irreversible and ξr

which is reversible.
The irreversible martensite volume fraction ξir can be obtained as follows:

ξir =
[
ξ+ir_maxk+0

(
σ+p

)
+ ξ−ir_maxk−0

(
σ−p

)](
1− e−ψirξc

)
(3)

where ξ+ir_max and ξ−ir_max represent the maximum irreversible martensite volume fraction under tension
and compression, respectively, σ±p is the peak of the applied tensile stress or compressive stress and ψir
is the controlling parameter. ξc is a ξ-related function representing the accumulation of martensite

volume fraction and can be expressed as ξc =
∫ t

0

∣∣∣∣ .
ξ(τ)

∣∣∣∣dτ [46]. k±0
(
σ±p

)
in Equation (3) is used to capture

the maximum values of ξir under tension and compression by considering different values of σ±p . It can
be developed on the basis of a previous study [31] by using a compound function that describes the
variation of variant volume fraction in SMAs under tension or compression as:

k±0
(
σ±p

)
= (1/π)arctan

{
2sinh

[
κ±

(
σ±p −

(
σ±10(T) + σ±20(T)

)
/2

)]}
+ 1/2 (4)

where σ±10(T) and σ±20(T) are two initial values of temperature-related critical transformation stresses,
i.e., σ±1 (T) and σ±2 (T) in Figure 1, for the first tensile or compressive loading process. Since

∣∣∣σ±1 (T)∣∣∣
≤

∣∣∣σ±2 (T)∣∣∣ according to Figure 1, it can be obtained that
∣∣∣σ±10(T)

∣∣∣ ≤ ∣∣∣σ±20(T)
∣∣∣. κ± in Equation (4) is the

pseudo-hardening coefficient for tension or compression that can be used to measure the evolution
rate of the variants in SMAs. Note that Equation (4) is a special case as it can only predict the variant
evolution for the first loading cycle. Generally, σ±1 (T) and σ±2 (T) are varying for multiple cycles due to
ratcheting effect and Equation (4) can be developed as:

k±
(
σ±p

)
= (1/π)arctan

{
2sinh

[
κ±

(
σ±p −

(
σ±1 (T) + σ±2 (T)

)
/2

)]}
+ 1/2 (5)

Note that we take advantage of continuity of the inverse trigonometric function and divergence
of the hyperbolic sine function in the compound function of Equation (5) to describe the variant
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evolution of SMAs. Therefore, Equation (5) is better than some other evolution functions in continuity
and smoothness [31]. The use of κ in Equation (5) also makes the evolution rate of variants in SMAs
controllable, which leads to Equation (5) being more flexible to use. We set an error function to monitor
the tendency of the function value towards 0 or 1 when the critical stress is applied, and the error
function is written as:

δ(κ±) =
{
1/2− (1/π)arctan[2sinh(κ±σ̃/2)]

}
× 100% (6)

where σ̃ is the difference in value between the critical stresses for the pseudo-hardening processes.
It should be noted that when δ(κ±) decreases, the evolution rate of the variant volume fraction curve
becomes higher.

On the basis of the Brinson model [33], we redefine the reversible martensite volume fraction ξr

by using the functional form of Equation (5) and considering the effect of ξir. It can be expressed as:

ξr = ξr
∣∣∣±x,y

=
{{
(1/π)arctan

{
2sinh

[
κ±

(
σ−

(
σ±x (T) + σ±y (T)

)
/2

)]}
− 1/2

}
(1−Ψ) j−1 + 1

}[
1−

(
ξ+ir_maxk+0 + ξ−ir_maxk−0

)(
1− e−ψirξc

)] (7)

where σ±x (T) and σ±y (T) are the phase transformation critical stresses for tension or compression
of the SMAs. x = 1 and y = 2 are assigned to the loading process, whereas x = 3 and y = 4
are assigned to the unloading process, respectively. The relations of

∣∣∣σ±1 (T)∣∣∣ ≤ ∣∣∣σ±2 (T)∣∣∣ and
∣∣∣σ±4 (T)∣∣∣

≤

∣∣∣σ±3 (T)∣∣∣ are recognized clearly according to Figure 1. j is the number of the tension-unloading and
compression-unloading processes, for example, j = 1 during the first tension-unloading process,
while j = 2 when the compression-unloading process first occurs, etc. Ψ in Equation (7) is a
constant value related to the first tensile unloading or compressive unloading, and can be obtained
by:Ψ = (1/π)arctan

{
2sinh

[
κ±

(
−

(
σ±30(T) + σ±40(T)

)
/2

)]}
+ 1/2, among which σ±30(T) and σ±40(T) are

initial value of critical stresses of σ±3 (T) and σ±4 (T) for the first tensile or compressive unloading
process. Note that the physical significance of Ψ is the residual martensite volume fraction after the
first tensile unloading (the superscript ”+” is assigned when the cycle begins with tension) or first
compressive unloading (the superscript “–“ is assigned when the cycle begins with compression).
The term (1−Ψ) j−1 in Equation (7) is used to unify the description of ξr to reflect the different features
(e.g., the pseudo-elasticity at higher temperatures and the shape-memory effect at low temperatures) of
SMAs at various temperatures. For multiple cycles, Ψ tends towards 0 and (1−Ψ) j−1 approximately
equal to 1 when SMAs show pseudo-elasticity at higher temperatures; therefore, the value of ξr shows
fluctuations between 0 and 1 with the effect of ξir, representing the occurrence of the martensite phase
transformation. When SMAs show shape-memory effects at lower temperatures, Ψ tends towards 1
and (1−Ψ) j−1 is almost equal to 0 during cycling. As a result, ξr is only related to ξir according to
Equation (7), which means that the phase transformation rarely happens for shape-memory SMAs.
Particularly, when SMAs show features between pseudo-elasticity and shape-memory effect under

the temperature of T ∈
(
A0

s , A0
f

)
, Ψ ∈ (0, 1) and (1−Ψ) j−1 in Equation (7) is, then, regarded as an

exponential zoom factor that is related to the number of cycle. With the effects of the zoom factor
(1−Ψ) j−1, the value of ξr fluctuates with its valley value increasing during cycling, which implies the
accumulation of residual martensite at various temperatures. The item (1−Ψ) j−1 is used to provide a
continuous transition of features of SMAs between pseudo-elasticity and shape-memory effect.

It should also be noted that Equation (7) has its limitations when the incomplete forward and
inverse martensite transformations are considered. Thus, we set ξ0

r

∣∣∣±
1,2

(
σ±p

)
as σ±p -related initial value of

ξr when each tensile or compressive unloading process happens and rewrite Equation (7) as:

ξr =

 ξr

∣∣∣∣±1,2 (loading)

ξ0
r

∣∣∣∣±1,2

(
σ±p

)
ξr

∣∣∣∣±3,4 (unloading)
(8)
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For simplification, we set P±x,y as the stress induced martensite volume fraction without considering
ratcheting deformation during cycling and express it in a simple form as:

P±x,y = (1/π)arctan
{
2sinh

[
κ±

(
σ−

(
σ±x (T) + σ±y (T)

)
/2

)]}
+ 1/2 (9)

In addition, we set

P
±

x,y = (1/π)arctan
{
2sinh

[
κ±

(
σ−

(
σ±x (T) + σ±y (T)

)
/2

)]}
− 1/2 (10)

Combining Equation (3) with Equation (8), the total martensite volume fractionξ can be expressed as:

ξ = ξr + ξir =


P
±

1,2

[
1−

(
ξ+ir_maxk+0 + ξ−ir_maxk−0

)(
1− e−ψirξc

)]
(1−Ψ) j−1 + 1 (loading)

ξ0
r

∣∣∣±
1,2

(
σ±p

)
P
±

3,4

[
1−

(
ξ+ir_maxk+0 + ξ−ir_maxk−0

)(
1− e−ψirξc

)]
(1−Ψ) j−1

+ξ0
r

∣∣∣±
1,2

(
σ±p

)
+

[
1− ξ0

r

∣∣∣±
1,2

(
σ±p

)](
ξ+ir_maxk+0 + ξ−ir_maxk−0

)(
1− e−ψirξc

)
(unloading)

(11)

According to Equation (11), the variation in ξ as well as the ξ-related elastic modulus D(ξ) in
Equation (2) can be obtained.

The transformation strain ε±tr in Equation (2), as a component of the total strain ε, is induced by
phase transformation during the tensile-compressive cycles and expressed as:

εtr|
±
x,y = ε±L ξr

∣∣∣±
x,y (12)

where ε±L represents the maximum transformation strain under tension or compression. ξr
∣∣∣±
x,y = P±x,y

represents the reversible martensite volume fraction at various temperatures without considering the
ratcheting deformation. Setting P0±

1,2

(
σ±p

)
as the initial value of P±x,y when each tensile or compressive

unloading happens and considering the incomplete transformations when σ+p < σ+2 (T) or σ−p < σ−2 (T),

we can further express ξr
∣∣∣±
x,y as:

ξr
∣∣∣±
x,y =

 P±1,2 (loading)

P0±
1,2

(
σ±p

)
P±3,4 (unloading)

(13)

The cyclic ratcheting strain ε±p in Equation (2), which is quite different from ε±tr, is a type of
accumulated strain and can be expressed by using ξc as:

ε±p = ξirε
±

M = ±
(
ε+sak+0 + ε−sak−0

)(
1− e−ψ2ξc

)
(14)

and
ε±M = ±

(
ε+sak+0 + ε−sak−0

)(
1− e−ψ2ξc

)
/
[(
ξ+ir_maxk+0 + ξ−ir_maxk−0

)(
1− e−ψirξc

)]
(15)

where ε±sa represents the saturation value of the ratcheting strain induced by tension or compression,
while ψ2 is the controlling parameter for the accumulation rate of ε±p .

It should be highlighted that the critical transformation stresses shown in Figure 1, i.e., σ±1 (T),
σ±2 (T), σ

±

3 (T), and σ±4 (T), change progressively from their initial values to stable ones (see Figure 1).
Therefore, the evolution rule of these critical stresses during cycling should be given as:

σ±X = σ±X0 −
(
σ±X0 − σ

±

X1

)(
1− e−γ

±

Xξc
)

(16)

where X = 1, 2, 3, 4. σ±X0 represents the initial value of each critical stress for the first tension-unloading or
compression-unloading process, while σ±X1 represents stable value of each critical stress after evolution.
These initial and steady critical stresses are calculated according to the material parameters in Figure 1.
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γ±X in Equation (16) is the corresponding controlling parameter used to reflect the saturation rate of
each critical stress during evolution.

Moreover, it is noted that the maximum transformation strain ε±L in Equation (12) changes after
evolution, since the forward martensitic transformation is hindered by the dislocation slip in SMAs
due to the cyclic ratcheting effect [17,45]. The evolution rate of the pseudo-hardening process always
changes to a higher value according to experimental findings [17]. Therefore, evolution equations of
ε±L and κ± which are related to the pseudo-hardening stage, are given by inducing ξc:

ε±L = ε±L0 −
(
ε±L0 − ε

±

L1

)(
1− e−γ

±

5 ξc
)

(17)

κ± = κ±0 −
(
κ±0 − κ

±

1

)(
1− e−γ

±

6 ξc
)

(18)

where ε±L0 and ε±L1 are the maximum transformation strains for the first and steady tensile-compressive
cycles, respectively. Similarly, κ±0 and κ±1 represent the pseudo-hardening coefficients for the first and
steady cycles, respectively. γ±5 and γ±6 are the controlling parameters governing the saturation rates
corresponding to ε±L and κ± during cycling.

The temperature-induced phase transformation between austenite and twinned martensite
(green region in Figure 1) can be predicted by setting

R = (1/π)arctan
{
2sinh

[
κR

(
T −

(
Ms + M f

)
/2

)]}
+ 1/2 (19)

where κR is the pseudo-hardening coefficient managing the evolution rate of the temperature-induced
phase transformation.

Substituting Equations (3)–(19) into Equation (2), we finally obtain the temperature-dependent
model of SMAs reflecting the ratcheting deformation during tensile-compressive cycles as:

σ = D±x,y

(
ξ±x,y

)[
ε−

(
ε±L − εe

)
ξr

∣∣∣±
x,y − ε

±

Mξir − εe − ϑ
]

(20)

Note that D±x,y

(
ξ±x,y

)
in Equation (20) is developed by considering four stages (including tensile

loading, tensile unloading, compressive loading, and compressive unloading) of a complete
tensile-compressive cycle on the basis of D(ξ) in Equation (2) and can be further expressed as
D±x,y

(
ξ±x,y

)
=

[(
DA −DT

M

)
R + DT

M

](
1− ξ±x,y

)
+ DDT(±)

M ξ±x,y. Among them, DA, DDT(±)
M and DT

M are the
elastic moduli of SMAs in the fully austenite, the fully detwinned martensite (under tension or
compression) and the fully twinned martensite, respectively.

In addition, there are still two correction functions, εe and ϑ, in Equation (20) that should be
highlighted. εe is an accumulated function that corrects the strain error caused by the asymptotic
functions of Equation (9) and Equation (10) [31] and makes the constitutive relation of SMAs continuous
and smooth. As the correction function εe is a type of accumulated function, we show the deduction and
general form of its expression in Table 1. ϑ is the other correction function used to maintain continuity
of the constitutive model when the tensile-compressive conversion occurs (i.e., the tensile unloading
ends and compressive loading begins or vice versa). The correction function of ϑ is depended on εe,
whose deduction and general form are also listed in Table 1.

Table 1. Evolution of the accumulated correction functions εe and ϑ for multiple cycles.

Cycle Number Correction Function εe Related to
Phase Transition

Correction Function ϑ Related to
Tensile-Compressive Conversion

Tension-unloading of the 1st cycle (1+) 0 0
Compression-unloading of the 1st cycle (1−) ε+L ξ

1+
σ→0 + ε1+

e

(
1− ξ1+

σ→0

)
2×

(
ε1−

0 − ε
1−
e − ϑ

1+/2
)

Tension-unloading of the 2nd cycle (2+) ε−Lξ
1−
σ→0 + ε1−

e

(
1− ξ1−

σ→0

)
2×

(
ε2+

0 − ε
2+
e − ϑ

1−/2
)

Compression-unloading of the 2nd cycle (2−) ε+L ξ
2+
σ→0 + ε2+

e

(
1− ξ2+

σ→0

)
2×

(
ε2−

0 − ε
2−
e − ϑ

2+/2
)

Tension-unloading of the 3rd cycle (3+) ε−Lξ
2−
σ→0 + ε2−

e

(
1− ξ2−

σ→0

)
2×

(
ε3+

0 − ε
3+
e − ϑ

2−/2
)



Materials 2020, 13, 3116 8 of 20

Table 1. Cont.

Cycle Number Correction Function εe Related to
Phase Transition

Correction Function ϑ Related to
Tensile-Compressive Conversion

Compression-unloading of the 3rd cycle (3−) ε+L ξ
3+
σ→0 + ε3+

e

(
1− ξ3+

σ→0

)
2×

(
ε3−

0 − ε
3−
e − ϑ

3+/2
)

. . . . . . . . . . . . . . . . . .

Tension-unloading of the ith cycle (i+) ε−Lξ
(i−1)−

σ→0 + ε
(i−1)−

e

(
1− ξ(i−1)−

σ→0

)
2×

(
εi+

0 − ε
i+
e − ϑ

(i−1)−/2
)

Compression-unloading of the ith cycle (i−) ε+L ξ
i+
σ→0 + εi+

e

(
1− ξi+

σ→0

)
2×

(
εi−

0 − ε
i−
e − ϑ

i+/2
)

Note: The superscript “i±” represents the number of half-cycles; the subscript ”σ→ 0 ” represents that the stress
becomes zero from tensile or compressive unloadings; and εi±

0 is the initial strain for the corresponding i± cycles.

3. Model Predictions and Discussions

In this section, we perform numerical tests to illustrate the capability of the proposed model
described in Equation (20) for predicting the thermomechanical behavior of SMAs involving the
tensile-compressive asymmetry and cyclic ratcheting deformation. Unless noted otherwise, a uniaxial
tensile-compressive loading path, which is in the form of a sine wave, is employed and repeated for
multiple cycles in this study, as shown in Figure 2.
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Figure 2. Uniaxial tensile-compressive loading charts with peak stresses of σ+p under tension and σ−p
under compression.

σ+p and σ−p in Figure 2 represent the peak values of applied stresses under tension and compression,
respectively. In the following studies, we first fix the temperature and evaluate the predictions of
the proposed constitutive model for pseudo-elastic SMAs and shape-memory SMAs, respectively.
Then, we use the proposed model to predict the temperature-dependent behavior of SMAs, which
can make this novel model more general and flexible to use. Predictions of the proposed model are
compared with experimental data [17] available in this section.

4. Model Predictions of Pseudo-Elastic SMAs at a Fixed Temperature

In this section, we focus on model predictions for types of SMAs that show pseudo-elasticity
at a fixed temperature. According to the study of Kan and Kang [46], the corresponding material
parameters of Equation (20) used for prediction of the pseudo-elastic SMAs at room temperature are
listed below in Table 2 (the critical stresses of SMAs at the fixed temperatures are given in Table 2).
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The value of DT
M is not given in Table 2, since the twinned martensite does not exist in

pseudo-elastic SMAs during stress-induced phase transformation. According to Equation (6), the error
function for each corresponding coefficient κ is known and can be listed as δ

(
κ+0

)
= 0.05%/0.042%,

δ
(
κ+1

)
= 3.74%/3.77%, δ

(
κ−0

)
= 3.89%/4.96% and δ

(
κ−1

)
= 8.1%/11.96%. Two values for each κ

represent the error values for the loading and unloading processes. It should be noted that the error
values both under tension and compression become greater as the cycle becomes steady, which means
that the evolution rate of the pseudo-hardening process becomes lower and the pseudo-hardening
stress range becomes greater after certain cycles.

Table 2. Material parameters used in the proposed model for pseudo-elastic SMAs at room temperature.
(NiTi alloys - Ni, 50.2 at.%).

Parameters Remaining Constant During the Cyclic Transformation

DDT(+)
M = DDT(−)

M = 45 GPa, DA = 72 GPa, ε+sa/ε−sa = 0.012/0.042, ξ+ir_max/ξ−ir_max = 0.43/0.321

Initial and Stabilized Values of the Evolution Parameters
σ+10/σ+11 = 320 MPa/175 MPa, σ+20/σ+21 = 578 MPa/433 MPa, σ+30/σ+31 = 405MPa/317 MPa,

σ+40/σ+41 = 140 MPa/60 MPa, σ−10/σ−11 = −481 MPa/−461 MPa, σ−20/σ−21 = −650 MPa/ −630 MPa,
σ−30/σ−31 = −480 MPa/ −400 MPa, σ−40/σ−41 = −330 MPa/ −273 MPa, ε+L0/ε+L1 = 0.04/0.018,

ε−L0/ε−L1 = −0.015/ − 0.008, κ+0 /κ+1 = (1/20)/(1/60), κ−0 /κ−1 = (1/40)/(1/60)

Parameters Governing the Evolution Rates of the Evolution Parameters
γ±1 = γ±2 = γ±3 = γ±4 = γ±6 = 0.001, γ±5 = 0.0001, ψir = 0.00015, ψ2 = 0.0002

To understand the micro-mechanism of the ratcheting deformations of SMAs under
tensile-compressive cycles, we first use the material parameters listed in Table 2 and predict the
variations of inner variants in SMAs based on Equation (3), Equation (8), and Equation (11).
Assuming that σ+p ≥ σ

+
2 (T) and σ−p ≤ σ

−

2 (T), we obtain the complete martensitic transformation
under both tension and compression and plot the responses of martensite variant fractions in
SMAs, involving ξir, ξr and ξ, in Figure 3. Note that the light red areas and the light blue areas
in Figure 3 representing the martensitic transformation of SMAs occurs in the tension-unloading
and compression-unloading processes, respectively. The irrecoverable martensite variant fraction ξir,
the variation in which is shown in Figure 3, progressively increases during the tensile-compressive
cycles and finally approaches 0.751 when the cycle is steady. The recoverable martensite variant fraction,
ξr, alternates and sustains fluctuations among the tensile and compressive regions. The reason is that
the martensite in SMAs is formed from the original austenite either by tensile loading or by compressive
loading and convert back to its original phase via the unloading process. However, the peak value of
ξr for each tensile-compressive cycle decreases and tends towards 0.249 after certain cycles under the
influence of ξir. The total martensite ξ, as the sum of ξr and ξir, fluctuates as the valley values increase
under both tension and compression. The simulated results in Figure 3 illustrate the reason for the
ratcheting deformation of SMAs, i.e., the incomplete inverse martensite phase transformation and
the accumulation of irrecoverable martensite under tension and compression. In addition, the elastic
modulus D(ξ) in Equation (20) depends on ξ; therefore, the variation in ξ plays an important role in
the macroscopic description of the mechanical behavior for SMAs.

With the description of ξ-related D(ξ), the strain–stress relationships of the pseudo-elastic SMAs
under tensile-compressive cyclic loadings with different peak stress values are plotted in Figure 4.
It can be seen from Figure 4a,c,e that the proposed model is able to predict the ratcheting deformation
of pseudo-elastic SMAs occurring in the uniaxial cyclic tensile-compressive cycles for loading cases
with stress ranges of 0 ± 550 MPa, 0± 450 MPa, and −100 ± 450 MPa. Regarding Figure 4a, it can
be clearly observed that when the applied stress is 0 ± 550 MPa, the first tensile-compressive cycle
of SMAs is formed with greater absolute values of critical stresses, greater transformation strain
and ratcheting deformation, and a smaller stress range of pseudo-hardening. With the increase in
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loading cycles, for example, the 20th cycle, it is recognized that the initial cycle is replaced by a smaller
cycle, which means that the absolute values of critical stresses, transformation strain, and ratcheting
deformation all decrease, while the stress range of pseudo-hardening changes to a higher value. As a
result, the area of the hysteresis loop of pseudo-elastic SMAs decreases during cycling, leading to
a smaller dissipated energy of SMAs. In addition, it should be noted that the absolute values of
compressive critical stresses are always larger than those under tension [53], and these initial critical
stresses are not all reached in the simulated test by applying a loading whose range is 0± 550 MPa.
When the range of the applied stress changes from 0± 550 MPa to a smaller one, namely 0± 450 MPa
as shown in Figure 4c, much more austenite remains in the SMAs in the loading process due to
the incomplete forward martensitic transformation under this stress level, which leads to both the
transformation strain and ratcheting deformation of SMAs becoming smaller for initial and steady
cycles as compared with the results shown in Figure 4a. The hysteresis loops under compression are
almost invisible in Figure 4c because the peak value of the applied compressive stress is smaller than
σ−30. Moreover, the capability of dissipating energy for pseudo-elastic SMAs under a loading range
of 0 ± 450 MPa is weaker than that under a loading range of 0 ± 550 MPa, since smaller hysteresis
loop areas can be observed during cycling in Figure 4c. When the range of applied stress changes to
−100± 450 MPa, as shown in Figure 4e, a series of small hysteresis loops with very small transformation
strain and ratcheting deformation are clearly shown under tension, since the peak tensile stress is
far less than the critical stress σ+20 and σ+21. However, obvious loops can be seen under compression,
which is similar to the results in Figure 4a. The results shown in Figure 4a,c,e effectively predict the
strain–stress relations of SMAs under different stress ranges. Moreover, by using the evolution function
of Equation (9) and Equation (10), the curves in these results are more flexible to use for prediction
with better continuity and smoothness than those of other models [46].
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Three sets of experimental observations involving tests with applied stress ranges of 0± 550 MPa,
0± 450 MPa, and−100± 450 MPa, as reported by Kang et al. [17], are induced to assess these predictions,
as shown in Figure 4b,d,f. Good agreement between the model predictions and experimental data can be
obtained. These comparisons between model predictions and experimental observations all confirm the
reliability of the proposed model for the prediction of the mechanical behavior of pseudo-elastic SMAs.
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Figure 4. Model predictions and experimental verifications of the proposed constitutive model
used for pseudo-elastic SMAs. (a) Model prediction under loading with stress range of 0± 550 MPa;
(b) Experimental verification under loading with stress range of 0 ± 550 MPa; (c) Model prediction
under loading with stress range of 0 ± 450 MPa; (d) Experimental verification under loading with
stress range of 0± 450 MPa; (e) Model prediction under loading with stress range of −100 ± 450 MPa;
(f) Experimental verification under loading with stress range of −100 ± 450MPa. (“Sim.” represents the
simulation results and “Exp.” represents the experimental results).

4.1. Model Predictions of Shape-Memory SMAs at a Fixed Temperature

Unlike pseudo-elastic SMAs, shape-memory SMAs are types of SMAs with strain remaining
after unloading, and the residual strain can be recovered by subsequent heat treatment. In this
section, we focus on the model predictions of shape-memory SMAs during tensile-compressive cycling.
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The corresponding material parameters of Equation (20) used for prediction of the shape-memory
SMAs at room temperature are listed in Table 3 [46].

Table 3. Material parameters used in the proposed model for shape-memory SMAs at room temperature.
(NiTi alloys–Ni, 50.2 at.%).

Parameters Remaining Constant During the Cyclic Transformation

DDT(+)
M = DDT(−)

M = 45 GPa, DA = 72 GPa, ε+sa/ε−sa = 0.015/0.005, ξ+ir_max/ξ−ir_max = 0.43/0.321

Initial and Stabilized Values of the Evolution Parameters
σ+10/σ+11 = 103 MPa/103 MPa, σ+20/σ+21 = 343 MPa/343 MPa, σ−10/σ−11 = −165 MPa/−165 MPa,

σ−20/σ−21 = −372 MPa/−372 MPa, ε+L0/ε+L1 = 0.065/0.062, ε−L0/ε−L1 = −0.04/ − 0.032, κ+0 /κ+1 = (1/20)/(1/80)
, κ−0 /κ−1 = (1/20)/(1/80)

Parameters Governing the Evolution Rates of the Evolution Parameters
γ±1 = γ±2 = γ±3 = γ±4 = γ±6 = 0.001, γ±5 = 0.0001, ψir = 0.00015, ψ2 = 0.0002

Associating the values of κ listed in Table 3 with Equation (6), we can obtain error values for
each corresponding coefficient κ of shape-memory SMAs, namely, δ

(
κ+0

)
= 0.08%, δ

(
κ+1

)
= 7.34%,

δ
(
κ−0

)
= 0.18% and δ

(
κ−1

)
= 9.18%. Note that the critical stress for tensile or compressive unloading is

not considered for shape-memory SMAs, and linear unloading is assumed; therefore, only one value is
assigned for each δ(κ). Moreover, the evolution rate of the pseudo-hardening process becomes lower
and the pseudo-hardening stress range becomes greater with increasing cycle number, since the error
values increase.

According to these material parameters in Table 3 and Equation (20), the strain–stress relationships
for shape-memory SMAs at room temperature under loadings with stress ranges of 0± 500 MPa and
−100± 400 MPa are plotted in Figure 5. Note that the simulated results are similar in Figure 5a,c by
applying different loadings, and these common features observed in Figure 5a,c can be summarized
as follows: the residual strain, including a slight ratcheting strain [17] and the major strain caused
by the rearrangement of martensite variants, remains after each tensile or compressive unloading,
and the residual strain decreases during cycling; the transformation critical stresses remain the same
during cycling, though the pseudo-hardening stress range becomes greater; and the dissipated energy
of shape-memory SMAs for each cycle decreases as the loop area decreases. To verify the feasibility of
the proposed model, we also show the corresponding comparisons between model predictions and
experimental findings [17] in Figure 5b,d for different loading cases. The results prove that the obvious
shape-memory effect of SMAs observed from these experimental findings for different loading cases
can be reasonably captured by the proposed model.
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Figure 5. Model predictions and experimental verifications of the proposed constitutive model used
for shape-memory SMAs. (a) Model prediction under loading with stress range of 0 ± 500 MPa;
(b) Experimental verification under loading with stress range of 0 ± 500 MPa; (c) Model prediction
under loading with stress range of −100 ± 400 MPa; and (d) Experimental verification under loading
with stress range of −100 ± 400 MPa. (“Sim.” represents the simulation results and “Exp.” represents
the experimental results).

4.2. Temperature-Dependent Model Predictions of SMAs at Various Temperatures

Since SMAs are alloys possessing both pseudo-elasticity and shape-memory effect at various
temperatures and these two characteristics can be reciprocally transformed by varying the temperature,
we use the proposed temperature-dependent constitutive model to predict the thermomechanical
behavior of SMAs within a wide temperature range in this section.

In this section, the temperature-dependent critical stresses and their evolutions shown in
Figure 1 should be calculated by using the material parameters. Therefore, we consider the
Brinson’s model parameters [33] (these parameters can be experimentally determined [54]) and
reasonably assume several material parameters in Figure 1 as a simulated example according to some
studies [17,46,51,52,55,56]. The material parameters used in the proposed model for SMAs at various
temperatures are listed below in Table 4.

Table 4. Material parameters used in the proposed model for SMAs at various temperatures. (NiTi-Cu
alloys).

Parameters Remaining Constant During the Cyclic Transformation

DDT(+)
M = DDT(−)

M = DT
M = 45 GPa, DA = 72 GPa, ε+sa/ε−sa = 0.012/0.008, ξ+ir_max/ξ−ir_max = 0.43/0.321

The material parameters governing the evolution of the critical stresses
σcr+

s /σcr+
f = 85 MPa/155 MPa, σcr−

s /σcr−
f = −100 MPa/−170 MPa, C+

M0/C+
M1 = 8/6.7,

C+
A0/C+

A1 = 13.8/10.6, C−M0/C−M1 = −7.5/ − 6.8, C−A0/C−A1 = −13.1/ − 11.2, M f = 9 ◦C, Ms = 18.4 ◦C,
A0

s /A1
s = 34.5 ◦C/30 ◦C, A0

f /A1
f = 49 ◦C/44.5 ◦C

Initial and Stabilized Values of Other Evolution Parameters
ε+L0/ε+L1 = 0.043/0.04, ε−L0/ε−L1 = −0.023/ − 0.019, κ+0 /κ+1 = (1/20)/(1/30), κ−0 /κ−1 = (1/20)/(1/30), κR = 1

Parameters Governing the Evolution Rates of the Evolution Parameters
γ±1 = γ±2 = γ±3 = γ±4 = γ±6 = 0.001, γ±5 = 0.0001, ψir = 0.00015, ψ2 = 0.0002

Similarly, we list the following error values of the parameter κ: δ
(
κ+0

)
= 5.64%/0.21%,

δ
(
κ+1

)
= 10.57%/2.47%, δ

(
κ−0

)
= 5.64%/0.28% and δ

(
κ−1

)
= 10.57%/2.13%. These error values show

the increasing tendency of the pseudo-hardening stress range for SMAs during cycling. In addition,
the temperature-related coefficient κR, the error value of which is δ

(
κR

)
= 0.29%, should be noted,
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as it reflects the conversion rate of the temperature-induced transformation between austenite and
twinned martensite.

We use the applied stress, the range of which is 0 ± 600 MPa, in the following study and show
the temperature-dependent constitutive behavior of SMAs in the temperature range from 0 ◦C to
70 ◦C in Figure 6 by using the proposed model. Regarding Figure 6, we first provide the asymmetric
temperature-stress phase diagram predicted by the proposed model in Figure 6a. Note that in Figure 6a,
all of the critical stresses, including their variations along with the temperature changes, are reflected,
among which the red solid lines represent the critical stresses existing in the initial unstable cycle and
the dark yellow dotted lines represent those existing in the final stable cycle. Different variants in SMAs,
involving austenite (marked with “A”), twinned martensite (marked with “MT”), tensile detwinned
martensite (marked with ”M+

DT”) and compressive detwinned martensite (marked with ”M−DT”),
are divided by these critical stresses and shown in Figure 6a. For temperatures below Ms = 18.4 ◦C,
the critical stresses in the initial cycle and after evolution are almost the same, which is also reflected in
the results in Section 4.1. When the temperature increases above Ms = 18.4 ◦C, most of the absolute
values of the critical stresses are relatively greater at the beginning and decrease after evolution due
to the ratcheting effect of SMAs. A portion of absolute values of the critical stresses become greater
after evolution, since As and A f decrease during cycling [55]. Moreover, the phase diagram is not
symmetrical for σ = 0, which is due to the tensile-compressive asymmetry of SMAs. With the evolution
rule of critical stresses reflected in Figure 6a, we plot the strain–stress-temperature relationships of
SMAs for temperatures ranging from 0 ◦C to 70 ◦C in Figure 6b. It can be recognized in Figure 6b
that the SMAs show an obvious shape-memory effect when T < 40 ◦C and pseudo-elasticity when
T > 40 ◦C. When the temperature is equal to 40 ◦C, some transformation strains remain after the first
tension-unloading process because the inverse martensitic transformation has not yet been completed
by the time the unloading process has finished, and these strains are regarded as the initial strain for
the following cycles. Regarding Figure 6b, we also find that the variation in the critical stress follows
the results shown in the phase diagram in Figure 6a, which means that it increases with temperature
increasing for both the unstable and stable cycles. Additionally, the area of the cyclic loops varies when
the temperature changes and affects the energy dissipation of SMAs. Moreover, the strain-temperature
relationships of SMAs can be seen in Figure 6b when the stress is fixed at 100 MPa and −200 MPa,
respectively. We can conclude from these relationships that the strain variation range decreases when
the cycle transits from the initial state to the stable state, especially for the higher temperature range.
Some strain-temperature relationships show two strain bursts (regions where strain significantly varies
with temperature). One burst is due to the evolution of the critical transition stresses and the other one
is due to the feature transition of SMAs in the temperature range of T ∈ [As, A f ]. The results shown in
Figure 6 give us an idea of how to predict the tensile-compressive ratcheting deformations of SMAs in
a changeable temperature environment.

As we can see from Figure 6, the pseudo-elasticity can be clearly observed when T > 40 ◦C and
the pseudo-elastic SMAs show excellent damping performance [57]; therefore, the energy dissipation
of SMAs in that temperature range should be studied. The temperature-dependent dissipated energies
of SMAs, Edis, at three different temperatures, namely T = 50 ◦C, T = 60 ◦C, and T = 70 ◦C, are shown
in Figure 7. From Figure 7, in which the loading with a stress range of 0± 600 MPa is applied, we find
that the dissipated energies of SMAs at these three temperatures all rapidly decline in the first ten
cycles; then, the decreasing rate of these curves slow down; and finally, these dissipated energies tend
towards a fixed value. Moreover, it can be clearly recognized that the SMAs dissipate more energy and
show better damping performance in a lower-temperature environment, which is determined by the
larger area of the hysteresis loops according to Figure 6b.

According to the proposed model, we show the variation in total martensite variants ξ in SMAs
during cycling at different temperatures, as shown in Figure 8. Regarding Figure 8, the variations in ξ
at T = 10 ◦C, T = 40 ◦C, and T = 60 ◦C, are described, the peak values of which all approach 1 when the
applied stress under tension or compression reaches its peak value. Since obvious pseudo-elasticity can



Materials 2020, 13, 3116 15 of 20

be observed when T = 60 ◦C, it can be seen from Figure 8 that the phase transformation between austenite
and martensite is still in progress, with the value of ξ continuously fluctuating at that temperature.
When the temperature decreases to 40 ◦C, the fluctuation of ξ becomes weaker after approximately
seven tensile-compressive cycles, mainly due to the irreversible martensite and partial irreversible
strain induced by the shape-memory effect of SMAs. When an even lower temperature is reached,
i.e., T = 10 ◦C, the shape-memory effect becomes the main characteristic of SMAs; thus, the value of ξ
reaches one at the end of the first tension or compression process and remains at one in the following
cycles, as no phase transformation occurs afterwards.
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Figure 6. The temperature-dependent constitutive behavior of SMAs in the temperature range from
0 ◦C to 70 ◦C. (a) The asymmetric temperature-stress phase diagram predicting the critical stresses,
red solid lines represent the initial critical stresses and the dark yellow dotted lines represent the
critical stresses after evolution; (b) The strain–stress-temperature relationships of SMAs at various
temperatures, red lines and the dark yellow lines represent the strain–stress relationships for the first and
20th cycles, respectively, the blue dashed lines represent the unstable strain-temperature relationship
for the first cycle, and the green solid lines represent the stable strain-temperature relationship for the
20th cycle.

Finally, we consider the mechanical behaviors of SMAs under the other two different loading paths,
involving a complete cycle with several tensile reloadings, whose stress range is 380± 220 MPa (Type 2
loading path), and cycles that begin with compression (Type 3 loading path), as shown in Figure 9a.
Note that in Figure 9a, Type 1 loading path of a simple complete cycle in red dash dotted line is used
as a reference for comparison. The strain–stress responses of SMAs under Type 2 loading at different
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temperatures, T = 30 ◦C and T = 60 ◦C, are shown in Figure 9b,c. Regarding Figure 9b, we note that the
transformation strain and ratcheting strain exist before the first reloading process begins, which is due
to the shape-memory effect of SMAs at T = 30 ◦C. When the reloading–unloading processes take place
and are repeated several times, several approximately linear strain–stress relationships with a ratcheting
strain that tends to saturate can be found. These processes finally affect the first compression-unloading
process in Figure 9b, the residual strain of which after compressive unloading is smaller than that of a
simple complete tensile-compressive cycle (Type 1 loading). At T = 60 ◦C, several complete subloops
can be clearly observed under tension in Figure 9c due to the pseudo-elasticity of SMAs, and a smaller
hysteresis loop with smaller ratcheting strain can be captured in the compressive direction, since the
ratcheting deformation is almost saturated. In addition, the strain–stress responses of SMAs under
Type 3 loading at temperatures of 30 ◦C and 60 ◦C are plotted in Figure 9d,e. According to Figure 9d,e,
the shape-memory effect and pseudo-elasticity of SMAs can be clearly reflected when Type 3 loading
is applied. However, comparing with the responses under Type 1 loading, we obtain that the peak
strains under compression are always greater and those under tension are smaller when Type 3 loading
is applied.Materials 2020, 13, x FOR PEER REVIEW 17 of 22 
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loading path. (a) The loading paths along with the increase in the tensile-compressive cycle; (b) The
strain–stress relationship of SMAs under Type 2 loading at T = 30 ◦C; (c) The strain–stress relationship
of SMAs under Type 2 loading at T = 60 ◦C; (d) The strain–stress relationship of SMAs under Type 3
loading at T = 30 ◦C; (e) The strain–stress relationship of SMAs under Type 3 loading at T = 60 ◦C.

5. Concluding Remarks

This work mainly addresses the description of the thermomechanical behavior of SMAs involving
tensile-compression asymmetry and the ratcheting effect by proposing a temperature-dependent
constitutive model. By considering the cyclic accumulation of residual martensite and redefining the
internal variables in SMAs, the proposed model can reasonably predict the temperature-dependent
characteristics of SMAs, involving the pseudo-elasticity and the shape-memory effect, and describe the
mechanical behavior at an arbitrary temperature under different loading cases. Comparisons between
the predictions of the proposed constitutive model of SMAs and the corresponding experimental



Materials 2020, 13, 3116 18 of 20

results show that the proposed model effectively predicts the main features of tensile-compression
asymmetry and the ratcheting effect observed from the experimental findings.
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