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Abstract

The original windlass mechanism describes a one-to-one coupling between metatarsal joint

dorsiflexion and medial longitudinal arch rise. The description assumes a sufficiently stiff

plantar aponeurosis and absence of foot muscle activity. However, recent research calls for

a broader interpretation of the windlass mechanism that accounts for an extensible plantar

aponeurosis and active foot muscles. In this study, we investigate the rise of the arch in

response to toe dorsiflexion when sitting, standing, and walking to discuss the windlass

mechanism’s contributions in static and dynamic load scenarios. 3D motion analysis

allowed a kinematic investigation of the rise and drop of the arch relative to the extent of toe

dorsiflexion. The results suggest that static windlass effects poorly predict the relationship

between arch dynamics and metatarsophalangeal joint motion during dynamic load scenar-

ios, such as walking. We were able to show that toe dorsiflexion resulted in an immediate

rise of the longitudinal arch during sitting and standing. In contrast, a decrease in arch height

was observed during walking, despite toe dorsiflexion at the beginning of the push-off

phase. Further, the longitudinal arch rose almost linearly with toe dorsiflexion in the static

loading scenarios, while the dynamic load scenario revealed an exponential rise of the arch.

In addition to that, the rate of change in arch height relative to toe motion was significantly

lower when sitting and standing compared to walking. Finally, and most surprisingly, arch

rise was found to correlate with toe dorsiflexion only in the dynamic loading scenario. These

results challenge the traditional perspective of the windlass mechanism as the dominating

source of foot rigidity for push-off against the ground during bipedal walking. It seems plausi-

ble that other mechanisms besides the windlass act to raise the foot arch.

Introduction

The human foot has evolved numerous anatomical adaptations in response to the functional

demands of bipedal locomotion [1]. These include short toes [2], a prominent longitudinal

arch [3], and a well-developed plantar aponeurosis that spans the plantar aspect of the foot

from the heel to the toes [4]. Further, the human metatarsal heads are characterized by more
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dorsally oriented and mediolaterally broader articular surfaces compared to those of our clos-

est relatives, the African apes [5]. During the propulsive phase of walking (from heel lift to toe-

off), the dorsally oriented metatarsal heads in the human forefoot are thought to increase the

range of dorsiflexion motion at the MTP joints by providing more dorsal articular surface area

on which the proximal phalangeal base can slide [6]. From a biomechanical perspective, a

wider range of dorsiflexion at the MTP joints helps the foot to act as an effective and efficient

lever through the windlass mechanism [7]. Hicks first described the windlass mechanism in

1954 as a one-to-one coupling between metatarsal joint dorsiflexion and medial longitudinal

arch rise [7]. According to his description, dorsiflexion of the toes tightens the plantar aponeu-

rosis and, thereby, pulls the calcaneus and metatarsal heads towards each other (Fig 1). Conse-

quently, the longitudinal arch rises. It is thought that the mechanism counters compressive

forces from above and stiffens the foot [7].

Since the first description of the windlass, several studies were able to confirm the general

mechanism for static load scenarios. In a cadaver study, it was shown that dorsiflexion of the

toes results in considerable tension in the plantar aponeurosis that can raise the arch [8]. In an

in-vivo experiment, Kappel-Bargas et al. [8] found a highly variable but linear relationship

between MTP joint dorsiflexion and arch rise when people were sitting. The linear coupling of

MTP joint dorsiflexion and arch deformation was confirmed later using computer simulations

[9, 10]. Besides investigations of the direct relationship of MTP joint dorsiflexion and arch

rise, the windlass model has also been used to examine the consequences of foot pronation on

MTP joint motion. Paton [11] found that greater arch compression during standing (as a rep-

resentative measure of foot pronation) resulted in decreased toe dorsiflexion. Based on the

windlass mechanism, it was argued that the arch’s compression increases the tension in the

plantar aponeurosis, which increases the dorsiflexion force under the MTP joint, thereby

reducing the ability to dorsiflex the toes passively [11].

While static investigations seem to confirm the original windlass model, dynamic study

approaches challenge the one-to-one coupling between arch deformation and MTP joint dor-

siflexion. Analyses of the relationship between foot pronation and MTP joint motion during

walking [12, 13] are in contrast to Paton’s [11] static findings. Another quasi-dynamic experi-

ment by Welte et al. [14] showed that activation of the windlass seems to increase arch compli-

ance instead of transforming the arch complex into a rigid lever. In a recent follow-up study,

Welte et al. [15] provide further evidence that the original windlass mechanism, which

assumes an inelastic plantar aponeurosis, seems insufficient to explain arch function during

running. Their analysis of arch motion relative to MTP joint dorsiflexion revealed three

different windlass mechanism phases, which can be attributed to the extensibility of the plantar

aponeurosis. Besides a pure windlass, where MTP joint dorsiflexion is accompanied by a

simultaneous arch rise, there is evidence of an inhibited and an enhanced windlass. The

terms inhibited and enhanced windlass relate to phases in which the plantar aponeurosis

either elongates (inhibited) or shortens (enhanced) during MTP joint dorsiflexion [14].

These findings highlight that the extensibility of the plantar aponeurosis has an important

effect on arch dynamics during running. More generally, it indicates that the plantar aponeur-

osis’s elastic behavior strongly affects the windlass mechanism during dynamic load scenarios.

It might partly explain the observed discrepancies between static and dynamic windlass

observations.

Another explanation for the mismatch between static and dynamic experiments could be

differences in muscle recruitment. Recently published research indicates that the plantar

extrinsic and intrinsic foot muscles might also play an essential role in late-stance arch rise and

stabilization of the MTP joints [15–17]. Anatomically, the plantar intrinsic foot muscles con-

sist of four layers of muscles which are all located within the foot. In particular, the first two
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layers, including the abductor hallucis, flexor digitorum brevis, abductor digiti minimi, quad-

ratus plantae and lumbricalis, have muscle configurations that align with the medial and lateral

longitudinal arches of the foot [18, 19]. These configurations enable effective flexion of the

MTP joints and–like the windlass mechanism–arch rising action by pulling the calcaneus and

Fig 1. Graphical illustration of the windlass mechanism. (A) depicts the windlass mechanism as a mechanical model that helps

explain the foot’s ability to act as an effective and efficient lever. Dorsiflexion of the toes creates tension in the plantar aponeurosis that

tends to pull the calcaneus towards the metatarsal heads. This motion creates an upward force in the longitudinal arch. (B) During gait,

the windlass mechanism acts at the end of stance when the metatarsal heads and the distal phalanges are the only points of contact with

the ground on the trailing leg. Aside from the passive windlass mechanism, however, active plantar intrinsic foot muscles might also be

a source of late-stance arch rising.

https://doi.org/10.1371/journal.pone.0249965.g001
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metatarsal heads towards each other [16]. A recent study by Farris et al. [17] shows that the

intrinsic foot muscles respond to passive MTP joint dorsiflexion with bursts of activity, even at

relatively low arch compressive loads of 0.5 body weights. Those results let us speculate that

foot muscle activity might actively support the windlass mechanism during static double-leg

stance. Farris et al. [17] also show that the level of foot muscle activity further increased with

increasing arch compressive loads (1.0 and 1.5 body weights). This finding is in line with sev-

eral previous studies which suggest that the plantar intrinsic foot muscles are substantially

active during the propulsive phase when the metatarsal heads and the distal phalanges are the

only points of contact with the ground on the trailing leg [20–25]. Likely, the active plantar

intrinsic foot muscles balance dorsiflexion moments at the MTP joints [17]. In addition to this

stabilizing function, the contracting foot muscles might also be a source of late-stance arch ris-

ing. Caravaggi et al. [16] addressed this possibility when investigating the tension produced in

the plantar aponeurosis during walking. During the propulsive phase, it was found that the

longitudinal arch starts rising quickly despite a declining plantar aponeurosis tension [15]. In

the same vein, Fessel et al. [26] found no strict relationship between MTP joint dorsiflexion

and plantar aponeurosis tension. Their data show decreasing plantar aponeurosis tension

despite an ongoing MTP joint dorsiflexion at the end of stance [26]. Together, these studies

indicate that, aside from the passive windlass mechanism, plantar intrinsic foot muscles can

actively counteract compressive forces during the propulsive phase.

Considering the potential role of an extensible plantar aponeurosis and active plantar

intrinsic foot muscles, we argue that the windlass action during a dynamic load scenario

should be different from static load scenarios. Therefore, this study will examine the longitudi-

nal arch’s rise in response to MTP joint dorsiflexion during sitting, standing, and walking.

When sitting, the rise of the longitudinal arch in response to MTP joint dorsiflexion should

mainly result from the tension produced by the plantar aponeurosis [8–10]. Electromyo-

graphic studies indicate that the plantar intrinsic foot muscles of the foot are inactive during

sitting [27–29]. MTP joint dorsiflexion should trigger intrinsic foot muscle activity only

slightly, if at all [16]. When standing, it remains questionable whether the reported level of

intrinsic foot muscle activity [16, 29, 30] can assist the windlass mechanism in raising the arch.

In contrast, when walking, the relationship between MTP joint dorsiflexion and arch rise is

expected to be more complex due to the stretching and shortening of the plantar aponeurosis

and plantar intrinsic foot muscles activity. While previous studies often focused on the wind-

lass mechanism either during static or dynamic tasks, this study provides a test of static and

dynamic approaches using an ecological protocol. Considering the potential role of plantar

aponeurosis extensibility and plantar intrinsic foot muscles, the direct comparison of the

windlass mechanism in static and dynamic load scenarios has two aims: 1. To identify possible

differences in the windlass mechanism between static and dynamic tasks. 2. To determine the

extent to which a rise of the arch depends on MTP joint motion. According to the original

windlass model proposed by Hicks (1954) [6], a higher degree of toe dorsiflexion should result

in a more pronounced arch rise.

Methods

Participants

The study involved human participants and was approved by the ethics committee at the

Chemnitz University of Technology (approval number: V-287-17-FE-Füße-02072018). Fifteen

males and ten females (28.2 ± 9.0 years, 71.5 ± 12.7 kg, and 175.8 ± 10.0 cm) gave written con-

sent and participated in this study. All participants were healthy and had no current injuries or

conditions that would cause gait abnormalities.
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Experimental treatment

We tested the windlass effect in three conditions: sitting, standing, and walking. During sitting,

participants were seated with their hip, knee, and ankle each bent to approximately 90˚,

respectively. During standing, participants were asked to stand in an upright position and dis-

tribute their body weight equally on both feet. The center of pressure (COP) was controlled in

sitting and standing using a pressure plate (emed1 n50, novel gmbh, Munich, Germany) to

ensure comparable tension of the plantar aponeurosis among participants [31]. The COP had

to be centered under the heel while sitting and in the middle of the foot while standing. Visual

feedback was provided to the participants to control the location of the COP relative to the

foot. A self-built lever arm was used to dorsiflex the first toe (Fig 2B). The MTP joint of the toe

had to align with the rotational axis of the lever arm. The toe was dorsiflexed as far as possible

by one examiner pushing on the lever arm. Five consecutive trials were recorded for further

data analysis.

Besides sitting and standing, participants had to walk barefoot on a split belt treadmill with

force plates under each belt (M-Gait, Motek, Motekforce Link, Amsterdam, Netherlands).

Force plates were used to measure the ground reaction forces (GRF) for each step. Participants

walked in each condition for a few minutes until they felt comfortable. Walking speed was pro-

portional to leg length as determined by a convention known as a Froude number that follows

the principle of dynamic similarity [32]. A Froude number of 0.25 (1.50 ± 0.05 m/s) was cho-

sen for each participant, because it is a comfortable, moderate walking pace. Leg length was

measured as the distance from subject’s greater trochanter to the ground (0.92 ± 0.06 m).

Kinetic and kinematic data were collected simultaneously across a 20 seconds data collection

period. Ten steps were exported for further analysis.

Acquisition of kinematic and kinetic data

Motion data were captured at 250 Hz using a 10-camera motion analysis system (Vicon

Motion Systems Ltd., Oxford, United Kingdom). GRF data were captured synchronously at

1000 Hz. To quantify three-dimensional motions of the foot, five retro-reflective markers (14.0

mm diameter) were placed on the posterior aspect of the calcaneus (CAL), first metatarsal

head (MET1), fifth metatarsal head (MET5), tuberosity of the navicular bone (NAV), and lat-

eral side of the Hallux (HLX), as defined elsewhere [33] (Fig 2A).

Data analysis

Data processing was performed using Vicon Nexus 2.8.1 (Vicon Motion Systems Ltd, UK) and

R Studio (R Foundation for Statistical Computing, Vienna, Austria). A recursive fourth-order

Butterworth low-pass filter (sitting and standing: 6 Hz cutoff frequency; walking: 10 Hz cutoff

frequency) was used to process both kinematic and GRF data. For walking, stance phase (from

heel contact to toe-off) was calculated with a 30 N vertical ground reaction force threshold. All

kinematic and kinetic data were synchronized and time normalized to stance phase duration

for plotting and visual inspection.

Joint kinematics. The MTP joint angle was defined through two vectors, which were

spanned by the markers CAL, MET1, and HLX. CAL, MET1, and MET5 markers served to

define the x-y plane of the foot to calculate navicular height (Fig 2B). The navicular height was

then defined as the distance of the NAV marker from the x-y plane [33]. During sitting and

standing, the change in MTP joint angle and navicular height were recorded as the toes were

dorsiflexed by the examiner pushing on the lever arm. During walking, change in MTP joint

angle and navicular height were recorded between heel-rise and toe-off (Fig 2C).
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Fig 2. Experimental setup and data analysis. (A) Reflective surface markers were attached at five anatomical

landmarks of the right Foot: CAL = posterior calcaneus, MET1 = first metatarsal head, MET5 = fifth metatarsal head,

NAV = talo-navicular tuberosity, HLX = medial hallux. (B) A self-built lever arm was used to dorsiflex the first toe. The

MTP joint of the toe had to align with the rotational axis of the lever arm. The MTP joint angle was defined by two

vectors, which were spanned by the markers CAL, MET1, and HLX. The navicular height was defined as the distance

of the NAV marker from the x-y plane (defined by CAL, MET1, and MET5 markers). (C) During walking, change in

MTP joint angle and navicular height were recorded between heel-rise and toe-off when the metatarsal heads and the

distal phalanges were the only points of contact with the ground on the trailing leg.

https://doi.org/10.1371/journal.pone.0249965.g002
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Statistical analysis

Means and standard deviations (mean ± SDs) were calculated, and a Shapiro-Wilk test of nor-

mality was performed for all variables. Further statistical analysis of kinematic measurements

between sitting, standing, and walking was performed using a repeated measures ANOVA for

normally distributed outcome parameters. When a significant main effect between the condi-

tions was observed, a Bonferroni-adjusted post-hoc analysis was performed. In case of viola-

tions of sphericity, the Greenhouse-Geisser adjustment was used. The significance was set at

alpha = 0.05 for all tests. Further, a linear regression was used to analyze the correlation

between toe dorsiflexion and change in navicular height. All statistical analyses were per-

formed using IBM SPSS Statistics, version 26 (IBM Corporation©, Armonk, New York, USA).

Results

Changes in longitudinal arch motion relative to toe motion were compared by evaluating the

rise and drop of the navicular bone. Fig 3A–3I provide an overview of the comparisons

between sitting, standing, and walking. Supporting information contains all data underlying

the presented findings (S1 and S2 Tables). It can be seen from the data in Fig 3A–3C that dorsi-

flexion of the toes led to an increase in navicular height (rise). While sitting and standing

showed a constant rise of the longitudinal arch with increasing toe angles, the arch did not

appear to rise before a toe dorsiflexion angle of 8.51 ± 3.46˚ during walking. We observed a

decrease in navicular height (drop) of 1.55 ± 1.57 mm, followed by a rise of 11.04 ± 4.63 mm.

The rise in navicular height during walking was significantly greater compared to sitting and

standing (sitting: 6.61 ± 1.92 mm; standing: 5.57 ± 1.55 mm) (p< 0.001, repeated measures

ANOVA with Greenhouse-Geisser correction). Interestingly, the Bonferroni-adjusted post

hoc analysis also revealed significant differences between sitting and standing (p = 0.002). The

total amount of navicular rise was reached at significantly different toe dorsiflexion angles dur-

ing sitting, standing, and walking (p< 0.001, repeated measures ANOVA). The Bonferroni-

adjusted post-hoc analysis revealed significant differences between sitting and standing

(37.21 ± 8.03˚ vs. 29.14 ± 8.97˚, p< 0.001), as well as between standing and walking

(29.14 ± 8.97˚ vs. 33.76 ± 5.65˚, p = 0.035).

To overcome the differences in total toe dorsiflexion angles and their impact on navicular

heights, we further calculated the rate of change in navicular height per degree of toe dorsiflex-

ion (Fig 3D–3F). The comparison between sitting (0.19 ± 0.07 mm/˚), standing (0.21 ± 0.07

mm/˚), and walking (0.42 ± 0.12 mm/˚) showed significant differences (p< 0.001, repeated

measures ANOVA with Greenhouse-Geisser correction). The Bonferroni-adjusted post-hoc

analyses revealed significant differences between sitting and walking, as well as between stand-

ing and walking (p< 0.001 for both comparisons). No statistically significant difference was

found between sitting and standing (p = 0.229). To provide more details about arch motion

relative to toe rotation, we analyzed the rate of change in navicular height per degree of toe

dorsiflexion between 10 to 20˚ and 20 to 30˚ toe dorsiflexion angle. The exponential increase

in navicular height during walking (10–20˚: 0.27 mm/˚, 20–30˚: 0.50 mm/˚) was particularly

interesting. Contrary to this, we observed a linear increase in navicular height relative to toe

motion during sitting and standing. Notably, the rates of change in navicular height were simi-

lar between sitting (10–20˚: 0.20 mm/˚, 20–30˚: 0.20 mm/˚) and standing (10–20˚: 0.21 mm/˚,

20–30˚: 0.19 mm/˚).

The results of the correlation analysis between toe dorsiflexion and change in navicular

height are shown in Fig 3G–3I. What stands out in the figures is the low correlation between

the degree of toe dorsiflexion and the resulting change in navicular height during sitting and

standing, which was confirmed by our regression analyses (sitting: R< 0.01, F(1,23) = 0.003,
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p = 0.954), and standing: R = 0.35, F(1,23) = 3.054, p = 0.094). In contrast, we found a signifi-

cant correlation for walking (R = 0.81, F(1,23) = 43.611, p< 0.001).

Discussion

The present study was designed to compare the windlass mechanism during static and

dynamic load scenarios. We predicted that the windlass action during a dynamic load scenario

would be different from a static load scenario. Therefore, we examined the rise of the longitu-

dinal arch in response to MTP joint dorsiflexion in sitting, standing, and walking. Our results

indicate that the windlass effects during static load scenarios differ in several aspects from

Fig 3. Graphical summary of the results. The results suggest that static windlass effects (sitting and standing) poorly predict the relationship between arch

dynamics and metatarsophalangeal joint motion during dynamic load scenarios (walking). (A-C) show the mean changes in navicular height (mm) in relation

to toe dorsiflexion (˚). (D-F) display the changes in navicular height relative to the toe dorsiflexion (mm/˚). Black dots represent the mean value. (G-I) show the

linear regression between changes in navicular height (mm) and maximum toe dorsiflexion (˚). Each circle represents one participant. The regression line is

colored in black. Grey shaded area represents the corresponding confidence interval.

https://doi.org/10.1371/journal.pone.0249965.g003
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observations in dynamic load scenarios. First, when sitting and standing, MTP joint dorsiflex-

ion resulted in an immediate rise of the longitudinal arch. In contrast, we observed a decrease

in arch height despite MTP joint dorsiflexion at the beginning of the push-off phase during

walking. Second, while the longitudinal arch rose almost linear with MTP joint dorsiflexion in

the static loading scenarios, the dynamic load scenario revealed an exponential rise of the arch.

Third, the rate of change in arch height relative to MTP joint motion was significantly lower

when sitting and standing than walking. Finally, and most surprisingly, arch rise was found to

correlate with MTP joint motion only in the dynamic loading scenario. In general, the results

suggest that static windlass effects poorly predict the relationship between arch dynamics and

MTP joint motion during dynamic load scenarios, such as walking. It seems plausible that

other mechanisms besides the pure windlass act to cause arch rise.

In line with previous studies, dorsiflexion of the MTP joints led to a rise of the arch when

sitting and standing [34–36]. The result can be explained by the pulling force of the plantar apo-

neurosis as described by Hicks [7]. Interestingly, we found no significant difference between sit-

ting and standing, albeit previous research indicates slight activation of plantar intrinsic foot

muscles during double-leg stance [29, 30]. Further research reported additional muscle activa-

tion due to MTP joint dorsiflexion [16]. Presumably, the level of muscle activity was too low to

actively support the arch rise. In contrast to the static load scenarios, the MTP joints’ dorsiflex-

ion did not lead to an immediate rise of the arch during walking. On average, we observed a

decline in arch height up to 8.51˚ toe dorsiflexion, followed by a gradual arch rise. This finding

is contrary to the general prediction of the pure windlass. A possible explanation for this might

be the plantar aponeurosis’s extensibility and the significantly higher arch compressing forces

during walking compared to sitting and standing. It is likely that the plantar aponeurosis further

elongates during early MTP joint dorsiflexion [15, 26, 37], which inhibits ongoing arch com-

pression instead of raising the arch [14]. On average, the arch does not rise until 78.1 ± 3.3% of

the stance phase, which coincides approximately with the moment of peak arch compressive

force [38, 39]. A similar finding was reported recently for running [14].

A further difference in the windlass mechanism between static and dynamic load scenarios

is the exponential rise of the arch during walking. The energy-saving behavior of the plantar

aponeurosis [40] may partly explain this observation. Several studies have shown that the plan-

tar aponeurosis elongates during midstance and thereby stores energy [14, 15, 26, 37, 41–44].

Later in stance, during propulsion, the plantar aponeurosis shortens and releases the stored

energy similar to a spring [40, 43, 44]. Welte et al. [15] observed a similar enhanced arch rise

relative to MTP joint motion at the end of stance during running. They argue that the shorten-

ing plantar aponeurosis and the windlass mechanism may work in tandem to shorten the arch

[14]. We agree with this argument. However, the plantar aponeurosis’s spring-like behavior

may not fully explain the exponential rise of the arch. Previous studies indicate that the tension

of the plantar aponeurosis decreases at the end of the stance phase (approx. 90% to 100%) [15,

42]. More importantly, the plantar aponeurosis’s length drops close to or even below its initial

resting length [14, 15, 26]. Although our current setup cannot measure the remaining strain

energy within the plantar aponeurosis, our data let us question whether the elastic energy

alone can explain the arch’s exponential rise, especially during late propulsion. Besides the

elastic capacities of the plantar aponeurosis, the results could also be related to additional mus-

cle activity. Data from several studies suggest that the plantar intrinsic foot muscles are active

during the propulsive phase [21–25]. In a recent study, Farris et al. [17] found that the plantar

flexors and plantar intrinsic foot muscles are important sources of tension in the plantar aspect

of the foot during push-off and, therefore, could contribute to late-stance arch rising.

The correlation analysis between maximal MTP joint dorsiflexion and corresponding arch

rise among all participants in the current study revealed another surprising contrast between
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the dynamic and static windlass tests. While we found a strong correlation between the

amount of MTP joint rotation and the resulting arch rise, no correlations were found in the

static load scenarios. Thus, subjects with large MTP joint motions did not show a correspond-

ing large arch rise when sitting and standing. These missing correlations in the static load sce-

narios seem to reflect a similar observation by Kappel-Bargas et al., who found that subjects

varied in the timing of when the windlass mechanism began relative to passive MTP joint rota-

tion [35]. There may be a considerable variation of the pulling force of the plantar aponeurosis

in response to toe dorsiflexion. From a clinical perspective, the variation may explain the low

sensitivity of the windlass test to diagnose plantar fasciitis. Garceau et al. [44] reported a false

negative rate of up to 86.4% in static load scenarios. While we could not measure the pulling

force of the plantar aponeurosis directly with our approach, it warrants further study to explain

the variability among participants in the static windlass test. Additional testing may consider

individual characteristics of the foot, such as foot bone structure, foot dimensions, resting

length and mechanical properties of the plantar aponeurosis (and other deep plantar liga-

ments), passive stiffness of plantar muscles, and joint range of motion. Further, it seems possi-

ble that the evoked intrinsic muscle activity due to MTP joint dorsiflexion [16] was powerful

enough to support the arch rise in some participants.

It is unfortunate that we were not able to include electromyographic measurements to mon-

itor planar flexor and intrinsic foot muscle activity. A comparison of the level of foot muscle

activity evoked by static and dynamic MTP joint dorsiflexion would be of great interest.

Another uncontrolled factor in this study is the possibility that the plantar aponeuroses varied

among subjects with regard to mechanical properties and anatomical aspects. The plantar apo-

neurosis is a broad sheet of highly fibrous tissue in which collagen fibers are regularly oriented

to span the entire plantar aspect of the foot from the heel to the toes [19]. The prominent cen-

tral band attaches proximally to the medial tubercle of the calcaneus and fans out distally to

attach to the subcutaneous tissue and joint capsules of the second through to the fifth metatar-

sophalangeal joints, as well as the plantar bases of the corresponding proximal phalanges [45].

According to comparative findings, it is possible to hypothesize that the plantar aponeurosis’s

attachment to the bases of the phalanges is highly variable [4], and thereby has the potential to

determine the windlass action in static and dynamic load scenarios. Similarly, the mechanical

properties can vary among subjects [46, 47], which could also affect the windlass mechanism.

Notwithstanding these uncertainties, this study offers valuable insights into the windlass

mechanism in static and dynamic load scenarios, which should provoke further discussion of

the windlass mechanism statically and in gait.

In general, it seems that static experiments poorly predict the functional role of the windlass

mechanism during bipedal walking. The results of this study support the idea that the nonlin-

ear mechanical behavior of the plantar aponeurosis affects the effectiveness of the windlass

mechanism [14]. Further, our findings suggest that active muscular contraction could be an

additional source of tension along the plantar aspect of the foot that complements the passive

windlass mechanism [16]. Our findings support the need for more investigations of the wind-

lass mechanism in dynamic load scenarios to understand its functional importance. Future

studies could aim to further untangle the contributions of the pure windlass mechanism, the

extensibility of the plantar aponeurosis (and other deep plantar ligaments), and the action of

foot muscles as a source of rigidity for push-off against the ground during bipedal walking.

Notably, when Hicks described the windlass mechanism for the first time in detail, he noted

that "arch-raising is not necessarily the result of action by arch-raising muscles but is a move-

ment that must inevitably occur in every foot, even if dead or paralytic, every time the toes are

extended" [7]. He observed that the plantar aponeurosis tenses with dorsiflexion of the toes,

which caused the arch to rise. However, he also emphasized that "this [. . .] must not be taken
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to imply that muscles never have an action upon the arch" [7]. Most likely, the complex nature

of the foot with its passive and active structures evolved to act in concert to prevent the foot

from pathologies, such as plantar fasciitis.
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