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Cullins (CULs) are a core component of cullin-RING E3 ubiquitin ligases (CRLs), which 
regulate the degradation, function, and subcellular trafficking of proteins. CULs are post-
translationally regulated through neddylation, a process that conjugates the ubiquitin-like 
modifier protein neural precursor cell expressed developmentally downregulated protein 
8 (NEDD8) to target cullins, as well as non-cullin proteins. Counteracting neddylation is 
the deneddylase, COP9 signalosome (CSN), which removes NEDD8 from target proteins. 
Recent comparative genomics studies revealed that CRLs and the CSN are highly 
conserved in Amoebozoa. A well-studied representative of Amoebozoa, the social amoeba 
Dictyostelium discoideum, has been used for close to 100 years as a model organism for 
studying conserved cellular and developmental processes owing to its unique life cycle 
comprised of unicellular and multicellular phases. The organism is also recognized as an 
exceptional model system for studying cellular processes impacted by human diseases, 
including but not limited to, cancer and neurodegeneration. Recent work shows that the 
neddylation inhibitor, MLN4924 (Pevonedistat), inhibits growth and multicellular 
development in D. discoideum, which supports previous work that revealed the cullin 
interactome in D. discoideum and the roles of cullins and the CSN in regulating cellular 
and developmental processes during the D. discoideum life cycle. Here, we review the 
roles of cullins, neddylation, and the CSN in D. discoideum to guide future work on using 
this biomedical model system to further explore the evolutionarily conserved functions of 
cullins and neddylation.
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NEDDYLATION, CULLINS, AND THE COP9 SIGNALOSOME

The continual turnover of proteins through degradation maintains cell homeostasis, facilitates 
signal transduction, and allows for progression through the cell cycle. One of the pathways 
cells use to degrade proteins involves the proteasome, where ubiquitin is the tag that marks 
proteins for degradation. In addition to ubiquitin, there are also ubiquitin-like modifiers that 
target both proteins and lipids to control their subcellular localization, macromolecular interactions, 
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and enzymatic activity (Cappadocia and Lima, 2018). Known 
ubiquitin-like modifiers include small ubiquitin-like modifier 
(SUMO), ubiquitin fold modifier 1 (UFM1), ubiquitin-related 
modifier 1 (URM1), ubiquitin-like modifier HUB1, and neural 
precursor cell expressed developmentally downregulated protein 
8 (NEDD8; Vierstra, 2012). NEDD8 is highly conserved across 
eukaryotes (Figure  1) and is conjugated to target proteins at 

a near-terminal lysine residue (N-term or C-term) through a 
process known as neddylation. The modification was first 
observed in the Saccharomyces cerevisiae S phase kinase-associated 
protein 1 (Skp1)-Cullin-F-box (SCF) complex, where Rub1, 
the S. cerevisiae ortholog of human NEDD8, was found conjugated 
to Cdc53p, the S. cerevisiae ortholog of cullin 1 (CUL1; Lammer 
et  al., 1998; Liakopoulos et  al., 1998). In the SCF complex, 

FIGURE 1 | Neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) is conserved across eukaryotes. Alignment of NEDD8 ortholog 
protein sequences in different eukaryote species, including those in plants (pink), amoebozoa (red), fungi (blue), and animals (orange). For plants, the upstream 
ubiquitin sequence was trimmed from the NEDD8 orthologs. Sequences were aligned on MEGA7 using the MUSCLE alignment and displayed using ESPript 3.0. 
Colored residues indicate physiochemical properties and conservation at a position. The C-terminal “RGG” proteolytic processing motif is marked by red 
arrowheads and the NEDD8 overhang sequence that is cleaved is indicated by the blue line.
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the linker protein SKP1 bridges the interaction between the 
cullin and F-box protein, which targets specific substrates for 
ubiquitination (Zimmerman et  al., 2010). Cullins then serve 
as the scaffold for multi-subunit ubiquitin ligases. SCF is a 
member of the cullin–RING E3 ubiquitin ligase (CRL) 
superfamily, which plays important roles in regulating a variety 
of proteins including transcription factors, cell cycle regulators, 
DNA damage response/repair proteins, and growth factor 
receptors (Schwechheimer and Villalobos, 2004; Vodermaier, 
2004; Willems et  al., 2004; Ardley and Robinson, 2005; Bosu 
and Kipreos, 2008; de Bie and Ciechanover, 2011; Li and Jin, 
2012; Chung and Dellaire, 2015; Qi and Ronai, 2015; Gilberto 
and Peter, 2017; Serrano et  al., 2018). In addition, neddylation 
plays an important role in regulating the activity of subunits 
that form the proteasome and ribosomes (Xirodimas et  al., 
2008). During proteotoxic stress, neddylation promotes ribosomal 
protein accumulation in the nucleus to protect the proteasome 
system and prevent dysfunction (Maghames et al., 2018). During 
oxidative stress, neddylation regulates poly(ADP-ribose) 
polymerase 1 (PARP1) activity to delay the initiation of PARP1-
dependent cell death (Keuss et  al., 2019). Thus, neddylation 
has multiple essential functions in the cell.

Many aspects of neddylation mirror and incorporate pathways 
that are associated with ubiquitination. Akin to ubiquitin, once 
NEDD8 is translated into an inactive precursor form, it requires 
cleavage of its short C-terminal amino acid extension (five 
amino acids in humans) to generate the mature form of the 
protein (Figures  1, 2; Kamitani et  al., 1997). Mature NEDD8 
has an accessible C-terminal glycine residue positioned at amino 
acid 76 that is used to conjugate NEDD8 to the lysine of a 
target protein (Figure  1; Kamitani et  al., 1997). NEDD8 
C-terminal cleavage occurs through the actions of ubiquitin 
C-terminal hydrolase isozyme (UCH) L1 (UCHL1) and UCHL3 
(both belonging to the C12 family of peptidases; Figure  2). 
UCHs also cleave the C-terminal extensions of ubiquitin (Wada 
et al., 1998; Johnston et al., 1999; Linghu et al., 2002; Hemelaar 
et al., 2004; Frickel et al., 2007; Yu et al., 2011). While UCHL1 
and UCHL3 both bind to NEDD8, the hydrolytic processing 
of NEDD8 is carried out by UCHL3 (Wada et  al., 1998). 
Sentrin-specific protease 8 (SENP8/DEN1; belonging to the 
C48 family of peptidases) is another NEDD8 processing enzyme 
that exclusively targets NEDD8 and not ubiquitin (Figure  2; 
Gan-Erdene et  al., 2003; Mendoza et  al., 2003; Wu et  al., 2003; 
Shen et  al., 2005; Chan et  al., 2008; Shin et  al., 2011). Like 
UCHL3, SENP8 also cleaves NEDD8 at the 5-amino acid 
C-terminal extension suggesting the functions of the two 
enzymes are redundant (Mendoza et  al., 2003).

Like ubiquitination, the conjugation of mature NEDD8 to 
target proteins follows an E1-E2-E3 cascade (Figure 2; Kawakami 
et  al., 2001; Pan et  al., 2004; Huang et  al., 2005; Saha and 
Deshaies, 2008). After NEDD8 is cleaved, it is adenylated and 
activated by E1  in an adenosine triphosphate (ATP)-dependent 
mechanism (Bohnsack and Haas, 2003; Walden et  al., 2003). 
E1 is a heterodimer of NEDD8-activating enzyme E1 regulatory 
subunit (NAE1) and ubiquitin-activating enzyme 3 (UBA3; 
Gong and Yeh, 1999; Bohnsack and Haas, 2003; Walden et  al., 
2003). Within E1, NEDD8 resides between NAE1 and UBA3 

but binds directly with the latter. E1 then transfers NEDD8 
to E2, which is comprised of ubiquitin-conjugating enzyme 
(UBE) 2F (UBE2F) and UBE2M (Osaka et  al., 1998; Gong 
and Yeh, 1999; Huang et  al., 2009). Both UBE2F and UBE2M 
can bind NEDD8 (Gong and Yeh, 1999; Huang et  al., 2005, 
2009). E2 receives assistance in the final step of neddylation 
from a few E3 ligases such as ring box 1/regulator of cullins 
1 (RBX1/ROC1), ring box 2/regulator of cullins 2 (RBX2/
ROC2), and defective in cullin neddylation 1 (DCUN1D1), 
to transfer NEDD8 to the lysine of target proteins (e.g., cullins) 
and initiate CRL assembly (Kamura et  al., 1999; Petroski and 
Deshaies, 2005; Duda et  al., 2008; Saha and Deshaies, 2008; 
Huang et  al., 2009; Scott et  al., 2010). Previous work showed 
that RBX1 and DCUN1D1 interact with the NEDD8-UBE2M 
intermediate to neddylate CUL1, CUL3, CUL3, and CUL4 
(Kim et  al., 2008; Huang et  al., 2009). CUL5 neddylation is 
carried out by RBX2  in association with UBE2F, but unlike 
RBX1, it is not known if DCUN1D1 also participates in the 
conjugation (Huang et  al., 2009). Finally, CUL7 and CUL9 
have been shown to bind to RBX1 (Andrews et  al., 2006). 
Like ubiquitination, proteins can be  polyneddylated (Jones 
et  al., 2008). However, unlike ubiquitin, which has over 10,000 
targets in humans, NEDD8 appears to be  conjugated to a 
shorter list of proteins. For example, Jones et al. (2008) performed 
a targeted proteomics analysis to identify 496 NEDD8-modified 
and associated proteins in HEK293 cells, which included all 
human cullins. In addition, a recent study identified 1,101 
unique neddylation sites on 620 human proteins in HEK293 
cells (Lobato-Gil et  al., 2021). Cullins undergo neddylation at 
a consensus C-terminal neddylation motif [(IL)(VIT)(RQ)(IS)
(MLV)K(MAS)(RHE)] and are conjugated specifically to a lysine 
residue found within the motif (Mikus and Zundel, 2005). 
Therefore, neddylation represents a unique but smaller pool 
of ubiquitin-like modification within the eukaryotic cell, where 
cullins are the major targets.

The dynamic assembly of CRL complexes is modulated by 
cullin-associated NEDD8-dissociated protein 1 (CAND1), which 
functions as a SKP1/F-box protein exchange factor for CUL1 
(as well as other cullins; Figure  2; Zheng et  al., 2002; Dubiel 
et  al., 2013; Pierce et  al., 2013; Liu et  al., 2018). Neddylation 
of CUL1 and subsequent binding of SKP1 and a F-box protein 
causes the displacement of CAND1, thus allowing for CRL 
assembly (Liu et  al., 2002; Zheng et  al., 2002). Without the 
incorporation of CAND1, there is inefficient degradation of 
target proteins. Neddylation also contributes to the enzymatic 
activity of the SCF complex by causing a conformational shift 
to improve ubiquitin transfer activity and E2 recruitment (Saha 
and Deshaies, 2008). The important role of this process is 
highlighted in studies that showed that the complete loss of 
neddylation is lethal (with S. cerevisiae being the exception; 
Lammer et  al., 1998; Osaka et  al., 2000; Tateishi et  al., 2001). 
In humans, abnormalities in neddylation are linked to a variety 
of pathological conditions including cancer, neurodegeneration, 
autoimmune diseases, and other inflammatory diseases (Chen 
et  al., 2012; Enchev et  al., 2015; Ehrentraut et  al., 2016; Ying 
et  al., 2018). Together, these findings suggest that neddylation 
is a key component of CRL regulation, and when aberrant, 
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contributes to the pathogenesis associated with many 
human diseases.

Deneddylation (removal of NEDD8 from proteins) occurs 
through the actions of the COP9 signalosome (CSN), which 

is composed of nine subunits in humans (CSN1-6, CSN7A/7B, 
and CSN8-9; Figure  2; Rao et  al., 2020). SENP8/DEN1, 
which participates in NEDD8 processing (discussed above), 
also plays a role in disassembling CRLs (Wu et  al., 2003; 

FIGURE 2 | An overview of the neddylation and deneddylation pathway. NEDD8 is processed into its matured form through both ubiquitin C-terminal hydrolase 
isozyme (UCH) and Sentrin-specific protease 8 (SENP8) proteolytic cleavage. NEDD8 is passed through a “baton” mechanism, where NEDD8 is adenylated and 
activated in an adenosine triphosphate (ATP)-dependent mechanism by E1, which is a heterodimer of NEDD8-activating enzyme E1 regulatory subunit (NAE1) and 
ubiquitin-activating enzyme 3 (UBA3). NEDD8 binds specifically to UBA3 within E1. UBA3 binds both ubiquitin-conjugating enzyme (UBE) 2F (UBE2F) and ubiquitin-
conjugating enzyme E2M (UBE2M) in E2 and transfers NEDD8 to both proteins. NEDD8 is finally attached to a substrate (i.e., cullins and non-neddylated proteins) 
by E3, which includes ring box 1 (RBX1), ring box 2 (RBX2), and other potential E3 ligases. In E3, NEDD8 loaded into UBE2M associates with RBX1 and defective in 
cullin neddylation 1 (DCUN1D1). NEDD8 loaded into UBE2F associates with RBX2, but the involvement of DCUN1D1 is unknown. Substrate neddylation displaces 
cullin-associated NEDD8-dissociated protein 1 (CAND1), which serves to regulate cullin-RING E3 ubiquitin ligases (CRL) assembly. NEDD8 is removed from the 
substrate via deneddylation, which involves the COP9 signalosome (CSN) complex and SENP8/DEN1. The Dictyostelium discoideum orthologs are displayed as red 
text beside the respective human protein. AMP, adenosine monophosphate; ATP, adenosine triphosphate; CAND1, cullin-associated NEDD8-dissociated protein 1; 
CSN, COP9 signalosome; CUL, cullin; E1, E1-NAE1 complex; E2, E2-conjugation complex; E3/CRL, E3-cullin-RING complex; NAE1, NEDD8 activating enzyme E1 
subunit 1; NEDD8, neural precursor cell expressed developmentally downregulated protein 8; PPi, pyrophosphate; RBX, ring box; SENP8, sentrin-specific protease 
8; UBA3, ubiquitin-activating enzyme 3; UBE, ubiquitin-conjugating enzyme; UCH, ubiquitin C-terminal hydrolase; and UCHL, ubiquitin C-terminal hydrolase 
isozyme.
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Shin et  al.,  2011). The CSN exists as two variant complexes 
containing CSN1-6, CSN8-9, and one of CSN7A or CSN7B, 
which have overlapping functions in the deneddylation of 
CRLs (Wang et al., 2021). However, CSN7B has been reported 
to have a unique function in adipogenesis and the DNA 
damage response (Huang et  al., 2016; Wang et  al., 2021). 
The CSN is conserved across eukaryotes including plants 
(e.g., Arabidopsis thaliana), invertebrates (e.g., Drosophila 
melanogaster and Caenorhabditis elegans), yeast (e.g., S. 
cerevisiae and Schizosaccharomyces pombe), fungi (e.g., 
Neurospora crassa and Aspergillus nidulans), and humans 
(Schwechheimer et  al., 2001; Busch et  al., 2003; Doronkin 
et  al., 2003; Pintard et  al., 2003; He et  al., 2005; Wee et  al., 
2005; Wu et  al., 2005; Cope and Deshaies, 2006; Schmidt 
et  al., 2010). CSN complexes that contain fewer than nine 
subunits have been observed in different eukaryotic clades, 
suggesting that the protein architecture of the complex has 
been prone to changes over time (Braus et al., 2010). However, 
a consistent hallmark is the conservation of the CSN5 subunit 
among different eukaryotes.

As discussed above, the CSN subunits exhibit widespread 
abundance throughout both unicellular and multicellular 
eukaryotes (Barth et  al., 2016). Amoebozoan genomes encode 
either a CSN with all the known subunits or all but CSN8 
and CSN9 subunits (Barth et al., 2016). A representative model 
organism from Amoebozoa is the social amoeba, Dictyostelium 
discoideum, which was identified as a species with a genome 
encoding an intact eight subunit CSN (Rosel and Kimmel, 
2006; Heidel et  al., 2011). D. discoideum emerged at least 600 
million years ago (an amorphea that diverged prior to the 
fungi-animal split) and has been studied for close to a century 
(Mathavarajah et al., 2017). Various cullins have been identified 
as key regulators of multicellular development in D. discoideum 
(Mohanty et  al., 2001; Wang and Kuspa, 2002; Sheikh et  al., 
2015). Furthermore, components of the neddylation pathway 
in metazoans are conserved in D. discoideum (Figure 2; Table 1), 
and there is evidence supporting cullin neddylation during 
the life cycle (Sheikh et  al., 2015). Here, we  review the known 
and predicted roles of cullins and neddylation in D. discoideum 
to set the stage for future work that further examines how 
cullins and neddylation regulate conserved cellular and 
developmental processes.

THE LIFE CYCLE OF DICTYOSTELIUM 
DISCOIDEUM

D. discoideum belongs to a clade within the Amoebozoan 
known as the social amoebae, a term coined by Bonner (1949) 
after observing that unicellular D. discoideum amoebae could 
develop into multicellular fruiting bodies when prompted by 
starvation. In the 24-h asexual life cycle of D. discoideum, 
a starved population of amoebae aggregate to form complex 
multicellular structures in a time-dependent manner (Fey 
et  al., 2007; Gaudet et  al., 2008; Mathavarajah et  al., 2017; 
Figure  3A). After aggregating to form a mound, cells rise 
above the surface to form a finger, which then falls on the 

surface to form a motile pseudoplasmodium, or slug (Raper, 
1940; Brenner, 1977). As multicellular development continues, 
the slug forms a culminant where cells undergo terminal 
differentiation to form a fruiting body, the final stage of 
development (Marée and Hogeweg, 2001). The fruiting body 
is composed of a mass of differentiated spores that sit atop 
a slender stalk of differentiated stalk cells. During differentiation, 
~80% of the cells within the slug become pre-spore cells, 
which eventually differentiate into spores (Forman and Garrod, 
1977). The other ~20% differentiate into pre-stalk cells and 
become non-reproductive cells that comprise the stalk and 
two other segments of the fruiting body. These two other 
segments are composed of differentiated cells derived from 
the same cell type as the stalk cells and are referred to as 
the cup and basal disk cells (they constitute both the cup 
and basal structures of the fruiting body, respectively; 
Chen  and  Schaap, 2016). The D. discoideum life cycle 
highlights  the evolution of many processes required for 
multicellular development, including but not limited to, cell–
cell communication, cell–cell adhesion, and differentiation.

NEDDYLATION, CULLINS, AND THE 
CSN IN DICTYOSTELIUM DISCOIDEUM

Neddylation and Cullins in Dictyostelium 
discoideum
In D. discoideum, nedd8 is expressed throughout development 
but peaks in expression after 4 h of development (Figure  3B). 
This expression profile overlaps with the expression profiles 
of most cullin genes in D. discoideum, which peak in expression 
during aggregation (Figure 3B). Unlike later diverging amorphea, 
the C-terminal extension is only one amino acid long for D. 
discoideum Nedd8 (Figure  1; Huber et  al., 2021). The D. 
discoideum genome also encodes a protein homologous to 
UCHL1 and UCHL3  in humans, Uch1 (encoded by uch1), 
and an ortholog of human SENP8, Senp8 (encoded by senp8; 
Figure  2; Table  1; Huber et  al., 2021).

The D. discoideum E1 complex is a heterodimer comprised 
of orthologs of mammalian NAE1 and UBA3 (Nae1 and 
Ube1C, respectively; Figure  2; Table  1). There is only one 
potential E2 encoded by ube2M (protein: Ube2M), which 
is similar in sequence to both UBE2M and UBE2F. The 
D.  discoideum genome also encodes an ortholog of RBX1 
and RBX2, Rbx1, that is proposed to function as an E3  in 
the organism, as well as an ortholog of DCUN1D1 
(uncharacterized protein DDB0305617; Forman and Garrod, 
1977). Finally, D. discoideum contains an ortholog of human 
CAND1 (Cand1). Together, the predicted neddylation pathway 
in D. discoideum shares similarities to the well-established 
pathway in metazoans.

In mammals, there are eight members of the cullin family 
(CUL1, CUL2, CUL3, CUL4A, CUL4B, CUL5, CUL7, and 
CUL9; Table  2; Sarikas et  al., 2011). The D. discoideum 
genome encodes five proteins (CulA, CulB, CulC, CulD, 
and CulE encoded by culA, culB, culC, culD, and culE, 
respectively) that all share sequence similarity with human 
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cullins (Table  2). Moreover, Sheikh et  al. (2015) compared 
characteristic sequence motifs in cullins to show that CUL1 
is most similar to CulA, CulE, and CulB, CUL3 is most 
similar to CulC, and CUL4B is most similar to CulD. BLASTp 
searches also show that the D. discoideum ortholog of anaphase 
promoting complex subunit 2 (Anapc2) shares limited sequence 
similarity with human CUL1, CUL2, CUL3, CUL4A, and 
CUL4B (Table 2). In mammals, anaphase promoting complex 
functions as an E3 ubiquitin ligase that regulates cell cycle 
progression by mediating ubiquitination and subsequent 
degradation of target proteins (Tang et  al., 2001; Jin et  al., 
2008). Since only CulE has previously been validated as a 
neddylated protein, we  examined the sequences of other D. 
discoideum cullins to determine whether the neddylation 
motif is conserved (Robert and Gouet, 2014; Kumar et  al., 
2016). The alignment revealed that the cullin neddylation 
motif is highly conserved between cullins from D. discoideum 
and humans (Figure  4). While the residues upstream of 
the lysine are identical and conserved in D. discoideum 
cullins, there are differences in the two downstream residues. 
Adjacent to the lysine (+1 position), CulD has a threonine 
rather than adhering to the (MAS) amino acid sequence 
(methionine, alanine, or serine at the +1 position), indicating 
functional flexibility between the threonine and serine groups 

in D. discoideum. Similarly, CulE differs at the +2 position 
with a lysine residue that normally contains either an arginine, 
histidine, or glutamic acid residue [i.e., (RHE)]. Since there 
is a highly conserved neddylation motif present in each of 
CulA, CulB, CulC, CulD, and CulE, there is potential for 
Nedd8 to be  conjugated to all D. discoideum cullins. Finally, 
the D. discoideum genome encodes orthologs of eight human 
CSN subunits (Table  1).

Cullin Gene Expression During the 
Dictyostelium discoideum Life Cycle
The D. discoideum cullin genes are differentially expressed 
during development and peak in expression at different 
times during the developmental program (Figure  3B). The 
expression of culB, culC, culD, and culE increase and reach 
peak levels during the first 8 h of development, followed 
by a decline throughout the remaining stages of development. 
Conversely, culA rises in expression throughout development 
and reaches its peak level after 20 h. Consistent with this, 
Mohanty et  al. (2001) used an anti-CUL1 antibody to show 
that a cullin (presumed to be  CulA) reaches peak levels 
after 16–20 h of development. Combined, these findings 
suggest that cullins may have specific roles during 
D. discoideum development.

TABLE 1 | Sequence similarity between neddylation pathway proteins and CSN subunits in humans and Dictyostelium discoideum.

Human protein (Uniprot ID) Size (aa)
Dictyostelium discoideum 
ortholog (dictyBase gene ID) Size (aa)

Region of 
similarity (aa)

Identities 
(%)*

Positives 
(%)** E-value

NEDD8 processing

NEDD8 (Q15843) 81 Nedd8 (DDB_G0278711) 77 76 82 92 9E-26
SENP8/DEN1 (Q96LD8) 212 Senp8 (DDB_G0278795) 243 241 32 47 4E-26
UCHL1 (P09936) 223 Uch1 (DDB_G0282007) 255 221 47 66 3E-54
UCHL3 (P15374) 230 224 52 70 1E-65
NAE1 heterodimer
NAE1/APPBP1 (Q13564) 534 Nae1 (DDB_G0287965) 520 524 41 64 1E-123
UBA3 (Q8TBC4) 463 Ube1c (DDB_G0283891) 442 441 49 68 1E-128
E2
UBE2M/UBC12 (P61081) 183 Ube2M (DDB_G0281725) 230 178 53 73 1E-54
UBE2F (Q969M7) 185 175 33 53 6E-24
E3
RBX1/ROC1 (P62877) 108 Rbx1 (DDB_G0287629) 104 97 86 92 2E-42
RBX2/ROC2 (Q9UBF6) 113 104 46 60 4E-20
DCUN1D1 (Q96GG9) 259 Unnamed (DDB_G0290025) 249 253 37 56 6E-43
Regulator of CRL assembly
CAND1 (Q86VP6) 1,230 Cand1 (DDB_G0274167) 1,238 1,256 40 61 0
CSN subunits
CSN1/COPS1/GPS1 (Q13098) 491 Csn1 (DDB_G0283587) 458 436 45 63 1E-102
CSN2/COPS2/TRIP15 (P61201) 443 Csn2 (DDB_G0289361) 449 417 63 79 1E-143
CSN3/COPS3 (Q9UNS2) 423 Csn3 (DDB_G0291848) 418 379 40 61 2E-76
CSN4/COPS4 (Q9BT78) 406 Csn4 (DDB_G0293844) 393 387 47 71 9E-95
CSN5/COPS5/JAB1 (Q92905) 334 Csn5 (DDB_G0284597) 332 332 66 81 1E-130
CSN6/COPS6/HVIP (Q7L5N1) 327 Csn6 (DDB_G0293180) 309 288 41 64 2E-61
CSN7A/COPS7A/DERP10 (Q9UBW8) 275 Csn7 (DDB_G0271282) 259 194 41 68 1E-43
CSN7B/COPS7B (Q9H9Q2) 264 182 46 69 1E-41
CSN8/COPS8 (Q99627) 209 Csn8 (DDB_G0275471) 196 200 30 54 1E-24
CSN9/COPS9 (Q8WXC6) 57 Could not be identified - - - - -

BLASTp searches were performed using dictyBase. Human proteins were used as query sequences (E-value, 0.1; Matrix, BLOSUM62; Filter, no).
*Exact amino acid match.
**Similar amino acid match (e.g., both polar).
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The CulE Interactome in Dictyostelium 
discoideum
In Sheikh et  al. (2015) identified the SCF interactome in D. 
discoideum by expressing FLAG-tagged CulE in amoebae 
(Figure  5). In the interactome, proteins orthologous to 
components of the mammalian SCF complex were identified, 
such as homologs of SKP1 and three F-box proteins (FbxD, 
uncharacterized protein DDB0306343, and uncharacterized 
protein DDB0237864). Using an antibody directed against 
D.  discoideum Skp1, another co-immunoprecipitation was 
performed that identified CulE as a Skp1-interactor via Western 
blotting (Sheikh et  al., 2015). F-box proteins have been shown 
to interact with cullins in D. discoideum (Mohanty et al., 2001; 
Sheikh et  al., 2015). For example, FbxD has been identified 
as a CulE interactor (discussed above; Sheikh et  al., 2015; 
Figure  5). In addition, Mohanty et  al. (2001) reported an in 
vivo interaction between CulA and FbxA using an antibody 
against human CUL1 that failed to detect a protein in culA− 
cells via Western blotting. However, since the antibody was 
not specific for CulA, and there is strong sequence similarity 
between cullins in D. discoideum (and humans; Table 2; Sheikh 
et  al., 2015), it is possible that another cullin was detected in 

the FbxA pull-down. Nonetheless, these observations suggest 
that the SCF complex associates with distinct cullins at different 
points in the life cycle to regulate specific processes during 
multicellular development. In addition, Skp1 modification affects 
the representation of F-box proteins in the Skp1 interactome 
suggesting that it influences the recruitment of F box proteins 
to the SCF complex (Sheikh et  al., 2015).

The CulE interactome also revealed that known mechanisms 
of SCF regulation are conserved in D. discoideum (Enchev et al., 
2015). For example, an ortholog of mammalian CAND1 (Cand1) 
was identified as an interactor suggesting that the mechanisms 
regulating CRL assembly and disassembly are similar in D. 
discoideum to what is observed in other eukaryotes (Figure  5). 
Furthermore, CulE was shown to interact with several proteins 
involved in neddylation and deneddylation such as Nedd8, Rbx1, 
and all the Csn subunits (Sheikh et  al., 2015). As additional 
support for the neddylation of CulE, Western blotting for the 
CulE protein shows two distinct protein bands (Sheikh et  al., 
2015). In total, accumulated evidence strongly supports that 
not only is the neddylation machinery conserved in D. discoideum, 
but it also dynamically regulates the assembly of SCF complexes 
in D. discoideum by acting on cullins.

A

B

FIGURE 3 | (A) The Dictyostelium discoideum life cycle. The asexual life cycle of D. discoideum occurs within 24 h. D. discoideum cells are unicellular during 
growth and divide by mitosis. Starvation triggers the onset of development. Starved amoebae undergo cyclic adenosine monophosphate (cAMP)-mediated 
chemotactic aggregation to form a multicellular aggregate, followed by compact mound, which then undergoes a series of morphological changes to form a finger 
that falls on the surface to generate a motile slug. Cells within the slug then terminally differentiate during culmination to form a fruiting body composed of a mass of 
viable spores that sit atop a slender stalk. In the laboratory, the multicellular developmental program is induced by depositing cells on non-nutrient agar plates. Scale 
bar (0 h) = 200 μm. Scale bar (4–24 h) = 2 mm. Images are not drawn to scale. (B) Expression profiles of cullin genes, genes encoding CSN subunits, and genes 
involved in Nedd8 processing, activation, and conjugation during the D. discoideum life cycle. Transcript data were derived from RNA-Seq data obtained from 
dictyExpress (http://www.dictyexpress.biolab.si) and replotted using GraphPad Prism 8. Expression profiles were examined for genes that encode proteins involved 
in Nedd8 processing (nedd8, senp8, and uch1), E1 (nae1 and ube1C), E2 (ube2M), E3 (rbx1, DDB_G0290025), and the COP9 signalosome (csn1-8). Expression 
profiles for genes that encode cullins (culA-culE) are also shown. csn, COP9 signalosome; cul, cullin; nae1, Nedd8-activating enzyme E1 subunit 1; nedd8, neural 
precursor cell expressed developmentally downregulated protein 8; rbx1, ring box 1/regulator of cullins 1; senp8, sentrin-specific protease 8; ube, ubiquitin-
activating enzyme; and uch, ubiquitin C-terminal hydrolase.
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THE ROLES OF CULLINS AND THEIR 
REGULATION DURING DICTYOSTELIUM 
DISCOIDEUM GROWTH

Roles of Neddylation and the CSN in Cell 
Proliferation
While the role of neddylation is well established for 
Opisthokonta (major clade containing both fungi and animals), 
until recently, it was unknown whether neddylation regulates 
the life cycle of organisms belonging to Amoebozoa (sister 
group to Opisthokonta; Lammer et  al., 1998; Liakopoulos 
et  al., 1998; Gan-Erdene et  al., 2003; Mendoza et  al., 2003; 
Wu et  al., 2003; Shen et  al., 2005; Chan et  al., 2008; Shin 
et  al., 2011). Recent work used the well-established NAE1 
inhibitor, MLN4924 (Pevonedistat), to reveal the roles of 

neddylation during D. discoideum growth and multicellular 
development (Huber et al., 2021). In Opisthokonta, neddylation 
regulates cell cycle progression and consequently, cell 
proliferation (Lammer et  al., 1998; Liakopoulos et  al., 1998; 
Gan-Erdene et  al., 2003; Mendoza et  al., 2003; Wu et  al., 
2003; Shen et  al., 2005; Chan et  al., 2008; Shin et  al., 2011). 
In D. discoideum, MLN4924 significantly reduces cell 
proliferation in a dose-dependent manner during the growth 
phase of the life cycle (Figure  6; Huber et  al., 2021). In 
addition, counting factor-associated protein D (CfaD), which 
is a secreted quorum sensing protein that modulates cell 
proliferation, was detected in the FbxD interactome (Figure 6; 
Bakthavatsalam et al., 2008; Sheikh et al., 2015). These findings 
indicate a conserved role for neddylation in regulating cell 
proliferation and support recent work linking neddylation to 

TABLE 2 | Sequence similarity between cullins in humans and Dictyostelium discoideum.

Human protein 
(Uniprot ID) Size (aa)

Dictyostelium discoideum 
protein (dictyBase gene ID) Size (aa)

Region of 
similarity (aa) Identities (%)* Positives (%)** E-value

CUL1 (Q13616) 776

CulA (DDB_G0291972) 770 772 51 68 0
CulB (DDB_G0267384) 771 726 38 61 1E-136
CulE (DDB_G0278991) 750 783 31 54 1E-104
CulC (DDB_G0284903) 769 801 30 50 6E-99
CulD (DDB_G0292794) 802 801 28 47 4E-69
Anapc2 (DDB_G0276377) 907 226 22 41 6E-05

CUL2 (Q13617) 745

CulA (DDB_G0291972) 770 774 37 57 1E-135
CulB (DDB_G0267384) 771 777 35 57 1E-131
CulC (DDB_G0284903) 769 780 29 51 1E-87
CulE (DDB_G0278991) 750 760 30 51 1E-83
CulD (DDB_G0292794) 802 780 25 47 3E-63
Anapc2 (DDB_G0276377) 907 157 24 40 0.013

CUL3 (Q13618) 768

CulC (DDB_G0284903) 769 777 48 66 0
CulD (DDB_G0292794) 802 790 34 54 1E-113
CulA (DDB_G0291972) 770 725 32 52 2E-97
CulB (DDB_G0267384) 771 795 29 51 2E-86
CulE (DDB_G0278991) 750 704 28 47 2E-62
Anapc2 (DDB_G0276377) 907 224 22 38 0.25

CUL4A (Q13619) 759

CulD (DDB_G0292794) 802 763 46 64 0
CulC (DDB_G0284903) 769 776 38 59 1E-142
CulA (DDB_G0291972) 770 700 33 53 2E-88
CulB (DDB_G0267384) 771 741 27 49 2E-71
CulE (DDB_G0278991) 750 611 30 50 2E-61
Anapc2 (DDB_G0276377) 907 177 25 40 2E-04

CUL4B (Q13620) 913

CulD (DDB_G0292794) 802 761 48 65 0
CulC (DDB_G0284903) 769 766 38 60 1E-139
CulA (DDB_G0291972) 770 701 32 54 8E-88
CulB (DDB_G0267384) 771 741 26 48 7E-67
CulE (DDB_G0278991) 750 610 29 50 5E-59
Anapc2 (DDB_G0276377) 907 180 27 40 9E-05

CUL5 (Q93034) 780

CulA (DDB_G0291972) 770 797 28 52 3E-85
CulB (DDB_G0267384) 771 764 29 51 6E-84
CulE (DDB_G0278991) 750 661 28 52 3E-65
CulC (DDB_G0284903) 769 689 26 48 8E-55
CulD (DDB_G0292794) 802 674 26 47 1E-39

CUL7 (Q14999) 1,698 CulA (DDB_G0291972) 770 358 21 37 0.54
CUL9 (Q8IWT3) 2,517 CulA (DDB_G0291972) 770 391 23 39 4E-05

BLASTp searches were performed using dictyBase. Human proteins were used as query sequences (E-value, 1; Matrix, BLOSUM62; Filter, no). Sheikh et al. (2015) performed 
a similar analysis to show that CUL1 is most similar to CulA, CulE, and CulB, CUL3 is most similar to CulC, and CUL4B is most similar to CulD.
*Exact amino acid match.
**Similar amino acid match (e.g., both polar).
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the proliferation of cancer cells (Du et  al., 2021; Zhang et  al., 
2021). However, whether MLN4924 specifically affects CRLs 
in D. discoideum remains to be  determined since non-cullin 
targets of neddylation have been reported in several organisms 
including S. pombe, A. thaliana, and Trypanosoma brucei 
(Girdwood et  al., 2012; Enchev et  al., 2015; Mergner et  al., 
2015; Liao et  al., 2017).

Deneddylation of cullins occurs through the actions of 
SENP8 and the CSN. Deneddylation by the CSN occurs 
via the CSN5 subunit, which is a metalloprotease (Cope 
et  al., 2002; Echalier et  al., 2013). For that reason, CSN5 
has the highest selection pressure and is the most conserved 
of all the CSN subunits. Thus, in D. discoideum, Csn5 would 
be  considered the essential subunit of the CSN required 
for the deneddylation of cullins. Consistent with this, loss 
of csn5 impairs cell proliferation in D. discoideum (Figure 6; 
Rosel and Kimmel, 2006). Since reduced neddylation and 
impaired deneddylation both impact cell proliferation D. 
discoideum, these findings indicate that cell proliferation in 
D. discoideum requires efficient cycling of neddylation 
and deneddylation.

Role of Neddylation in Folic Acid-Mediated 
Chemotaxis
D. discoideum cells use chemoattractants to sense nutrient levels 
within the environment. During the growth or feeding stage 
of the life cycle, D. discoideum cells sense and undergo chemotaxis 
towards folic acid, which is a biomolecule secreted by bacteria 
(Gerisch, 1982). Our group observed reduced chemotaxis toward 
folic acid when cells were treated with MLN4924 (Figure  6; 
Huber et  al., 2021). Intriguingly, recent work supports a role 

for neddylation in regulating macrophage chemotaxis in chronic 
pancreatitis (Lin et al., 2021). Therefore, work in D. discoideum 
and humans indicates that neddylation plays an important 
regulatory role in chemotaxis. As a result, further probing of 
the chemotactic pathway in D. discoideum may improve our 
understanding of the mechanisms that CRLs use to regulate 
chemotaxis in humans.

THE ROLE OF CULLINS AND THEIR 
REGULATION DURING DICTYOSTELIUM 
DISCOIDEUM EARLY DEVELOPMENT

CulA Is Required for cAMP-Mediated 
Chemotaxis
During the early stages of multicellular development (0–10 h), 
D. discoideum amoebae aggregate by chemotaxis toward cyclic 
adenosine monophosphate (cAMP), which is produced and 
secreted by starving cells (Figure 3A; Almeida and Dilao, 2016; 
Nakajima and Sawai, 2016). Intriguingly, several cullin genes 
increase their expression during this stage of the life cycle 
(Figure 3B). Consistent with this, loss of culA delays aggregation 
(Figure 6; Mohanty et  al., 2001). Using an assay that examines 
chemotaxis competence, Mohanty et  al. (2001) showed that 
the response of culA− cells to cAMP was suboptimal suggesting 
that CulA has an early role in development by influencing 
cAMP-mediated chemotaxis during aggregation (Noegel et  al., 
1986). As discussed above, the role of neddylation in regulating 
chemotaxis in D. discoideum is consistent with its role in 
regulating macrophage chemotaxis in chronic pancreatitis (Lin 
et  al., 2021).

FIGURE 4 | Alignment of cullins from Dictyostelium discoideum and human. Sequences were aligned on MEGA7 using the MUSCLE alignment and displayed 
using ESPript 3.0. Colored residues indicate physiochemical properties and conservation at a position. Arrowhead marks the lysine motif where the NEDD8 protein 
is conjugated within the conserved motif.
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A B

FIGURE 6 | The roles of cullins, neddylation, and the CSN during the Dictyostelium discoideum life cycle. (A) During growth, MLN4924 inhibits cell proliferation and 
folic acid-mediated chemotaxis. Loss of csn5 also inhibits cell proliferation. FbxD binds CfaD, which plays a role in quorum sensing. (B) During multicellular 
development, MLN4924 and loss of culA inhibit cAMP-mediated chemotaxis, which delays aggregation. MLN4924 also affects the intracellular and extracellular 
levels of CmfA, which plays a role in quorum sensing during aggregation. culA− and culB− cells form multi-tipped mounds during development, which is 
characteristic of D. discoideum mutants with defects in the autophagy pathway. MLN4924 inhibits slug and fruiting body formation. CulA, CulB, Skp1, FbxA, and 
FbxD collectively regulate fruiting body formation. CfaD, counting factor-associated protein A; CmfA, conditioned media factor A; Csn5 and COP9 signalosome 
complex subunit 5; Cul, cullin; Fbx, F-box protein; and Skp1, S phase kinase-associated protein 1.

In D. discoideum, cAMP controls the actions of cAMP-
dependent protein kinase A (PKA), which is a signaling kinase 
that regulates the expression of genes required for inducing 
aggregation, cell-type differentiation, and culmination (Loomis, 
1998). Upstream of PKA activation, the cAMP 
phosphodiesterase, RegA, catalyzes the conversion of cAMP 
to 5′-adenosine monophosphate to prevent PKA activation 
(Shaulsky et  al., 1996, 1998; Thomason et  al., 1998). As a 
result of its regulatory role during aggregation, the level of 
RegA protein peaks at this stage of the developmental program 
(Mohanty et  al., 2001). However, loss of culA or fbxA causes 
the level of RegA protein to remain high even after aggregation 
(Mohanty et  al., 2001; Tekinay et  al., 2003). When culA− cells 
express a constitutively active PKA protein, the observed 
defects in aggregation and chemotaxis are absent (Mohanty 
et  al., 2001). Since constitutively active PKA functions 
irrespective of cAMP levels, this supports the notion that 
abnormally high amounts of RegA interfere with cAMP levels 
to dysregulate PKA activity (Zhang et al., 2003). In conclusion, 
there is a significant role for CulA, and the SCF complex it 
functions with, in early development where it regulates the 
ubiquitination and degradation of RegA to maintain intracellular 
cAMP levels for PKA activation.

The SCF-dependent ubiquitination of RegA also appears to 
be  dependent on extracellular signal-regulated kinase (ErkA), 
an ortholog of mammalian mitogen-activated protein kinase 
(MAPK). In D. discoideum, ErkA phosphorylates RegA to inhibit 
its activity and this phosphorylation could then prime RegA 
for SCF-mediated ubiquitination of RegA (Maeda et  al., 2004; 
Kuburich et al., 2019). Additional work is required to determine 
if ErkA also directly regulates components of the SCF complex 
in D. discoideum. Intriguingly, ectopic expression of mouse 
Cul1 restored RegA degradation in culA− cells suggesting that 
the functions of mouse CUL1 and D. discoideum CulA are 
conserved (Mohanty et  al., 2001).

FIGURE 5 | Skp1-Cullin-F-box (SCF) complex interactome reveals 
components of the neddylation pathway and subunits of the CSN. Sheikh 
et al. (2015) identified proteins that interact with D. discoideum Skp1, FbxD, 
and CulE after performing co-immunoprecipitations for each protein. 
Interactors were identified using LC–MS/MS. Connecting lines indicate the 
interactions between the proteins. Mohanty et al. (2001) reported an 
interaction between a Dictyostelium discoideum cullin (presumably CulA) and 
FbxA. In the dashed circle, CSN subunit interactions with one another are 
shown. This was determined in a yeast two-hybrid screen by Rosel and 
Kimmel (2006). Cand1, cullin-associated Nedd8-dissociated protein 1; Csn, 
COP9 signalosome; Cul, cullin; Fbx, F-box protein; Nedd8, neural precursor 
cell expressed developmentally downregulated protein 8; Rbx1, ring box 1/
regulator of cullins 1; and Skp1, S phase kinase-associated protein 1.
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Role of Neddylation During Aggregation
During D. discoideum development, cullins are differentially 
regulated and this is possibly linked to their roles in 
developmental processes at specific time points. Most cullin 
genes (except culA) peak in expression during the first 12 h 
of development when cells aggregate to form multicellular 
mounds (Figure  3B). In addition, genes involved in the 
conjugation of Nedd8 to cullins such as nedd8, uch1, nae1, 
ube1C, ube2M, and rbx1 all follow a similar pattern of expression 
to the cullin genes, where they peak in expression during the 
first 12 h of development and then decline in expression 
throughout the remaining stages (Figure 3B). These data suggest 
that transcriptional changes in genes associated with neddylation 
occur in tandem with changes in the expression of cullin 
genes. Since neddylation promotes CRL assembly, this would 
allow for timely assembly of CRLs early in development to 
mediate the initiation of development and aggregation. In 
addition, CRL assembly and disassembly are thought to occur 
at least as frequently as new substrate selection (Kleiger et  al., 
2009; Deol et al., 2019). Consistent with this, the CSN subunits 
in D. discoideum also peak in expression during the first 12 h 
of development (Figure  3B). Combined, these results indicate 
that CRL assembly and disassembly are regulated by cycles of 
neddylation and deneddylation and that this cycling plays an 
important role in regulating the early stages of D. 
discoideum development.

Treatment of D. discoideum cells with MLN4924 delayed 
aggregation in a dose-dependent manner (Figure  6; Huber 
et  al., 2021). Moreover, this delay persisted even after 24 h, 
where cells were still unable to form compact mounds (Huber 
et  al., 2021). Similarly, loss of culA was shown to impact 
cAMP-mediated chemotaxis and delay aggregation (Figure  6; 
Mohanty et al., 2001). Since neddylation inhibition phenocopies 
this result, it suggests that SCF complex assembly is inhibited 
when neddylation does not occur, which is consistent with 
observations in human cells (Zheng et  al., 2002; Dubiel et  al., 
2013). These results also reveal that by upregulating the expression 
of nedd8 and cullins during cell aggregation, D. discoideum 
utilizes neddylation as a mechanism to facilitate the timely 
assembly of the SCF complex. Therefore, the mechanism 
underlying how neddylation influences cell aggregation is likely 
tied to its regulation of the SCF complex. Finally, MLN4924 
also affects the secretion of the quorum sensing protein 
conditioned medium factor A (CmfA) during aggregation 
(Figure 6; Huber et al., 2021). Upon starvation, amoebae begin 
secreting CmfA, which acts as a trigger for gene expression, 
as a high density of starved cells correlates to a high concentration 
of CmfA (Loomis, 2014). Once a CmfA threshold is reached, 
cells upregulate the expression of developmental genes, including 
spore coat protein (cotB) and cysteine protease D (cprD), and 
aggregate through cAMP-mediated chemotaxis (Loomis, 2014). 
Inhibition of neddylation by MLN4924 increases the intracellular 
and extracellular amounts of CmfA (Huber et al., 2021). While 
CmfA was not identified as an interactor of the D. discoideum 
SCF complex (Sheikh et  al., 2015), the effect of MLN4924 on 
its intracellular and extracellular levels suggests it is regulated 
by neddylation.

THE ROLES OF CULLINS AND THEIR 
REGULATION DURING THE MID-TO-
LATE STAGES OF DICTYOSTELIUM 
DISCOIDEUM DEVELOPMENT

Roles of Cullins and Their Regulation 
During Slug Formation and Migration
A potential explanation for how cullins influence cell-type 
differentiation involves the process of autophagy. Autophagy 
is a metabolic pathway that degrades intracellular material 
through lysosomal digestion (Mizushima et al., 2008). Autophagy 
is a required pathway for D. discoideum development and 
influences cell differentiation (Otto et al., 2003). In mammalian 
cells, the roles of cullins in regulating autophagy are well-
established and occur at different steps in the autophagy pathway 
(McEwan and Dikic, 2014; Mesquita et  al., 2017). In general, 
cullins regulate the ubiquitination of proteins belonging to the 
autophagy machinery, mTOR activation, and the activation 
transcription factors.

There also appears to be  a link between cullins and 
autophagy in D. discoideum. During the transition from 
mounds to slugs, mounds form a single tip (Figure  3A). 
However, culA− and culB− cells form multi-tipped mounds 
during development, which is characteristic of D. discoideum 
mutants with defects in the autophagy pathway (Figure  6; 
Mohanty et  al., 2001; Wang and Kuspa, 2002; Otto et  al., 
2003; Mesquita et  al., 2017). These results indicate that 
cullins may influence autophagy in D. discoideum thereby 
impacting cell differentiation. However, at present, this link 
remains to be  experimentally determined for the D. 
discoideum cullins.

Role of the SCF Complex in Oxygen 
Sensing
Chemical and physical cues from the environment (e.g., light, 
temperature, and ammonia) are critical for regulating D. 
discoideum development, an organism normally found in 
soils worldwide (Bonner and Lamont, 2005; Singleton et  al., 
2006; West et al., 2007; Mathavarajah et al., 2017). Accessible 
oxygen influences slug polarity and migration, cell 
differentiation, and other aspects of multicellular development 
(Sternfeld and Bonner, 1977; Sternfeld and David, 1981; 
Sternfeld, 1988; Sawada et  al., 1998; Bonner, 2003; Biondo 
et  al., 2021; Cochet-Escartin et  al., 2021). However, the way 
this oxygen is sensed by D. discoideum differs from what 
occurs in metazoans. Before the evolution of metazoans, 
single-celled eukaryotes like D. discoideum and Toxoplasma 
gondii lacked the hypoxia inducible factor system for oxygen 
sensing (Liu, 2017). Instead, these protozoans relied on 
modifying the SCF complex to mediate oxygen sensing and 
the mechanism behind this has been well studied in D. 
discoideum (reviewed in West et  al., 2010). In D. discoideum, 
regulation of the SCF complex allows for oxygen sensing 
and this occurs via post-translational modifications. Skp1 of 
the SCF complex is post-translationally modified at Pro143 
through prolyl hydroxylation (the addition of a hydroxyl 
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group) via the prolyl hydroxylase gene (phyA; West et  al., 
2010). Since phyA is a direct oxygen sensor, the presence 
of oxygen functions as the initial stimuli for Skp1 hydroxylation. 
Following hydroxylation, Skp1 is O-glycosylated through the 
actions of several glycosyltransferases including GlcNAc 
transferase (GntA), poly-glycosyltransferase (PgtA), and alpha-
gal-transferase (AgtA; in that order; Teng-Umnuay et  al., 
1999; van der Wel et  al., 2001; Ketcham et  al., 2004). 
Glycosylation then promotes the association of Skp1 with 
F-box proteins and allows for the rapid assembly of the SCF 
complex to regulate culmination and spore formation, and 
perhaps other oxygen-dependent developmental pathways (Xu 
et al., 2012; Sheikh et al., 2015). In conclusion, this represents 
a novel post-translational modification of the SCF complex 
that is utilized for oxygen-dependent development in D. 
discoideum.

Cullins and Neddylation Influence 
Cell-Type Differentiation
After aggregation, D. discoideum cells undergo cell-type 
differentiation to become pre-spore or pre-stalk cells, which 
each express cell-specific markers; extracellular matrix protein 
A (EcmA) for pre-stalk; and spore coat protein 60 (SP60/
CotC) for pre-spore (Fosnaugh and Loomis, 1989; Morrison 
et  al., 1994; Williams, 2006). When these markers were 
examined post-aggregation in culA− cells, ecmA expression 
was absent and cotC expression was decreased (Mohanty 
et  al., 2001). In addition, an altered ratio of pre-stalk to 
pre-spore cells was reported in fbxA− cells and overexpression 
of FLAG-tagged FbxD has been shown to delay fruiting body 
formation (Nelson et  al., 2000; Sheikh et  al., 2015). Finally, 
inhibiting neddylation with MLN4924 was shown to impair 
fruiting body formation (Huber et  al., 2021). Collectively, 
these findings indicate that CulA, FbxA, FbxD, and neddylation 
have roles in cell differentiation.

Cullin genes in D. discoideum have selective roles in cell 
differentiation. Unlike what was seen with loss of culA, culB− 
cells express ecmA precociously and have a propensity to form 
pre-stalk cells (Wang and Kuspa, 2002). Moreover, culB− cells 
that express constitutively active PKA differentiate into stalk 
cells prior to even reaching the mound stage of development 
(Wang and Kuspa, 2002). In addition, PKA activity is antagonistic 
with the loss of culB, worsening the phenotype, and contrasting 
work with culA− cells (Wang and Kuspa, 2002). These results 
suggest that CulB has non-CRL differentiation functions or is 
utilized in another unique CRL complex involved in regulating 
differentiation in D. discoideum.

Previous work suggests that cell-type differentiation in D. 
discoideum may also be  influenced by culD and culE. In a 
recent study examining the expression of genes in different 
cell-types after differentiation, culD and culE transcripts were 
both preferentially upregulated in spores and downregulated 
in stalk cells (Kin et  al., 2018). Altered expression in specific 
cell types may occur to (1) directly facilitate the terminal 
differentiation (i.e., pre-stalk to stalk cell) or (2) allow for 
functions related to the distinct roles of the cell types. Future 

work examining these two cullin genes will help elucidate how 
culD and culE contribute to cell differentiation during 
multicellular development.

CONCLUSION

D. discoideum is a well-established model organism that has 
been studied for close to 100 years (Raper, 1935). Its 24-h life 
cycle is comprised of unicellular and multicellular phases that 
allows for a detailed examination of a multitude of fundamental 
cellular and developmental processes in the context of a whole 
organism (Mathavarajah et  al., 2017). D. discoideum can 
be  cultured rapidly and inexpensively at room temperature in 
liquid medium (8–12 h doubling time) or on non-nutrient agar 
with bacteria (3–4 h doubling time; Fey et al., 2007). Importantly, 
D. discoideum is genetically tractable and a variety of expression 
constructs have been generated to facilitate studies on protein 
localization and function (Levi et al., 2000; Kuspa, 2006; Veltman 
et al., 2009; Faix et al., 2013; Müller-Taubenberger and Ishikawa-
Ankerhold, 2013; Friedrich et al., 2015; Yamashita et al., 2021). 
For these and other reasons, it has also been used as a high-
throughput biomedical model for studying variety of human 
diseases (Huber, 2021; Kirolos et  al., 2021; Mathavarajah et  al., 
2021; Pain et  al., 2021).

Regulated protein degradation is an essential process in 
all eukaryotes. In D. discoideum, CRL-mediated ubiquitination 
regulates complex processes associated with growth and 
multicellular development (Figure 6). In addition, inhibiting 
neddylation with MLN4924 impacts cell proliferation, 
chemotaxis, aggregation, and multicellular development. As 
a result, future work in D. discoideum has the potential to 
enhance our understanding of the cellular and developmental 
roles of cullins, neddylation, and the CSN. For example, 
cell migration is an important physiological process that 
occurs during wound healing, embryonic development, and 
disease (e.g., cancer metastasis). D. discoideum is an ideal 
model system for studying fundamental aspects of cellular 
migration, particularly the mechanisms underlying chemotaxis 
(Kamimura and Ueda, 2021; Kuhn et  al., 2021; Xu et  al., 
2021). As discussed in this review, neddylation regulates 
the migration of a variety of cell types (Park et  al., 2018; 
Kim et  al., 2021). Since MLN4924 inhibits cell migration 
during D. discoideum development, and CulA plays an 
important role in cAMP-mediated chemotaxis, D. discoideum 
can be  used to further explore the role of neddylation and 
cullins in regulating cell migration and chemotaxis in normal 
and diseased cells. In addition, neddylation has been linked 
to autophagy regulation in esophageal and liver cancer (Luo 
et  al., 2012; Chen et  al., 2015; Liang et  al., 2020). Since 
the mechanisms regulating autophagy in D. discoideum are 
like those that regulate autophagy in mammals (Mesquita 
et  al., 2017), D. discoideum can be  used to increase our 
understanding of how neddylation regulates autophagy. Finally, 
although there are significant differences between metazoan 
and D. discoideum development, studying the roles of 
neddylation and cullins in regulating multicellular development 
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in D. discoideum may uncover conserved developmental roles 
that can then be validated in mammalian models and humans. 
This is important since there is a need to better understand 
the mechanisms regulating timely protein degradation events 
during metazoan development, as recent studies have reported 
an essential role for neddylation in cardiac development 
(Li et  al., 2020). Thus, D. discoideum can be  used as a 
model system to better understand different aspects of the 
neddylation pathway and CSN during development, which 
has implications for several diseases revolving around 
dysregulated neddylation. Together, this review highlights 
the use of D. discoideum as a model system to better 
understand the conserved cellular and developmental roles 
of cullins, neddylation, and the CSN.
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GLOSSARY

AgtA Alpha-gal-transferase
Anapc2 Anaphase promoting complex subunit 2
cAMP Cyclic adenosine monophosphate
CAND1 Cullin-associated NEDD8-dissociated protein 1
cAMP Cyclic adenosine monophosphate
Cdk Cyclin-dependent kinase
CfaD Counting factor-associated protein D
CmfA Conditioned media factor A
CotC/SP60 Spore coat protein SP60
CRL Cullin–RING ligase
CSN COP9 signalosome
CUL Cullin
DCUN1D1 Defective in cullin neddylation 1
EcmA Extracellular matrix protein A
ErkA Extracellular signal-regulated kinase
Fbx F-box-containing protein
GntA GlcNAc transferase
MAPK Mitogen-activated protein kinase
MTOR Mammalian target of rapamycin
NAE1 NEDD8 activating enzyme E1 regulatory subunit
NEDD8 Neural precursor cell expressed developmentally downregulated protein 8
PARP1 Poly(ADP-ribose) polymerase 1
PgtA Poly-glycosyltransferase
PhyA Prolyl hydroxylase
PKA Protein kinase A
RBX1/ROC1 Ring box 1/regulator of cullins 1
RBX2/ROC2 Ring box 2/regulator of cullins 2
SCF Skp1-Cullin-F-box
SENP8/DEN1 Sentrin-specific protease 8
SKP1 S phase kinase-associated protein 1
SUMO Small ubiquitin-like modifier
UBA3 Ubiquitin-activating enzyme 3
UBE2F Ubiquitin-conjugating enzyme E2F
UBE2M/UBC12 Ubiquitin-conjugating enzyme E2M
UCHL Ubiquitin C-terminal hydrolase isozyme
UFM1 Ubiquitin fold modifier 1
URM1 Ubiquitin-related modifier-1
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