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Abstract: Diterpenoids are widely distributed natural products and have caused considerable
interest because of their unique skeletons and antibacterial and antitumor activities and so on.
In light of recent discoveries, ent-kaurane diterpenoids, which exhibit a wide variety of biological
activities, such as anticancer and anti-inflammatory activities, pose enormous potential to serve as a
promising candidate for drug development. Among them, spirolactone-type 6,7-seco-ent-kaurane
diterpenoids, with interesting molecular skeleton, complex oxidation patterns, and bond formation,
exhibit attractive activities. Furthermore, spirolactone-type diterpenoids have many modifiable
sites, which allows for linking to various substituents, suitable for further medicinal study. Hence,
some structurally modified derivatives with improved cytotoxicity activities are also achieved.
In this review, natural bioactive spirolactone-type diterpenoids and their synthetic derivatives
were summarized.
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1. Introduction

Natural products have been used to treat various diseases in China for hundreds of years.
Their novel molecular skeletons and promising cytotoxic activities are invaluable sources for drug
discovery and development processes [1–4]. Natural products have played crucial roles in drug
discovery. Besides natural products, natural product-derived compounds are also important to cancer
therapy [5–11]. It is well known that diterpenoids are structurally diverse and widely distributed
natural compounds, they have attracted interest from the scientific community because of their unique
skeletons and therapeutic effects—antitumor [12,13], anti-inflammatory [14], antibacterial [15,16],
and so on [17–21]—especially for anticancer agents, such as the most famous anticancer natural
compound paclitaxel [22–25].

ent-Kaurenes, such as oridonin (1, Figure 1), have been investigated for more than 40 years [26–29].
Moreover, in 2015, the ent-kaurane diterpenoid derivative HAO472, L-alanine-(14-oridonin) ester
trifluoroacetate, was advanced to Phase I human clinical trial in China to cure acute myelogenous
leukemia [30]. There are two subtypes of 6,7-seco-ent-kauranes, spirolactone-type (7,20-lactone) and
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enmein-type (1,7-lactone) [31,32]. Particularly, spirolactone-type diterpenoids have distinct chemical
skeletons and demonstrate important bioactivities which have attracted great interest from experts
and scholars. Before the 1980s, spirolactone-type diterpenoids were misidentified as enmein-type
diterpenoids. Until the mid-1980s, misidentifications were corrected with the development of modern
2D NMR spectra [33,34]. The first isolation of spirolactone-type diterpenoids was in 1981 [35].
After that, in order to isolate antitumor diterpenoids, more and more spirolactone-type diterpenoids
were isolated from Isodon plants of the Labiatae family [36–55], but natural sources were limited.

The first total synthesis of 6,7-seco-ent-kauranoid enmein (2, Figure 1) was achieved by Fujita
et al. which was a landmark [56,57]. After that, a semisynthesis of longirabdolactone (3, Figure 1)
was achieved in 2003 [58]; maoecrystal Z (4, Figure 1), trichorabdal A (5, Figure 1), and longikaurin
E (6, Figure 1) were achieved in 2011 to 2014 [59,60]. By the end of September 2018, three reviews
summarized the total synthesis of Isodon diterpenes [61–63].

The Sun [64] and Pu Group [65] had reviewed “diterpenoids from the Isodon genus”.
They comprehensively summarized isolation, structural elucidation, and total synthesis of
spirolactone-type diterpenoids. In this review, bioactive spirolactone-type natural products and the
synthetic medicinal chemistry work will be summarized.
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Figure 1. Structures of oridonin (1), enmein (2), longirabdolactone (3), maoecrystal Z (4), trichorabdal
A (5), and longikaurin E (6).

2. Natural Bioactive Spirolactone-Type Diterpenoids

By the end of October 2018, 105 spirolactone-type diterpenoids have been isolated from Isodon
species. Several exhibited biological activities and are summarized below.

In 1995, loxothyrin A (7, Figure 2) was isolated by Sun’s Group from the leaves of I. loxothyrsa [66].
It showed cytotoxicity effects toward hormone-dependent human prostatic LNCaP and breast ZR-75-1
cancer cell lines with ED50 values of 13.5 and 7.2 µg/mL, respectively.

In the same year, laxiflorins A–C (8, Figure 2) were isolated from I. eriocalyx var. laxiflora. by Sun
and coworkers [67]. Cytotoxic activities were shown against human lung cancer Lu-1, human oral
epidermoid carcinoma KB, vinblastine-resistant KB KB-V, LNCaP, and ZR-75-1 cells. They showed
cytotoxicity with ED50 values from 1.8 to 18.8 µg/mL.

Two new spirolactone-type diterpenoids were isolated from I. sculponeatus by Jiang and coworkers
in 2002 [68]. All diterpenoids were tested against K562 (chronic myelogenous leukemia) and T24
(bladder cancer) cells. Among them, sculponeatin J (9, Figure 2) showed inhibitory effects (IC50) of
0.849 and 0.642 µg/mL against K562 and T24 cells, respectively.

Four new ent-kaurane diterpenoids were isolated from the I. enanderianus in the same year by
and coworkers [69]. Among which, a new spirolactone-type diterpenoid was named 6-epiangustifolin
(10, Figure 2), and tested for its cytotoxicity toward K562 cells. The results showed that 10 exhibited
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inhibitory activity with an IC50 value of 0.0865 µg/mL against the K562 cell line, which was stronger
than cis-platin, the positive reference.

One new spirolactone-type diterpenoids, laxiflorin E, and four known ones were isolated from
I. eriocalyx var. laxiflora. by Niu et al. in 2002 [70]. All isolates were tested for antiproliferative activities
toward K562, lung cancer A549, and T24 human cancer cell lines. Among them, laxiflorin E, calyxin A,
laxiflorin C*, and laxiflorin A (11–14, Figure 2) displayed cytotoxic activity with IC50 values from 0.077
to 1.399 × 1017 µg/mL.

Han et al. isolated five new and eight known spirolactone-type diterpenoids from I. rubescens
var. lushiensis in 2003. The cytotoxicity of most isolates were tested against K562 cell line. Among
which, ludongnin J, guidongnin A, angustifolin, and ludongnin A (15–18, Figure 2) showed significant
inhibitory effects with IC50 values from 0.18 to 0.83 µg/mL. Furthermore, compound 15 also exhibited
inhibitory activities against liver cancer CA and uterine cervix cancer Hela cell lines with IC50 values
below 0.70 µg/mL [71]. Moreover, in 2010, Luo et al. also found that compound 18 exhibited
cytotoxicity against promyelocytic leukemia HL-60 cells with an IC50 value of 3.1 µM [72].

In the same year, Han et al. also isolated two new and four known spirolactone-type diterpenoids
from I. rubescens var. lushiensis [73]. All isolates were tested for their cytotoxic effects against K562,
human breast cancer Bcap37, CA, human nasopharyngeal cancer CNE, human cystic cancer BIU87,
human stomach cancer BGC823, and Hela cell lines. Lushanrubescensin H, isodonoiol, isodonal, and
rabdosin B (19–22, Figure 2) displayed cytotoxic activities with IC50 values from 2.29 to 28.64 µg/mL.

Three new, together with six known, spirolactone-type diterpenoids were isolated by Shen and
coworkers from I. eriocalyx (Dunn.) Hara in 2005 [74]. The cytotoxicity against T-24, K562, Me180
(human cervical epithelial cancer), QGY-7701 (human hepatoma), and BIU87 cell lines. Among them,
maoecrystal L (23, Figure 2) showed strong cytotoxicity with IC50 values of 2.72, 1.74, 11.23, 2.92,
and 26.92 µg/mL, respectively.
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In 2006, Han and coworkers isolated a novel spirolactone-type diterpenoid, maoecrystal Z (24,
Figure 3), with an unprecedented skeleton from I. eriocalyx (Labiatae) [75]. Fortunately, 24 exhibited
comparable inhibitory activities against K562, human breast cancer MCF-7 and human ovarian cancer
A2780 cells with IC50 values from 1.45 to 2.90 µg/mL.

Three novel spirolactone-type diterpenoids, isodojaponin C–E (25–27, Figure 3), were isolated by
Hong et al. from the aerial parts of I. japonicus in 2008 [76]. The inhibitory effects of LPS-induced nitric
oxide (NO) production by the isolates were tested in murine macrophage RAW264.7 cells. IC50 values
were 8.2, 8.7, and 20.3 µM, respectively.

In 2009, a known spirolactone-type diterpenoids, named sculponeatin C (28, Figure 3),
was isolated from I. sculponeatus by Li and coworkers [77]. The results of cytotoxicity test showed that
28 exhibited strong inhibitory activities towards K562, A549, and HepG2 (human hepatoma) cells,
with IC50 values of 0.78, 2.73, and 0.68 µM, respectively.

Four new spirolactone-type diterpenoids were identified by Li et al. from the aerial parts of
I. sculponeatus in the 2010 [78]. Among which, sculponeatin N and sculponeatin O (29 and 30, Figure 3)
displayed strong inhibitory activities (IC50) on K562 and HepG2 cell lines between 0.21 and 0.39 µM.

In the same year, Zhang and coworkers isolated one known spirolactone-type diterpenoid,
isodonoiol* (31, Figure 3), from I. rubescens var. lushanensis [79]. Interestingly, in cytotoxicity assays,
isodonoiol showed moderate inhibitory activities with IC50 values above 16.25 µM towards U937
(human histiocytic lymphoma), Jurkat, and K562 cell lines.

Four new spirolactone-type diterpenoids, together with four known ones, were got by Gao’s
group from I. rubescens in 2011 [80]. The antitumor activities were screened against acute promyelocytic
leukemia NB4, A549, neuroblastoma SHSY5Y, prostate cancer PC3, and MCF-7 cells. Among them,
isorubesins A–D and acetylexidonin (32–36, Figure 3) exhibited moderate inhibitory activities (IC50

values form 3.69 to 82.10 µM).
In 2012, Zou et al. isolated a new and three known spirolactone-type diterpenoids from

I. ternifolius [81]. Among them, ternifolide C (37, Figure 3) exhibited IC50 values of 4.27, 3.38, 3.46, 3.16,
and 3.60 µM against hepatocellular carcinoma SMMC-7721, HL-60, MCF-7, A-549, and colon cancer
SW-480 cells, respectively.

In 2014 Jiang et al. isolated one new spirolactone-type diterpenoid named sculponin T (38,
Figure 3) from I. sculponeatus [82]. Fortunately, compound 38 showed moderate cytotoxic activities
towards human tumor SMMC-7721, HL-60, SW-480, and MCF-7 cells with IC50s above 13.4 µM.

Three new spirolactone-type diterpenoids were isolated by Tanaka and coworkers from I. japonicus
in the same year [83]. Their antifungal activities were evaluated. Particularly, hikiokoshin A (39,
Figure 3) displayed antifungal activities against Cryptococcus neoformans and Aspergillus niger with IC50

values of 16 µg/mL each.
In 2014, eighteen new spirolactone-type diterpenoids were isolated and determined by Wang

and coworkers from I. eriocalyx var. laxiflora [84]. The cytotoxic effects of all isolates were tested
against A-549, SMMC-7721, MCF-7, HL-60, and SW-480 cells. Laxiflorolide C and laxiflorin B (40 and
41, Figure 3) exhibited selective cytotoxic activities with IC50s between 0.6 and 18.8 µM. Moreover,
laxiflorolide C and laxiflorin B also showed inhibitory effects on LPS stimulated NO production in
RAW264.7 cells, with IC50s of 1.5 and 0.5 µM, respectively.
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3. Synthetic Spirolactone-Type Diterpenoid Derivatives

Though spirolactone-type diterpenoids exhibited cytotoxic effects with interesting molecular
skeletons, the amount of spirolactone-type diterpenoids extracted from natural sources could not meet
the needs of drug development. In order to achieve large scale compound supply, convenient methods
have been built up. Lead tetraacetate was used as oxidation to finish C-6 and C-7 bond cleavage of
commercially available oridonin to produce spirolactone-type core structure. The synthesis routine is
illustrated in Scheme 1. Based on this core, diverse spirolactone-type derived compounds could be
obtained [85].
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Scheme 1. Synthetic route of spirolactone-type diterpenoid skeletons from oridonin. Reagents and
conditions: (a) Jones reagent, acetone, 0 ◦C; (b) Pb(OAc)4, Na2CO3, THF, rt; (c) 2,2-Dimethoxypropane,
acetone, TsOH, 56 ◦C; (d) Ac2O, TEA, DMAP, rt; and (e) 10% HCl, THF, rt.

In this way, Wang et al. designed and synthesized a series of novel 14-O-derivatives of 43
(Scheme 2). All derivatives were evaluated for their antiproliferative activities against K562, human
gastric cancer MGC-803, human esophageal cancer CaEs-17, and human hepatoma Bel-7402 cell
lines. The results showed that they exhibited stronger cytotoxicity than 43. Among them, 51 (Table 1)
exhibited the strongest cytotoxicity with IC50 values of 1.27, 2.24, 1.05, and 1.54 µM, respectively.
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(a) RCOOH, DMAP, EDCI, rt.

Table 1. The most potent spirolactone-type diterpenoid derivatives of each series.

Compound
IC50 [µM]

K562 MGC-803 CaEs-17 Bel-7402 MCF-7

51 1.27 2.24 1.05 1.54 / a

68 0.39 1.28 0.60 1.39 / a

76d 1.74 1.16 3.75 0.86 / a

82 0.69 2.20 / a 1.80 0.68
a “/” represents not tested.

Li and coworkers linked several acids to spirolactone-type core structure with ether bond
(Scheme 3) [86]. The antiproliferative activities were tested against the above four cancer cell lines.
Target derivatives were also more potent than parent compound oridonin 68 (Table 1) showed the
most potent inhibitory activities with IC50s below 1.39 µM. The structure–activity relationships (SARs)
were also disclosed. When R were alkyl groups (59–61), with the increased length of R groups, stronger
cytotoxicity could be observed in MGC-803 cell line. Furthermore, when R were aromatic groups
(62–68), their activities were stronger than those of alkyl groups, particularly, when substituted by
chloro. The most potent 68 was selected to explore antiproliferative mechanism. The results indicated
that 68 could induce apoptosis in a dose-dependent fashion and arrest cell accumulation at G2/M
phase in Bel-7402 cells.
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Scheme 3. Synthetic route of spirolactone-type diterpenoid analogs (59–68). Reagents and conditions:
(a) RCOOH, DMAP, EDCI, rt.

In 2016, Xu’s Group synthesized several furozan-based NO-donating derivatives (Scheme 4) [87].
Compared with parent compounds 43 and 47, all the synthetic target molecules showed improved
antiproliferative activities, especially toward Bel-7402 cell line. The SARs revealed when R2 was
aromatic linkers (75b, 75d, 75f, 76b, 76d, and 76f), the antiproliferative effects were better than those
of alkyl linkers (75a, 75c, 75e, 76a, 76c, and 76e). Particularly, compound 76d (Table 1) showed the
most potent IC50s between 0.86 and 3.75 µM against MGC-803, K562, Bel-7402, and CaEs-17 cells.
The NO-releasing properties were evaluated by Griess assay. The results showed that all derivatives
more than 15 µM released NO in 1 h which would contribute to their antiproliferative activities.
Furthermore, a further mechanism of 76d was studied in Bel-7402 cells. They found that 76d could
induce cell cycle arrest at the S phase. It was also found that 76d could decline the mitochondrial
membrane potentials which indicated that 76d induced apoptosis through intrinsic pathways.
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Scheme 4. Synthesis of NO donor/spirolactone-type diterpenoid hybrids 75a–f and 76a–f. Reagents
and conditions: (a) ClCH2COOH, NaOH (aq), 60 ◦C; (b) 30% H2O2, AcOH, rt; (c) fuming HNO3,
AcOH, 60 ◦C; (d) corresponding diol, NaOH (aq), THF, rt; (e) triethylamine, succinic anhydride, DMAP,
rt; and (f) 74a–i, EDCI, DMAP, rt.

In order to discover more bioactive spirolactone-type diterpenoid derivatives, two series of novel
derivatives with various substituents at 14-OH were designed and synthesized by Xu et al. in 2017
(Schemes 5 and 6). The antiproliferative activities of all derivatives were evaluated against four human
cancer cell lines (MGC-803, MCF-7, Bel-7402, and K562). Compound 82 (Table 1) exhibited IC50s
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between 0.68 and 2.2 µM, which was the strongest derivatives of this series [88]. The mechanism of
action of 82 was also investigated. After treatment with 82, the mitochondrial membrane potential
in MCF-7 cell declined. Western blot results showed that 82 could increase the levels of p-ERK, Bax
and caspase 3, and reduced the expression of P53 and Bcl-2. 82 also induced cell accumulated at
the G2/M phase. In short, these results illustrate that derivative 82 induced apoptosis through a
mitochondria-related pathway.
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conditions: (a) 10% HCl, THF (v/v, 1:1), rt; (b) Pb(OAc)4, K2CO3, THF, 0 ◦C; and (c) EDCI, DMAP,
DCM, rt.

4. Conclusions

In summary, natural spirolactone-type diterpenoids exhibited cytotoxic effects. Its synthetic
derivatives showed more potent antiproliferative effects than the corresponding parent compounds.
Hence, spirolactone-type diterpenoids are worthy of further research. However, there are few
in-depth pharmacological reports on spirolactone-type diterpenoids so far. We hold the view
that, for drug exploration, further studies should firstly focus on the detailed mechanism study.
Based on these, spirolactone-type diterpenoid derivatives with clear target should be explored.
We hope this review can provide useful information in the field of bioactive natural and synthetic
spirolactone-type diterpenoids.
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