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Abstract: Although not yet truly ‘comprehensive’, modern mass spectrometry-based experiments
can generate quantitative data for a meaningful fraction of the human proteome. Importantly
for large-scale protein expression analysis, robust data pipelines are in place for identification
of un-modified peptide sequences and aggregation of these data to protein-level quantification.
However, interoperable software tools that enable scientists to computationally explore and document
novel hypotheses for peptide sequence, modification status, or fragmentation behavior are not
well-developed. Here, we introduce mzStudio, an open-source Python module built on our
multiplierz project. This desktop application provides a highly-interactive graphical user interface
(GUI) through which scientists can examine and annotate spectral features, re-search existing
PSMs to test different modifications or new spectral matching algorithms, share results with
colleagues, integrate other domain-specific software tools, and finally create publication-quality
graphics. mzStudio leverages our common application programming interface (mzAPI) for access to
native data files from multiple instrument platforms, including ion trap, quadrupole time-of-flight,
Orbitrap, matrix-assisted laser desorption ionization, and triple quadrupole mass spectrometers and
is compatible with several popular search engines including Mascot, Proteome Discoverer, X!Tandem,
and Comet. The mzStudio toolkit enables researchers to create a digital provenance of data analytics
and other evidence that support specific peptide sequence assignments.

Keywords: bioinformatics software; mass spectrometry; quantification; results distribution; API;
application programming interface; SQLite

1. Introduction

Adaptation of false-discovery statistics and peptide-to-protein parsimony rules enable straightforward
compilation of large-scale mass spectrometry experiments to a simple list of peptides, proteins, and
associated quantification values. While some details will continue to evolve, the field has undoubtedly
reached a point where the expression of a large number of proteins can be confidently measured in
many biological systems based on assignment of unmodified tryptic peptide sequences and their
parsimonious mapping to protein groups or other identifiers. Indeed, this approach provides a
global view of the proteome and can reveal how constituent components may respond to biological
perturbation. These effects can be visualized with simple heat-map graphics, and the underlying
lists of quantified proteins can be distributed in standard spreadsheet files. However, this approach
fails to capture the granularity in protein modifications which result from the rich and dynamic
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chemical environment associated with endogenous physiology. Even in the post-genomic era,
new post-translational modifications of proteins have been discovered [1–3]. Interrogating mass
spectrometry data at this level of functional resolution requires a dynamic and interactive visualization
framework on which researchers can experiment with novel hypotheses for peptide sequences and
associated modifications.

In the last several years, many useful tools have been developed for the analysis of proteomic
data [4,5]. These tools are typically developed in a task-specific manner. For example, MaxQuant [6]
provides for feature detection, database search, and relative quantification, while Skyline [7] focuses
on building and refining targeted mass spectrometry assays. Proteowizard [8] provides several tools
to convert mass spectrometry data to common file formats (i.e., mzML) and supports basic data
display. Other groups have developed databases intended to serve as warehouses for long-term
archiving, compilation, and access to MS/MS spectra [9,10]. More recent tools such as Mass++ [11]
and Batmass [12] focus on data visualization. Inspired by these efforts, we developed mzStudio,
an open-source, Python-based digital canvas for interactive exploration and interpretation of mass
spectrometry data. mzStudio is built on our multiplierz framework [13–15] and leverages our common
API [16] to facilitate user-directed navigation across proprietary native mass spectrometry files and scan
types. mzStudio also provides unique capabilities which enable users to build and integrate evidence
for novel hypotheses related to specific spectra. First, users can interact directly with search engines
(Mascot, X!Tandem, Comet) to iteratively test sequence and modification assignments, or explore
unexpected fragmentation behavior. In addition, mzStudio provides on-board spectral processing and
feature analysis tools. Finally, mzStudio includes an embedded ‘spectral notebook’, which captures
the details and logic that underlie evolving ideas and workflows. With these features, mzStudio
expands beyond a simple visualization platform to provide a seamless link between computational
interrogation of mass spectra, digital provenance, and publication or other dissemination of results.

2. Materials and Methods

2.1. Architecture

mzStudio was developed in Python, an easy to understand scripting language that supports rapid
prototyping, and is currently deployable from 64-bit Python 2.7. The GUI is implemented with the
wxPython 3.0 agw docking library which allows easy window management. A key component of
mzStudio is the multiplierz project [13] (version 2.0 [15]), which provides libraries for raw data file
access (mzAPI [16]), reading and writing spreadsheets and databases (mzResult [14]), and launching
database searches (mzSearch [15]). Additional routines for interrogating mass spectra are accessible
via the multiplierz mzTools module [15]. mzStudio and multiplierz are both available under a GPL
license. mzStudio source code, as well as a tutorial document, can be downloaded from Github:
https://github.com/BlaisProteomics/mzStudio. Example data and search result files are provided on
sourceforge: https://sourceforge.net/projects/mzstudio-tutorial-package.

2.2. Results

mzStudio was developed in our lab to provide a centralized framework to interactively visualize,
annotate, and integrate sequence assignment and other features of mass spectrometry data across
instrument manufacturers, platforms, and search engines (Figure 1). Consistent with our design
philosophy for our broader multiplierz project, mzStudio provides direct access to native mass
spectrometry data files without the need for conversion to auxiliary file formats (i.e., xml); all supported
vendors and instrument platforms are listed in Supplementary Table S1. Exemplary file access times
are listed in Supplementary Table S2. mzStudio leverages our common API [16] and manufacturer
DLLs (installed with multiplierz) to directly access native data files; as such, mzStudio is currently
limited to use on Windows OS. mzStudio supports access to and visualization of MS1, MSn, DIA, and
specialized triple quadrupole scans (precursor/neutral loss scanning data). mzStudio can currently

https://github.com/BlaisProteomics/mzStudio
https://sourceforge.net/projects/mzstudio-tutorial-package


Proteomes 2017, 5, 20 3 of 8

read SRM data from LTQ/Orbitrap instruments; we are actively working to facilitate reading SRM
data from other platforms. Search results from Mascot, Proteome Discoverer, Comet, and X!tandem
can be directly imported and queried with a simple yet powerful SQLite interface based on our
previously described mzResults format [14]. For example, users can filter and sort data to highlight
proteins or PTMs of interest by typing simple commands at the SQLite prompt (see example queries
in Supplementary Table S3 and tutorial file hosted on Github). To facilitate construction of queries,
we implemented autocompletion of SQLite key words (e.g., SELECT, FROM, WHERE) as well as
shortcuts for common worksheet column names (e.g., “Variable Modifications”). An integrated peptide
calculator tool (PepCalc) facilitates evaluation of theoretical fragment ions (y/b for collisional activated
dissociation/higher collisional energy dissociation (CAD/HCD) spectra or c/z for electron transfer
dissociation (ETD) spectra) of specified charge state for spectral validation. Sequences can be adjusted
on-the-fly with predicted, color-coded fragment ions remapped to the spectrum (for example, changing
placement of phosphate group to validate phosphorylation site localization). For multidimensional
liquid chromatography-mass spectrometry (LC-MS) studies, spectral validation can be especially
laborious as it requires navigating multiple data files. mzStudio simplifies this task by allowing direct
import of combined search results; associated raw data files may be loaded all at once, or cached
sequentially as needed during the validation process, affording fast and seamless access across large
data sets. This feature also simplifies evaluation of peak areas obtained from MS-based quantitation
experiments. mzStudio can also be used to verify reporter-based quantification (TMT, iTRAQ), and
supports visualization of corrected reporter intensities (i.e., corrected for reagent isotopic impurities,
variation in protein input, or instrument-specific parameters such as ion injection time).

mzAPI
.RAW

.WIFF and .T2D

.D

mzReport
CSV

Excel

mzResults

Tandem Comet
Mascot

mzSearch

01001101
01011010

mzTools

Feature Detection

SpecStylus

PepCalc

Ficarro et al. Figure 1

Figure 1. The main user interface of mzStudio supports direct access to native mass spectrometry data
files from different instrument manufacturers, and can import database search results from Mascot,
X!Tandem, Comet, and Proteome Discoverer. An interactive analysis window enables rapid SQLite
filtering of data, while a peptide calculator toolbar displays theoretical fragment ion masses. Additional
tools provide for feature detection, custom spectral processing, and launching database searches.
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Additional tools provide for dynamic re-evaluation of data and enable exploration of alternative
hypotheses for peptide sequence, modification, or fragmentation behavior. For example, mzStudio
can implement unbiased detection and visualization of MS1-based features, where each feature is
an isotopic cluster over a certain time range with any associated MS/MS spectra. Once features are
detected, they are directly mapped onto MS1 data. Clicking a feature tab opens a window allowing
users to quickly browse to any MS1 or MS2 scan that corresponds to the feature. With this view of the
data, unassigned features can be quickly identified and directly submitted for sequence assignment
considering different modifications and protein databases; fragment ions assigned through each
iterative search are automatically annotated within MS/MS spectra. Furthermore, mzStudio supports
custom spectral processing algorithms (Supplementary Figure S1 illustrates a custom processing
routine written in Python); this capability enables in-depth exploration of surprising or novel gas-phase
fragmentation behavior. We used these tools to significantly improve identification rates for peptides
modified with cysteine-directed covalent drugs and other chemical probes [17]. With mzStudio,
researchers can add, refine, or create entirely new spectral pre-processing routines (for examples,
see the example_processing_scripts folder in the Github repository), submit MS/MS data to multiple
search algorithms, and assess the impact both qualitatively (improved utilization or accounting of
fragment ions) and quantitatively (individual peptide score). Figure 2 illustrates a general workflow
utilizing these capabilities.

It can be challenging to maintain informative, detailed records of new ideas and progress in
sequence assignment when exploring novel peptide fragmentation pathways or the impact of
spectral pre-processing algorithms (e.g., de-isotoping, charge-reduction, or removal of kinase inhibitor
specific ions). Similarly it is difficult to test and evaluate the myriad of combinations when multiple
post-translational modifications are thought to occur along a relatively short sequence of amino acids.
For example, we recently utilized quantitative mass spectrometry to interrogate modifications on Olig2,
a transcription factor that mediates fate choice of neural progenitor cells in the developing central
nervous system and can contribute to the pathophysiology of human gliomas [18]. A set of three
protein kinases works in tandem to phosphorylate Olig2 at multiple sites within the first 20 N-terminal
amino acids. Indeed, these and other data [19,20] highlight the critical roles that phosphorylation
on this region of Olig2 plays in its tumorigenic function. Mapping these phosphorylation sites and
deciphering the kinetics to establish potential ‘priming’ phosphorylation events is an important first
step in trying to identify the kinases which may represent therapeutic targets. Our work in this
study required extensive analysis of MS/MS spectra to localize different and even multiple sites
of phosphorylation on the same peptide fragment. To better support our work in this and similar
projects, we developed the companion spectral notebook application (SpecStylus, Figure 3), which
enables researchers to create a digital provenance of data analysis activities. Furthermore, spectra,
processed spectra, extracted ion chromatograms, or other data projections can be annotated using
an associated text box or assorted drawing widgets to catalog evidence for fragmentation pathways,
phosphorylation site localization, or other spectral features. These annotations are stored in the
notebook for comparison to future experiments. In addition, processing scripts, search results, and
other parameters can be linked to notebook entries, thereby creating a forensic ‘chain-of-custody’ for
all evidence and procedures used to support a final sequence assignment. For added convenience and
portability, all intermediary steps associated with a final result can be dynamically analyzed, or further
extended, independent of the original native mass spectrometry data; this feature facilitates sharing
results with colleagues and assembling supplemental files for scientific journals. Finally, SpecStylus
images can be exported in .png, .pdf, .svg, and .ppt format for preparation of slides or publication
quality figures, while peak lists can be output as .sdb files for use with NIST library search tools.
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Figure 2. mzStudio enables custom spectral processing and direct database search of processed spectra.
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Figure 3. SpecStylus enables text- and graphic-annotation of mass spectra, processed spectra, extracted
ion chromatograms, and search results/parameters. Collectively these figures and notes provide
digital provenance for data analytic workflows and ideas supporting peptide sequence assignment.
Spectra and chromatograms can be exported as .svg, .pdf, .ppt, or .png for integration into presentation
material, while underlying peak lists are compatible with NIST library search tools.

3. Discussion

Data and tools derived from the human genome project are feeding efforts in mass spectrometry
to quantify human proteomes in multiple biological contexts (e.g., proteogenomics). While these efforts
have an abundance of scientific merit, it is also true that progress in deciphering the chemical diversity
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of the proteome will not be informed to a great extent by genomic data. We created mzStudio to support
the detective-work that is required to carefully characterize novel modifications or surprising gas phase
fragmentation behavior. Users can corroborate peptide-spectral-matches and associated quantitative
measures across large, multidimensional LC-MS/MS data sets, instrument platforms, and search
engines before embarking on subsequent, resource-intensive functional validation studies. Core tools
provide for a feature-based analysis of data, application of custom spectral processing algorithms, and
database search of processed spectra—all of which can be used to mine unassigned spectra and explore
alternative hypotheses (for example, unexpected post-translational modifications). With SpecStylus
mass spectra, chromatograms, scripts, and search results can be organized, documented, and annotated
to provide a digital provenance of the entire landscape of evidence supporting a specific interpretation
or line of inquiry. The analytic, annotation, and documenting capabilities within mzStudio will play
an increasingly important role in addressing protein-level questions which are fundamentally and
functionally anchored in dynamic human physiology rather than static DNA sequence.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7382/5/3/20 Figure S1:
Example custom spectral processing script for mzStudio. All scripts should contain a function named
“processor_function” that accepts a list of (mz, intensity) pairs (tuples). The function should return a similarly
formatted processed peak list. This script performs deisotoping and charge reduction of Orbitrap HCD
spectra, and removes ions related to the fragmentation of THZ1-modified peptides, Table S1: List of currently
supported instrument manufacturers and platforms, Table S2: Measured times for opening files of various
sizes with mzStudio using two different computers, Table S3: Exemplary SQLite queries that can be performed
with mzStudio.
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