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Autism spectrum disorder (ASD) is a group of developmental disabilities, the
aetiology of which remains elusive. The endocannabinoid (eCB) system
modulates neurotransmission and neuronal plasticity. Evidence points to
the involvement of this neuromodulatory system in the pathophysiology of
ASD. We investigated whether there is a disruption to the eCB system in
ASD and whether pharmacological modulation of the eCB system might
offer therapeutic potential. We examined three major components of the
eCB system—endogenous cannabinoids, their receptors and associated
enzymes—in ASD children as well as in the valproic acid (VPA) induced
animal model in autism. Furthermore, we specifically increased
2-arachidonoylglycerol (2-AG) levels by administering JZL184, a selective
inhibitor of monoacylglycerol lipase which is the hydrolytic enzyme for
2-AG, to examine ASD-like behaviours in VPA-induced rats. Results
showed that autistic children and VPA-induced rats exhibited reduced eCB
content, increased degradation of enzymes and upregulation of CBRs. We
found that repetitive and stereotypical behaviours, hyperactivity, sociability,
social preference and cognitive functioning improved after acute and chronic
JZL184 treatment. The major efficacy of JZL184 was observed after adminis-
tration of a dosage regimen of 3 mg kg−1, which affected both the eCB
system and ASD-like behaviours. In conclusion, a reduced eCB signalling
was observed in autistic children and in the ASD animal model, and boosting
2-AG could ameliorate ASD-like phenotypes in animals. Collectively, the
results suggested a novel approach to ASD treatment.
1. Introduction
Autism spectrum disorder (ASD) is a collection of heterogeneous neurodeve-
lopmental disorders and it is defined by impairment in communication and
social interactions, as well as restricted, repetitive patterns of behaviour [1].
ASD affects approximately 1% of children in mainland China [2], which is com-
parable to Western countries, and its prevalence seems to be cumulatively
increasing. The most recent prevalence estimate of ASD reached 1.85% (one
in 54) among children aged 8 years old [3]. Despite its high prevalence and
the public health burdens that result, there is a relatively limited understanding
of the pathophysiology of ASD, aside from complex interactions between gen-
etic and environmental factors. A multitude of recent publications have
suggested that ASD is related to abnormalities in synaptic function. Thus, the
endocannabinoid (eCB) system has attracted increasing interest for its potential
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in the onset and/or progression of ASD, as this system could
modulate different neurotransmitter system, synaptic exci-
tation and inhibition (E/I balance) and plasticity in the
brain, and it could also be associated with social interaction,
motor control, repetitive behaviours, emotional processing,
learning and memory.

The eCB system consists of three major components,
i.e. endogenous cannabinoids (eCBs), their receptors and
associated enzymes. The most active eCBs are anandamide
(AEA) and 2-arachidonoylglycerol (2-AG), which act mainly
through cannabinoid type-1 and type-2 receptors (CB1Rs
and CB2Rs) that are distributed throughout the central
nervous system (CNS). In addition, palmitoylethanolamide
(PEA) and oleoylethanolamide (OEA), which are structurally
similar to AEA (collectively known as N-acylethanolamines),
share the same catalyzed enzymes required for their
metabolism. N-acylphosphatidylethanolamine-specific phos-
pholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL),
which are involved in the synthesis of N-acylethanolamines
and 2-AG, respectively. Given that eCBs are not stored in
any cellular compartment for later use, they are rapidly inacti-
vated by their hydrolytic enzymes, i.e. fatty acid amide
hydrolase (FAAH) and monoacylglycerol lipase (MAGL).
MAGL, as the predominantly 2-AG degraded enzyme,
accounts for up to 85% of 2-AG hydrolysis in the brain [4].
Inhibitors of FAAH and MAGL are the most common tools
to manipulate signalling of eCBs. The eCBs are produced on
demand from membrane-bound phospholipids in postsyn-
aptic neuronal membranes and act as retrograde messenger
on presynaptic CBRs to dampen the release of neuro-
transmitters (e.g. monoamine, opioids, GABA, glutamate,
acetylcholine), thereby affecting a wide range of biological
processes [5]. The eCB-mediated retrograde suppression is
considered to be a ubiquitous and important form of
activity-dependent synaptic modulation.

Indeed, the dysregulation of the eCB system has been
documented in relation to several neuropsychological and
neurodevelopmental diseases, including ASD. Two case-
control studies found decreased circulating levels of AEA,
PEA and OEA in ASD children compared with matched
healthy children [6,7]. Siniscalco’s team reported alterations
of the receptors and enzymes in the eCB system in the periph-
eral blood mononuclear cells (PBMCs) of autistic children
[8,9]. It was also suggested that disruption to eCB metabolism
was observed in the brain in the case of both genetic and
environmental models of ASD. However, these studies
appeared to contradict one another. For instance, in Fmr1
knockout mice, the most common genetic form of autism,
MAGL activation was enhanced in the frontal cortex and
striatum [10]. In VPA-induced rats, the well-known environ-
mental-based model, there was a reduction in MAGL
expression and unaltered levels of AEA, PEA, OEA and
2-AG [11]. Melancia et al. [12] showed that CB1R activation
decreased, while Zamberletti et al. [13] found CB1R up-
regulation. BTBR, an inbred mouse strain known to model of
idiopathic autism, revealed a higher density of CB1Rs [14].
Furthermore, enhancing AEA signalling partially attenuated
social behaviour deficits in these three ASD models
[12,15,16]. Although still debated, it is plausible that alterna-
tions of the eCB system may contribute to the pathogenesis
of ASD.

Generally speaking, 2-AG, which is the most abundant
eCB in the brain, is found in much higher concentrations
than N-acylethanolamines in the brain (i.e. approx. 1000-
fold higher than AEA), and it executes full agonist activity
at CBRs with a high efficacy, while AEA is a partial agonist,
and PEA and OEA have a lower affinity [5]. Considering that
2-AG plays a broader role in the integrity of the brain’s eCB
system and CNS development, 2-AG may be a more relevant
indicator of eCB tone [17]. However, changes in 2-AG levels
have not been reported in individuals with ASD, and evi-
dence of whether enhancing 2-AG tone could cause an
improvement in ASD-like behaviours is limited [18,19]. In
this study, we examined all three major components of the
eCB system, namely, eCBs (AEA, PEA, OEA and 2-AG),
CBRs (CB1R and CB2R) and related catalyzed enzymes
(NAPE-PLD, FAAH, DAGL and MAGL), in ASD children
as well as in the VPA-induced ASD animal model, in order
to comprehensively characterize the involvement of the eCB
system in the pathogenesis of ASD. In addition, we investi-
gated the effect of altered 2-AG signalling on autistic
behaviours, and examined whether behavioural changes
exhibited by VPA-induced rats are associated with eCB dys-
function in discrete brain regions, which are known to
module cognitive and social behaviour, namely the hippo-
campus and prefrontal cortex (PFC). The present study was
designed to better understand the critical role of eCB
system in the aetiology of ASD, and provide a novel strategy
for the treatment in managing symptoms of ASD.
2. Material and methods
2.1. Participants
We investigated 70 autistic patients and 70 age- and gender-
matched controls (age range 3–12). The 70 autistic patients
were recruited from the Child Development and Behaviour
Research Center of Harbin Medical University and special
education schools, Harbin, China. The inclusion criterion
was a diagnosis of ASD, which was made by two indepen-
dent specialist clinicians according to the Diagnostic and
Statistical Manual of Mental Disorders, 5th edition (DSM-5)
[1]. Exclusion criteria were children with significant sensory
and motor impairment, known genetic disorders, seizures
at the time of enrolment or other neurological disorders.
Seventy unrelated healthy children without a history of
developmental delay or other neurological disorders were
randomly selected from normal kindergartens and junior
schools in Harbin, China as the control group. All procedures
are conducted with the written consent of the guardians or
parents and approved by the ethics committee of Harbin
medical university prior to the study.

The following measures were used as an aid for diagnosis
and assessment: Autism Diagnostic Observation Schedule
(ADOS), Autism Diagnostic Interview-Revised (ADI-R),
Autism Behaviour Checklist (ABC), Childhood Autism Rating
Scales (CARS), Vineland Adaptive Behaviour Scale second edi-
tion (VABS) and Social Responsiveness Scale (SRS). Sample
characteristics are provided in electronic supplementary
material, table S1.

2.2. Animals and treatments
Adult male and female Wistar rats were purchased from a
commercial breeder (YISI, Benxi, China) and housed four per
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cage in a controlled environment (22°C± 2°C; 50%± 10%
humidity). All rats had free access to water and food and were
maintained on a 12 h light/dark cycle. Animals were allowed
to acclimatize for one week prior to the experiments. The rat
model of ASD was established according to previous studies
[20,21]. Briefly, female andmale rats were allowed tomate over-
night. Pregnancy was determined by the presence of a vaginal
plug the next morning, and noon of that day was defined as
the embryonic day (E)0.5. Sodium valproic acid (VPA; Sigma-
Aldrich, St Louis, MO, USA) was dissolved in 0.9% saline at a
concentration of 250 mg ml−1, and pregnant rats received a
single intraperitoneal (i.p.) injection of 600 mg kg−1 VPA or an
equal volume of saline (VPA-treated and control groups,
respectively) on E12.5. Pregnant rats were individually housed
and allowed to raise their own litters. The offspring were
weaned on postnatal day (PND) 21 and housed with 4–5 per
cage. Experiments were performed on male offspring.

Animals were administered (4-nitrophenyl) 4-[bis(1,3-
benzodioxol-5-yl)-hydroxymethyl] piperidine-1-carboxylate
(i.p., JZL184, Selleck, Houston, TX, USA), a selective inhibitor
of MAGL that enhances the levels of 2-AG. JZL184 was dis-
solved in dimethyl sulfoxide (DMSO) to prepare a mother
liquor at a concentration of 50 mg ml−1. It was then diluted
with DMSO (5%), PEG400 (40%), Tween 80 (5%) and
double distilled water into a clear working solution made
up to a volume of 2.5 mg ml−1. Doses of JZL184 were selected
based on the results of previous studies [22,23]. The male
offspring from different dams were randomly divided into
six groups as follows (figure 3):

(i) CON (injection with vehicle solution);
(ii) VPA (injection with vehicle solution);
(iii) VPA + 40AJ (40 mg kg−1, i.p., acute JZL184 injection

once on PND35);
(iv) VPA + 1RJ (1 mg kg day−1, i.p., repeated JZL184 injec-

tion from PND21–34);
(v) VPA + 3RJ (3 mg kg day−1, i.p., repeated JZL184 injec-

tion from PND21–34);
(vi) VPA + 10RJ (10 mg kg day−1, i.p., repeated JZL184

injection from PND21–34).

The increase in brain 2-AG levels by JZL184 administration
persisted for at least 26 h, indicating that 2-AG could
remain elevated throughout the repeated dosing regimen
[17]. Twenty-four hours after the last repeated injection and
2 h after the acute injection, animals from each group were
anaesthetized with an intraperitoneal injection of 10% chloral
hydrate (0.3 ml kg−1). The animals were sacrificed by decapi-
tation for liquid chromatography-tandem mass spectrometry
(LC-MS/MS), quantitative PCR (qPCR) and western blot
assay. The brains were removed and the hippocampus and
PFC were dissected out, flash frozen in liquid nitrogen and
stored at −80°C. Starting from PND35, a series of behavioural
tests were performed. In the present study, the biochemical
tests were carried out on rats of untested behavioural exper-
iments. The behavioural testing and biochemical testing were
conducted on 5–9 rats for separate experiments.
2.3. Behavioural testing
Behavioural testing was captured by video cameras and
analysed using the SMART (Spontaneous Motor Activity
Recording and Tracking) v. 3.0 software system (Panlab,
Barcelona, Spain). The apparatus was cleaned with 0.1%
acetic acid between trials to preclude olfactory cues. All be-
havioural experiments were performed during the light
cycle between 09.00 and 17.00, and testing was counterba-
lanced across treatment groups.

2.3.1. Marble burying test

A clean cage (48 × 35 × 20 cm) was prepared with 5 cm fresh
wood chip bedding material. On PND 35, a rat was placed
individually in the cage for 15 min for habituation. They
were then returned to their home cage. This rat was reintro-
duced onto the bedding material containing 20 embedded
marbles for 30 min, and the number of marbles buried (i.e.
covered with wood chip by more than two-thirds volume)
was recorded.

2.3.2. Self-grooming test

On PND 35, the rats were placed individually into a white cage
(48 × 35 × 20 cm) and allowed to habituate for 5 min. Self-
grooming behaviour was recorded for 10 min. A timer was
used to assess the cumulative time spentperforming self-groom-
ing behaviour, which included paw licking, unilateral and
bilateral strokes around the nose, mouth and face, paw move-
ment over the head and behind ears, body fur licking, body
scratching with hind paws, tail licking and genital cleaning.

2.3.3. Open field test

On PND 35, the open field was made out of charcoal grey plas-
ticwith a top opening. The dimensions of the test boxwere 45 ×
45 × 40 cm. Before the test, the rats were allowed to adapt to the
test box for 5 min. Rats were individually placed in the centre to
initiate a 10min test. The total distance moved and resting time
of spontaneous activity, which were used as indicators of
anxiety-related behaviours, were analysed.

2.3.4. Three-chamber test

On PND 35, the three-chamber test was used to evaluate the
social behaviour of rats. Following acclimation (the rats were
placed in the central chamber for 5 min, and the rats were
allowed to freely access all chambers), two successive tests
(i.e. sociability test and social preference test), which were
10 min in duration, respectively, were carried out. Sociability
test: Animals were briefly confined to the central chamber
while an unfamiliar rat (labelled as stranger 1) was confined
in a small wire cage which was placed in one of the outer
chambers. An identical empty wire cage was placed in the
other chamber. Social preference test: A novel unfamiliar rat
(labelled as stranger 2) was then placed in the empty cage.
The sociability index was calculated as the ratio of time spent
exploring stranger 1 over the empty cage. The social preference
index was calculated as the ratio of the time spent exploring
stranger 2 over stranger 1. Familiar and unfamiliar rats origi-
nated from different home cages and had never been in
physical contact with the subject mice or each other.

2.3.5. Morris water maze test

On PND 36–40, the learning and spatial memory capabilities
of rats were evaluated using the Morris water maze test. The
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apparatus consisted of a circular black water tank (180 cm in
diameter and 58 cm deep) filled with water (about 42 cm
deep) at a temperature of 19–21°C. The apparatus was con-
cealed with black curtains, with extra visual cues inside the
curtains. A circular platform (10 cm in diameter) was always
fixed at 2 cm below the water surface in the centre of the first
quadrant of the pool. The test period was divided into two
phases. Phase 1: The training trial was carried out continuously
for 4 days, twice daily in the same time period. The rats were
placed into the water facing the tank wall in a set of semi-
randomly selected distal starting positions each day, and the
escape latency from the start of swimming to reach the platform
was recorded as an index of learning. If the rat failed to reach the
platformwithin 60 s and the latency valuewas recorded as 60 s,
then it was guided to the platform and allowed to remain on
the platform for 15 s. Phase 2: On the 5th day, the rats were sub-
jected to a spatial probe trial session duringwhich the platform
was removed from the pool. The rats entered the pool from the
third quadrant, and the number of times that rats passed
through the circular area of the original platform within 60 s
was recorded as an index of spatial memory. Given that five
consecutive days of tests were conducted, this test was not
performed with the rats in the acute injection group.

2.4. Biochemical testing

2.4.1. Quantitation of eCB levels by LC-MS/MS

Fasting blood samples were collected into EDTA-evacuated
tubes in the morning (7.30–8.30) and immediately chilled
on ice before centrifuging at 2000 r.p.m. for 20 min at 4°C.
Deuterated internal standards AEA-D8, PEA-D4, OEA-D2,
2-AG-D5, arachidonic acid (AA)-D11 (Cayman Chemicals,
MI, USA) were used.

A 300 μl volume of methanol (containing internal stan-
dards: AEA-D8 at 40 ng ml−1, OEA-D2 at 40 ng ml−1, PEA-
D4 at 40 ng ml−1 and 2-AG-D5 at 160 ng ml−1) was added
to a 100 μl aliquot of plasma sample for protein precipitation.
The mixture was eddied for 5 min and centrifuged at
16 000 × g for 10 min, and 1 µl of the supernatant was injected
into the LC–MS/MS system.

An LC-20ADXR high-performance liquid chromatography
(UPLC) system (Shimadzu, Nagoya, Japan) was interfaced with
a Sciex Q-trap 5500 mass spectrometer (Applied Biosystems,
Foster City, CA, USA) with an electrospray ionization (ESI)
source. Data were acquired using Analyst software (v. 1.6.2,
Applied Biosystems). The sample vials were maintained at 4°C
in a thermostatic autosampler. Chromatographic separation
was achieved at 40°C on an Acquity ultra-HPLC HSS T3
column (100 × 2.1 mm, 1.7 µm; Waters, Milford, MA, USA) and
VanGuard column (5 mm×2.1 mm, 1.7 µm; Waters, USA). The
mobile phase A was water containing 0.1% formic acid and
phase B was acetonitrile. A mobile phase gradient was applied
at a flow rate of 0.3 mlmin−1. The gradient elution was 0–
1 min, 5% B; 1–6.0 min, 5–40% B; 6–7 min, 40–100% B; 7–9 min,
100% B. The equilibration time after the gradient was 3 min.

The mass spectrometer was operated in the positive
ESI mode with multiple reaction monitoring (MRM) at unit
resolution. Nitrogen was used as the nebulizer, heater and
curtain gas as well as the collision-activated dissociation
gas. The precursor-to-product ion transitions, declustering
potential (DP) and collision energy (CE) are listed in electro-
nic supplementary material, table S2. Optimal parameters
were as follows: Nebulizer, heater and curtain gas flow
rates of 50, 55 and 40 units, respectively; ion spray needle vol-
tage of 5500 V; heater gas temperature of 550°C; and collision
gas (N2) medium.

A 50 mg (±0.5 mg) section of brain tissue was weighed in a
2.0 ml Lysis Tube containing 1mm ceramic beads. The sample
was homogenized for 60 s by using a Speed Mill PLUS
(ANALYTIKJENA). A 100 µl methanol (containing internal
standards: AEA-D8, PEA-D4, OEA-D2 and 2-AG-D5 at
100 ng ml−1, AA-D11 at 6 µg ml−1) and additional 200 µl
methanol was added into the sample. The tube was vortexed
for 10 s. Then 1 mlMTBEwas added and themixturewas incu-
bated for 1 h at room temperature in a shaker. Phase separation
was induced by adding 250 µl of MS-grade water. The sample
was incubated at room temperature for 10 min and centrifuged
at 16 000 × g for 10 min. A 500-μl upper (organic) phase
was collected and dried in a vacuum centrifuge (Savant
SPD131DDA SpeedVac, Thermo fisher). Dry residue was
re-dissolved in 200 µl of acetonitrile/isopropanol (1 : 1).

Acquity UPLC H-Class (Waters, Milford, MA, USA) was
interfaced to aWaters Xevo tq-smicromass spectrometer (Mil-
ford, Massachusetts, USA) with an ESI source. Data were
acquired using Masslyxn (v. 4.1 package, Waters, Milford,
MA, USA). The sample vials were maintained at 4°C in a ther-
mostatic autosampler. Chromatographic separation was
achieved at 45°C on an Acquity UPLC BEH C8 column
(100 mm× 2.1 mm, 1.7 µm; Waters, Milford, MA, USA). The
mobile phase A was acetonitrile/water (60/40) and mobile
phase B was isopropanol/acetonitrile (90/10). Both A and B
contained 0.1% formic acid and 10 mmol l−1 ammonium acet-
ate. A mobile phase gradient was applied at a flow rate of
0.3 ml min−1. The gradient elution was 0–1 min, 15% B; 1–
4.0 min, 15%–40% B; 4–8 min, 40–70% B; 8–9 min, 70–100%
B. The equilibration time after the gradient was 3 min.

The mass spectrometer was operated in the positive ESI
mode with MRM at unit resolution. Nitrogen was used as
the desolvation gas. The precursor-to-product ion transitions,
cone voltage and CE are listed in electronic supplementary
material, table S2. Optimum parameters were as follows:
cone gas flow 10 l h−1; capillary voltage 3000 V; desolvation
temperature 550°C; desolvation gas flow, 1000 l h−1.

2.4.2. Isolation of peripheral blood mononuclear cells

Human venous blood samples from ASD subjects and control
donors were drawn and collected in sterile EDTA tubes.
Peripheral PBMCs were isolated by centrifugation over Histo-
paque 1077 density gradient. Briefly, blood was diluted 1 : 1
in phosphate buffer saline (PBS), overlaid onto lymphocyte
separation media, centrifuged at 2000 r.p.m. for 30 min at
room temperature and plasma was removed. Mononuclear
cell fraction was harvested and washed twice in PBS. The
final pellet was resuspended in Trizol Reagent (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) or protein
lysis buffer for further molecular analysis.

2.4.3. RNA extraction, reverse transcription and qPCR

Total RNA was extracted from PBMCs and brain tissue using
Trizol Reagent (Invitrogen, Thermo Fisher Scientific,Waltham,
MA, USA) according to the manufacturer’s protocol. RNA
quantity was determined by NanoDrop 2000 spectropho-
tometer (Thermo Fisher Scientific, Waltham, MA, USA) and
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Figure 1. The levels of endogenous cannabinoids. (a) The plasma levels of AEA, PEA, OEA and 2-AG in the participants (n = 70 children per group). Effects of JZL184
treatment on the levels of AEA, PEA, OEA, 2-AG and AA in hippocampus (b) and in the PFC (c) in VPA-exposed offspring (n = 5 pups per group). The error bars
represent s.d. (a) Results were analysed by paired Student’s t-test (^p < 0.05, ^^^p < 0.001). (b,c) Results were analysed by one-way analysis of variance with
Dunnett’s post hoc test (#p < 0.05, versus CON group; *p < 0.05, **p < 0.01, versus VPA group). AJ, acute JZL184 treatment; RJ, repeated JZL184 treatment.

royalsocietypublishing.org/journal/rsob
Open

Biol.11:200306

5

purity assessed by A260/A208 ratio. RNA was reverse tran-
scribed to cDNA using high-capacity cDNA reverse
transcription kits (Applied Biosystem Inc., Foster City, CA,
USA), with the following thermal protocol: 10 min at 25°C,
2 h at 37°C, 5 min for 85°C and for 4°C. The qPCR was per-
formed with SYBR Green PCR Master Mix (Applied
Biosytems Inc., Foster City, CA, USA) on a Light cycler 96
system (Roche Applied Science, USA). The thermal cycling
conditions were as follows: 95°C for 10 min and 40 cycles at
95°C for 15 s and 60°C for 1 min. The corresponding primers
were showed on electronic supplementary material, table S3.
Each qPCR was repeated at least three times to achieve the
best reproducibility data. GAPDHwas used as an endogenous
control to normalize gene expression data. Amplification of the
genes of interest and GAPDH was performed simultaneously.
Relative mRNA expression was determined based on the cycle
threshold (CT) and calculated using the equation 2−ΔΔCT:
ΔCTtreatment = CTtarget−CTGAPDH; ΔCTcontrol = CTtarget−
CTGAPDH; ΔΔCT= ΔCTtreatment− ΔCTcontrol.
2.4.4. Protein extraction and western blotting

PBMCs and brain tissue lysed on ice for 30 min in RIPA lysis
buffer containing phenylmethylsulfonyl fluoride and centri-
fuged at 12 000 r.p.m. for 15 min at 4°C; the supernatant was
immediately transferred to a fresh tube on ice. Protein concen-
tration wasmeasuredwith the bicinchoninic acid protein assay
kit (Beyotime Institute of Biotechnology, Shanghai, China)with
a bovine serum albumin standard concentration curve and
absorbance readings at 562 nmon a spectrophotometer. Equiv-
alent amounts of protein (30 µg) were separated by 10%
acrylamide sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and electrophoretically transferred to a
polyvinylidenedifluoride membrane that was blocked with
5% nonfat milk and probed with primary antibodies against
CB1R, CB2R, NAPE-PLD, FAAH, DAGL-α, MAGL and
GAPDH. The membrane was then incubated with horseradish
peroxidase-conjugated goat anti-rabbit, and goat anti-mouse
secondary antibody (antibodies details seen in electronic
supplementarymaterial, table S4). Protein bandswere detected
with an enhanced chemiluminescence western blotting
detection kit (Beyotime Institute of Biotechnology, Shanghai,
China). Results were analysed using Quantity One software
(Bio-Rad Laboratories, Hercules, CA, USA) to obtain the
optical density ratio of the target protein to GAPDH.
Measurements were obtained for triplicate samples.

2.5. Statistical analyses
The results were presented as means ± s.d. or means ± s.e.m.
which were analysed using GraphPad Prism 7.0 (GraphPad
software, CA, USA). The comparison of the data was analysed
by carrying out a one-way analysis of variance (ANOVA) or
paired Student’s t-test. A repeated-measures ANOVAwas con-
ducted to evaluate the differences in escape latency in the
Morris water maze test. Dunnett’s post hoc test was applied
for multiple comparison (comparing all groups to VPA
group). All reported p values were two-tailed, and the statisti-
cal significance was set at the α = 0.05 level.
3. Results
3.1. Comparison of the components of the eCB system

between cases and controls
Autistic children had lower plasma concentrations of AEA,
PEA, OEA and 2-AG than healthy controls ( p < 0.05; figure 1a;
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electronic supplementary material, table S5). The levels of
PEA in the ASD group were negatively correlated with the
total scores of the ABC (r =−0.326, p = 0.013, data not
shown). However, only AEA and 2-AG levels in the hippo-
campus were significantly reduced in VPA-exposed rats
compared to controls ( p < 0.05; figure 1b), and there was no
significant difference in the AEA, PEA, OEA and 2-AG
levels in the PFC (figure 1c).

CB2R, FAAH, DAGL and MAGL mRNA levels in PBMCs
from autistic childrenwere significantly higher than those from
the healthy controls, and CB2R, FAAH and MAGL protein
levels in PBMCs were also higher ( p < 0.05; figure 2a,c). How-
ever, CB1R protein expression was not detected. Due to no
significant differences in eCB levels in the PFC, we then
solely investigated hippocampal eCB system expression. Com-
pared with controls, rats prenatally exposed to VPA exhibited
differences in mRNA expression of CB1R, CB2R, FAAH and
DAGL in the hippocampus ( p < 0.05). There was a significant
increase in CB1R, FAAH and MAGL protein levels, whereas
CB2R and DAGL protein levels did not reach the significance
level (figure 2b,d).
3.2. Effect of JZL184 treatment on autism-like
phenotypes

One-way ANOVA analyses revealed statistically significant
result between the groups with respect to marbles buried
(F5,42 = 6.22, p = 0.0002). VPA-exposed rats buried more
marbles than control rats ( p = 0.0001), and JZL184-treated rats
buried significantly less marbles than VPA-exposed rats
(VPA versus VPA + 40AJ: p = 0.0007, VPA versus VPA + 3RJ:
p = 0.0005, VPA versus VPA + 10RJ: p = 0.0009; figure 3a).
A significant difference was found with respect to repetitive
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self-grooming behaviour (F5,42 = 7.689, p < 0.0001). The post hoc
test confirmed that VPA-exposed rats spent more time self-
grooming than control rats ( p < 0.0001), and self-grooming be-
haviour was significantly reduced by JZL184 treatment (VPA
versus VPA+ 40AJ: p = 0.0087, VPA versus VPA + 1RJ: p =
0.0002, VPA versus VPA + 3RJ: p = 0.0001, VPA versus VPA +
10RJ: p = 0.0005; figure 3b). All in all, JZL184 administration
could improve the repetitive and stereotypical behaviours of
VPA-exposed rats.

We logged the distance moved and resting time to further
gauge anxiety-like behaviour. One-way ANOVA analyses
revealed statistically significant result in the vase of locomo-
tor activity among the groups (distance moved: F5,42 = 18.2,
p < 0.0001, resting time: F5,42 = 16.86, p < 0.0001). Upon
exposure to a novel brightly lit aversive open field arena,
VPA-exposed rats exhibited hyperlocomotion as demon-
strated by an increase in distance moved and a decrease in
resting time when compared to the control rats ( p < 0.0001,
p = 0.0010, respectively; figure 4a–c). JZL184 acute injection
and 3 mg kg−1 repeated injections could reverse the elevated
locomotor activity of VPA-exposed rats (distance moved:
p = 0.0017, p = 0.0001, respectively; resting time: p < 0.0001,
p = 0.0006, respectively; figure 4b,c). By contrast, 1 and
10 mg kg−1 repeated injections failed to exhibit this effect.

Prenatal VPA exposure impaired social interaction beha-
viours in offspring as reported previously [20,21]. In the
habituation phase, rats from all of the experimental groups
did not show any significant chamber preference (data not
shown). In the sociability test, VPA-exposed groups exhibited
the typical ASD-like phenotype and failed to demonstrate a
significant preference for the unfamiliar rat compared with
the object. Acute administration of JZL184 and 10 mg kg−1

administered by repeated injections corrected this aberrant
behaviour ( p = 0.0017, p = 0.0006, respectively; figure 5a,b).
However, only acute administration significantly enhanced
the sociability index ( p = 0.0035; figure 5c). In the social pre-
ference test, which determines whether the experimental
rats show a preference for a socially novel rat or familiar
one, VPA-exposed rats exhibited reduced social novelty rec-
ognition compared to the control rats, which was quantified
by the time spent engaging in investigatory behaviour with
‘stranger rat 2’ and the social preference index ( p = 0.0006,
p = 0.0132, respectively; figure 5d–f ). Acute administration
of JZL184, and repeated injections at doses of 3 and
10 mg kg−1 increased the amount of time spent by ‘stranger
2’ ( p = 0.0009, p = 0.0034, p = 0.0004, respectively, figure 5e)
and the social preference index ( p = 0.0297, p = 0.0258, p =
0.0077, respectively; figure 5f ). By contrast, the influence of
1 mg kg−1 JZL184 repeated injection on social behaviours
could not be observed. These results suggested that JZL184
administration could restore impaired social interaction.

In the Morris water maze test, the rats are required to find
a hidden platform in order to escape from swimming in a
pool of water. During the training trial, a decrease was
observed in the escape latency in all of the groups, and the
differences were observed among groups during the same
day (repeated-measures ANOVA: group effect: F4,35 = 14.89,
p < 0.0001; time effect: F3,105 = 17.85, p < 0.0001; interaction
effect between group and time: F12,105 = 0.93, p = 0.52;
figure 6a,b). A post hoc test showed that compared with the
control group, VPA-exposed rats required a longer escape
latency, whereas repeated treatment with 3 or 10 mg kg−1

of JZL184 notably shortened the escape latency during the
training period (2nd, 3rd and 4th day, p < 0.05; figure 6a,b).
On the 5th day, one-way ANOVA analyses revealed statisti-
cally significant differences between the groups in the
spatial probe test (F4,35 = 5.101, p = 0.0024; figure 6c). The
results indicated VPA-exposed rats were not able to
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remember the original platform, and the number of crossings
of the former platform location (passing time) was less than
that observed in the control rats ( p = 0.0010). Interestingly,
VPA-exposed rats administrated with JZL184 repeated
injections at doses of 3 mg kg−1 significantly increased plat-
form crossing times ( p = 0.0052; figure 3a,c). Taken together,
JZL184 3 mg kg−1 repeated treatment could improve learning
and spatial memory deficits in VPA-induced rats.
3.3. Effect of JZL184 treatment on the components
of the eCB system

Acute administration of JZL184 (40 mg kg−1) did not alter eCB
levels in the hippocampus and the PFC (figure 1b,c). Repeated
administration of JZL184 at doses of 3 and 10 mg kg−1

enhanced the levels of 2-AG in the hippocampus and corre-
sponding reductions in its metabolite, AA. There were no
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differences in the levels of AEA, PEA and OEA (figure 1b).
Repeated administration of JZL184 at doses of 3 mg kg−1

increased the levels of AEA and 2-AG in the PFC without
affecting the levels of PEA, OEA and AA (figure 1c).

As shown in figure 7a, CB1R, CB2R and DAGL mRNA
expression in the hippocampus were lower in VPA-exposed
rats than those in control rats ( p < 0.05), which was consistent
with prior results (figure 2b). Acute administration of JZL184
(40 mg kg−1) reduced CB1R and DAGL mRNA levels of
VPA-exposed offspring in the hippocampus (p < 0.05).
Repeated injections of JZL184 at doses of 3 mg kg−1 influenced
DAGL mRNA expression ( p = 0.0026). Repeated injections of
JZL184 at doses of 10 mg kg−1 decreased CB1R, CB2R and
DAGL mRNA expression ( p = 0.0001, p = 0.0001, p = 0.0396,
respectively).

As shown in figure 7b, DAGL and MAGL mRNA
expression in the PFC were increased in VPA-exposed rats
when compared to controls rats (p = 0.0454, p = 0.0195, respect-
ively), while there were not significant differences in CB1R,
CB2R, NAPE-PLD, FAAH mRNA expression. Acute adminis-
tration of JZL184 (40 mg kg−1) reduced MAGL mRNA levels
of VPA-exposed offspring ( p = 0.0001). JZL184 1, 3 and
10 mg kg−1 repeated injections influenced CB2R, NAPE-PLD,
DAGL and MAGL mRNA levels in the PFC (p < 0.05).
4. Discussion
This study aimed to highlight that ASD children and ASD
model rats have been found to exhibit disruption of the eCB
system, and that pharmacological modulators of the eCB
system may offer therapeutic potential in ASD. Our results of
reduced eCB content, increased degradation of enzymes and
compensatory upregulation of CBRs suggested lower eCB sig-
nalling in ASD. Moreover, we observed that JZL184 treatment,
by enhancing intrinsic 2-AG levels, ameliorated autistic
behaviours in VPA-exposed offspring. This finding was
characterized by reduced repetitive and stereotypical beha-
viours in marble burying and self-grooming test, reduced
hyperactivity in the open field test, increased sociability and
social preference in the three-chamber test and improved cog-
nitive functioning in the Morris water maze test. This research
is important to encourage the identification of potential targets
for improved therapeutic treatments in ASD.

To date, only two studies with humans provided evidence
regarding eCB levels in blood samples of ASD children [6,7],
and findings of which demonstrated lower concentrations of
AEA, PEA and OEA in autistic children, which are consistent
with the findings of the present study. Notably, this is the
first time that we found lower circulating 2-AG levels in chil-
dren with ASD. We also found that children with ASD who
have lower PEA levels exhibited more serious ASD symptoms.
Interestingly, Kelly et al. [24] demonstrated that children with
poor communication scores at age 3 years had been found to
exhibit dysregulated plasma eCB levels at 1 year of age,
which implicated that eCBs may be a potential biomarker for
the early diagnosis of ASD. Anecdotally, case reports from
Italy first corroborated that PEA,whether alone or combination
with other natural supplements, can refine ASD core impair-
ments [25]. Subsequently, an Iranian randomized, double-
blind placebo-controlled trial revealed that PEA (600 mg admi-
nistered twice daily) may augment the therapeutic effects of
risperidone on ASD-related irritability and hyperactivity with-
out serious side effects [26]. The non-psychoactive, medical
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F (5, 54) = 1.607 p = 0.1738 F (5, 54) = 4.997 p = 0.0008 F (5, 54) = 4.331 p = 0.0022

F (5, 54) = 3.312 p = 0.0111 F (5, 54) = 5.113 p = 0.0007 F (5, 54) = 11.24 p < 0.0001

(a)

(b)

Figure 7. Effects of JZL184 treatment on the relative mRNA expression levels of eCB system normalized to GAPDH in hippocampus (a) and in the PFC (b). Data
represented as means ± s.e.m. (n = 10 pups per group). Results were analysed by one-way ANOVA with Dunnett’s post hoc test (#p < 0.05, ##p < 0.01 versus CON
group; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.001 versus VPA group). AJ, acute JZL184 treatment; RJ, repeated JZL184 treatment.
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cannabis (e.g. cannabidiol, cannabidivarin) in ASD patients
appears to be well tolerated and safe (low side effects rate),
and may be an effective treatment in some countries to relieve
autistic symptoms [27,28]. Nevertheless, cannabinoid treat-
ment remains a controversial ethical issue with respect to
individuals with ASD, and any kind of cannabinoid consump-
tion is illegal in China. Collectively, whether as a diagnostic
biomarker or as a potential therapeutic target, decreased eCB
levels were associated with ASD.

Confirming the results found inhuman studies,we observed
that the levels of twomajor eCBs, namely, AEA and 2-AG, were
reduced in the hippocampus of VPA-induced rats. However,
Kerr et al. [11] found that the levels of AEA, PEA, OEA and
2-AG in the hippocampus did not differ between VPA-exposed
and control rats. Intriguingly, they demonstrated that eCB levels
were enhanced in the hippocampus of VPA-exposed rats
immediately following the sociability test, i.e. eCB content was
susceptible to behavioural testing, which is supported by
many other studies [29,30]. To this end, in the present study,
the behavioural experiments were paralleled by biochemical
measurement, whereas Kerr examined eCB concentration 72 h
after the animals underwent behavioural experiments. This
might account for the disparity in the two studies. In addition,
several lines of work pointed out that eCB changes appeared
to be region-specific, so we did not observe a similar profile
and magnitude of eCBs in the hippocampus and in the PFC.
In addition, changes in the eCB system are more pronounced
in the hippocampus with respect to the PFC [13,31].

In the light of PBMCs (i.e. lymphocytes, NK cells and
monocytes) which could serve as a tool to investigate eCB
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system changes in the CNS in several neuropsychiatric dis-
orders, we also examined eCB-associated receptors and
enzymes in PBMCs isolated from the whole blood of autistic
children. CB1R is the most abundant G protein-coupled recep-
tor located in the brain, while CB2R is sparsely expressed in the
brain and is instead primarily present in immunoregulatory
cells, such as microglia and peripheral immune cells [32].
This could explain that the differences in CB1R mRNA
expression in PBMCs and CB2R protein expression in the hip-
pocampuswere not observed betweenASD cases and controls;
even CB1R protein expression was not detected in PBMCs in
the present study. It is noteworthy thatwe found that transcrip-
tion and translation of CB2R in PBMCs and CB1R in the
hippocampus were all enhanced. Siniscalco et al. [8] found
results that are similar to those of the present study, which
revealed unchanged CB1R mRNA levels and upregulated
CB2RmRNA and protein levels in ASD-PBMCs in comparison
to healthy subjects. The Zamberletti study also found that pre-
natal VPA exposure increased CB1R protein levels [13].
Remarkably, CB1R and CB2R activation exerted diverse conse-
quences across cellular physiology. As the main molecular
target of eCBs, CB1R is found high density on presynaptic ter-
mini of glutamatergic and GABAergic neurons, and activation
of CB1R is implicated in the regulation of excitatory-inhibitory
balance, synaptic strength and neurotransmitter release, which
ultimately mediates social functioning, learning and memory
[33,34]. Furthermore, genetic variants in CNR1 (encoding
CB1R) gene were correlated not only to verbal but to non-
verbal social communication in ASD research studies [35,36].
Additionally, via activation of CB2R, the eCB system exerts
anti-inflammatory actions and decreases glial activity to pre-
vent excessive inflammation and cell damage [32,37].
We could not obtain brain tissue of patients. Nonetheless, to
some extent, the expression of CB2R on peripheral immune
cells reflects changes in the CNS [38]. In fact, this study also
found an increase in mRNA expression of CB2R in the hippo-
campus of VPA-exposed offspring. Hence, our findings
supported the notion that the eCB system plays a protective
role in inflammatory responses in autistic children via increas-
ing CB2R expression [8]. However, further experimental
evidence towards neuroinflammation is needed. Because it is
impossible that the changes in the components of the
eCB system are independent from one another, researchers
suggested that there might be negative feedback regulation of
eCBs and CBR densities [39,40]. We deduced that upregulation
of CBRs reflected a response to the lower levels of eCBs
observed in autistic patients and model rats in the current
study. Alterations in CBRs levels are transient adaptive reac-
tions which attempt to restore normal homeostasis that is
otherwise disrupted by the disease.

Thus far, only Siniscalco’s team have previously investi-
gated the eCB system in PBMCs from individuals with ASD,
but they incorporated neither 2-AG metabolic enzymes nor
protein expression of eCB-related enzymes into their study
[8,9]. To our knowledge, this is the first study to explore rela-
tively entire components of the eCB system in PBMCs from
humans. The biosynthesis of 2-AG can be catalyzed by two
DAGL isoforms, namely DAGL-α and DAGL-β. DAGL-α,
which are expressed throughout the brain, and 2-AG levels
dropped by up to 80–90% in the brain in the DAGL-α null
mouse brain [41]. Given that DAGL-α is themain 2-AG synthe-
sizing enzyme in the brain, this study only examined DAGL-α
expression (DAGL for short). Surprisingly, we revealed that
DAGL mRNA expression was increased in the human and
rat sample, but not protein. Moreover, we found concurrent
increases in the expression of FAAH and MAGL, which are
responsible for AEA and 2-AG degradation, both in PBMCs
and in the hippocampus. The lower eCB levels in the present
study may account for the increased degradation of enzymes.
The contradictory results that both DAGL and MAGL
mRNA expression were increased in the PFC may explain the
unchanged levels of eCBs in the PFC. Interestingly, in Siniscal-
co’s study, FAAH mRNA expression did not significantly
change, and NAPE-PLD slightly decreased in 17 cases of
ASD and 22 cases of healthy controls [8]. Our findings from
animals were in keeping with previous reports of upregulated
expression of FAAH and MAGL in VPA-induced rats [13,42].
As a whole, our results and those of other studies highlight
the presence of decreased eCB signalling in ASD children
and in the animal model which might explain the deficits
exhibited in the cognitive and social domains.

The animal model studies have shown that prenatal VPA
exposure in rodents recapitulates ASD-like pathophysiology
at a molecular, cellular and behavioural level. VPA-induced
rats have been developed and became a widely used environ-
mental preclinical model of ASD with strong face and
construct validity, which also serves as a good platform for test-
ing pharmacological reagents that might be used to treat ASD.
On a behavioural level, our findings have confirmed that VPA-
exposed rats exhibit the core symptoms of ASD, impaired social
interaction and repetitive behaviour, and possibly co-occurring
emotional and cognitive problems. Furthermore, we found that
prenatal VPA exposure induces a disturbance of the eCB system
in offspring rats that is similar that observed in ASD children,
which is in accordance with prior research studies [11,13], indi-
cating a reduced eCB tone in ASD. Therefore, we evaluated the
efficacy of boosting 2-AG levels byadministering the hydrolysis
inhibitor JZL184 which attenuates repetitive and stereotypical
behaviours, hyperactivity, and deficits in social and cognitive
functioning in VPA-induced rats. The results showed that
either acute or chronic administration of JZL184 was successful
in mitigating ASD-like behaviours, which was in line with pre-
vious reports involving Fmr1 knockout mice and Shank3B−/−

mice [10,18,19].
Rats treated with acute administration 40 mg kg−1 JZL184

exhibited reduced repetitive marble burying, grooming beha-
viours and hyperactivity, as well as an improvement in
sociability and social preference induced by VPA exposure.
We observed that a single injection of JZL184 (40 mg kg−1)
did not change the levels of eCBs in the hippocampus and
PFC, which was consistent with the findings of Kerr et al. [43]
who did not detect an alternation in the levels of eCBs 2.5 h fol-
lowing injection of JZL184 (10 mg kg−1). Nonetheless, JZL184
at a dose of 40 mg kg−1 could show loss of MAGL activity
[44]. Kruk-Slomka et al. [45] demonstrated similar results,
which revealed that acute injection of JZL184 40 mg kg−1 sig-
nificantly decreased locomotion and improved long-term
acquisition of memory and learning processes. Although
only decreased CB1R and DAGLmRNA expression in the hip-
pocampus and decreasedMAGLmRNA expression in the PFC
were detected and the eCB levels were not acute JZL184 treat-
ment still exerted a positive effect on behaviours. Repeated
treatment with JZL184 at a dose of 3 mg kg−1 had a restorative
effect on repetitive marble-burying and grooming behaviours,
locomotor activity, social preference, learning and spatial
memory. By contrast, a high dose (10 mg kg−1) only partially
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affected repetitive behaviours, social preference and learning,
and a low dose which was tested (1 mg kg−1) was ineffective.
In fact, the behavioural efficacious dose of 3 mg kg−1 robustly
increased 2-AG levels in both the hippocampus and PFC,
whereas concomitantly, a marginal increase in AEA levels
was observed. In this regard, Dagla−/− animals showed an
extensive reduction in 2-AG levels and a concomitant decrease
in AEA in the hippocampus and cortex. Furthermore, adminis-
tration of JZL184 to Dagla−/− mice increased not only 2-AG
levels but also the level of AEA [41]. Schlosburg et al. [17]
also confirmed that chronic dosing also caused a modest
elevation in AEA. These data, together with our similar results,
suggested a crosstalk of 2-AG and AEA production in the
brain; however, the underlying mechanism is not known. We
should note that cumulative exposure to JZL184 probably
generates a partial effect of blockade on FAAH, rather than
MAGL contributing directly to the degradation of AEA [17].
Our findings also indicated that the increase of 2-AG in the hip-
pocampus and PFC might not result from the increase of
DAGL, because JZL184 treatment reduced DAGL mRNA
expression. Inversely, the increase of 2-AG exerted an inhibi-
tory effect on the DAGL expression. Convergent literature
demonstrated that sustained elevation of 2-AG in the brain,
caused by either genetic deletion or chronic pharmacological
blockade of MAGL, led to CB1R desensitization and tolerance
to CB1R agonists, as well as to significant decreases in CB1R
number and function, and this effect would limit the thera-
peutic potential of JZL184 [17]. A chronic JZL184 dose of
16 mg kg−1 daily (typically one week) reliably produced toler-
ance [46]. The current study observed that a dose of 10 mg kg−1

daily (two weeks) reduced CB1R and CB2R expression in the
hippocampus, andCB2Rexpression in the PFC. Thus, repeated
administration of a low dose of JZL184 (i.e. 3 mg kg−1 in the
current study) could produce elevated eCB brain levels
without behavioural tolerance and CBRs desensitization.
Additionally, acute treatmentwith JZL184 also has an important
effect on CBRs [22]. We hypothesized that JZL184 treatment
could improve ASD-like behaviours via CBR-dependent and
-independentmechanisms: (i) as 2-AG acts via CB1Rand gener-
ally suppresses synaptic transmission, neuronal excitability and
neurogenesis, the improvement of eCB-induced synaptic plas-
ticity could ameliorate ASD-like behaviours [10,18]; and (ii) 2-
AG is an important metabolic intermediate in lipid synthesis
and it also serves as a major source of AA, which is required
for pro-inflammatory prostaglandin synthesis. Pharmacological
inactivation ofMAGL induced not only elevations in 2-AG, but
reductions in the product AA and downstream AA-derived
eicosanoids aswell. This impairment of eicosanoids production
is a direct consequence of the reduction in AA rather than the
augmentation of eCB signalling, which is possibly relevant to
cyclooxygenase enzymes [44]. Furthermore, inactivation of
MAGL could suppress the pro-inflammatory cytokines pro-
duction and microglial activation induced by LPS [44,47].
Eventually, independent of CBRs, increasing 2-AG provides
protection against neuroinflammation, which then ameliorates
ASD-like behaviours.

This study had some limitations that must be taken into
account in interpretating the results. First, the present study
is limited by the use of male offspring only. The eCB system
is known to exhibit sexual dimorphism in humans and rodents,
particularly in CB1R expression and functionality [31,48].
Second, the study could have benefited from comparisons
with plasma eCB levels in VPA-induced rats. Third, this
study may lack some information of value due to not having
evaluated enzyme and receptor activity, and additional non-
cannabinoid receptor targets which are known to have affinity
and activity to eCBs. While the therapeutic use of the eCB
system is inviting, extensive research is required to further
evaluate this complex regulatory pathway and the safety of
pharmacological manipulation.

Current evidence strongly implicates alterations in the eCB
system in human patients with ASD and in animal models.
The reduced eCB content, elevated degradation of enzymes
and compensatory upregulation of CBRs indicates reduced
eCB signalling in ASD. In addition, augmentation of 2-AG
levels by pharmacological inhibition of MAGL resulted in the
normalization of ASD-related behavioural abnormalities in
VPA-exposed offspring. The improvement of behavioural phe-
notypes was consistent with the observed increase in 2-AG in
the hippocampus and PFC following administration of
JZL184 at a dose of 3 mg kg−1. These data provide preclinical
evidence which supports the ability of JZL184 to ameliorate
behavioural abnormalities resembling core and associated
symptoms of ASD. The high heterogeneity in the phenotypic
presentation of ASD poses investigative and clinical challenges
for treatment, and subgroups of ASD individuals may benefit
more from drugs that increase cannabinoid levels.
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