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Abstract

Background: Tyrosine kinases drive the proliferation and survival of many human cancers. Thus profiling the global state of
tyrosine phosphorylation of a tumor is likely to provide a wealth of information that can be used to classify tumors for
prognosis and prediction. However, the comprehensive analysis of tyrosine phosphorylation of large numbers of human
cancer specimens is technically challenging using current methods.

Methodology/Principal Findings: We used a phosphoproteomic method termed SH2 profiling to characterize the global
state of phosphotyrosine (pTyr) signaling in human lung cancer cell lines. This method quantifies the phosphorylated binding
sites for SH2 domains, which are used by cells to respond to changes in pTyr during signaling. Cells could be grouped based on
SH2 binding patterns, with some clusters correlated with EGF receptor (EGFR) or K-RAS mutation status. Binding of specific SH2
domains, most prominently RAS pathway activators Grb2 and ShcA, correlated with EGFR mutation and sensitivity to the EGFR
inhibitor erlotinib. SH2 binding patterns also reflected MET activation and could identify cells driven by multiple kinases. The
pTyr responses of cells treated with kinase inhibitors provided evidence of distinct mechanisms of inhibition.

Conclusions/Significance: This study illustrates the potential of modular protein domains and their proteomic binding
profiles as powerful molecular diagnostic tools for tumor classification and biomarker identification.
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Introduction

Receptor and non-receptor tyrosine kinases regulate many

activities important for cancer, including cell proliferation,

survival, invasion/metastasis, and angiogenesis [1]. These signal-

ing proteins therefore represent an important class of drug targets

for the treatment of cancer, and numerous tyrosine kinase

inhibitors (TKIs) are under development or are now being used

in the clinic. Lung cancer accounts for over 160,000 deaths per

year in the U.S. [2], so there is a powerful rationale to identify key

drivers of lung cancer that can be therapeutically exploited. The

activity of the epidermal growth factor receptor (EGFR) is

frequently elevated in lung cancer, and inhibition of EGFR

through the TKI erlotinib can extend survival in patients with

advanced lung cancer refractory to chemotherapy [3]. In addition

to EGFR, a number of other tyrosine kinases have been proposed

as therapeutic targets in lung cancer, including MET, insulin-like

growth factor receptors (IGFR), SRC kinases, fibroblast growth

factor receptors (FGFR), platelet-derived growth factor receptors

(PDGFR), anaplastic lymphoma kinase (ALK), and EPH receptors

[4,5,6,7,8,9,10,11,12].

A key question in TKI therapy for lung cancer is which patients

will benefit from these drugs, since the cost is substantial and many

receive no benefit from treatment. An important breakthrough

was the discovery of activating somatic mutations in EGFR that

enhance receptor signaling and predict sensitivity to TKIs

targeting the EGFR, such as erlotinib and gefitinib [13,14,15].

In lung cancer patients harboring these mutations, response rates

to EGFR TKIs can be high and survival is better than that seen

with cytotoxic agents [16]. Nonetheless some patients without

EGFR mutation can benefit from EGFR inhibitors, and markers

such as EGFR gene amplification, autocrine TGFa production, or

gene expression profiles have been proposed to identify these

patients [17,18,19]. In addition, resistance mechanisms such as

MET amplification or secondary mutations in EGFR can rapidly

lead to drug resistance [20,21,22]. Finally, some tumor cells are
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likely to be driven by multiple tyrosine kinases, and methods to

identify and classify these are needed [23].

Proteomic strategies (which examine global patterns of protein

expression or phosphorylation) are also being used to classify tumors

[24]. Mass spectrometry (MS) coupled with anti-phosphotyrosine

antibodies identified different patterns of tyrosine kinase signaling in

lung cancer cells and tumors, and this approach was able to identify

cells driven by oncogenic EGFR, PDGFR, and ALK [4]. Other

studies using the same approach found patterns of tyrosine

phosphorylation associated with mutant EGFR signaling [25,26].

Overall, this work provides proof of principle that global tyrosine

phosphorylation patterns can provide useful information for tumor

classification. However, current MS methods require relatively large

amounts of sample and quantification of phosphorylated sites is

challenging, thus new phosphoproteomic strategies are needed.

We have developed an alternative phosphoproteomic method,

termed SH2 profiling, that complements MS-based approaches

[27,28]. SH2 profiling is highly sensitive and throughput is

relatively high, thus it is ideal for profiling phosphotyrosine (pTyr)

signaling in cancer cells. The conceptual basis of SH2 profiling is

to use the cell’s own pTyr signal response apparatus to interrogate

the state of pTyr signaling. Upon receptor tyrosine kinase (RTK)

activation, the resulting increase in protein tyrosine phosphoryla-

tion generates binding sites for modular pTyr-specific binding

domains; it is the relocalization of intracellular effectors containing

pTyr binding domains to these phosphorylated sites that is the key

step in signal transmission [29]. By far the most abundant pTyr

binding module in humans is the Src Homology 2 or SH2 domain

[30]. There are 120 SH2 domains encoded by the human genome,

and each SH2 domain binds a unique spectrum of tyrosine

phosphorylated sites [28,31]. Because SH2 domains are what the

cell uses to respond to or ‘‘read’’ changes in tyrosine phosphor-

ylation during signaling, the extent of binding of different SH2

domains can provide a wealth of information about the

mechanisms and status of pTyr signaling.

To test if this approach is useful in characterizing and classifying

complex tumor types such as lung cancer, where multiple tyrosine

kinases drive downstream signaling and maintain tumor growth,

we applied SH2 profiling to lung cancer cell lines. We find that

pTyr patterns could be related to known features of the cells

including EGFR mutation status and sensitivity to EGFR TKI.

Our results suggest that SH2 profiling provides novel insights into

pTyr signaling that are likely to be useful for prediction and

prognosis of lung cancer.

Results

SH2 profiling identifies subsets of lung cancer cell lines
We selected a group of 22 non-small cell lung cancer cell lines

with known EGFR and K-RAS mutation status and known

sensitivity to the EGFR TKI erlotinib (Suppl. Table S1). The

overall strategy for our studies is shown in Fig. 1. Cell lysates were

prepared from actively growing cells cultured in serum-supple-

mented medium. Two approaches to generate SH2 profiles were

used, reverse-phase protein array and far-Western blotting [28]. In

the first method, multiple protein samples (cell lysates) are spotted

in arrays in register with the wells of a 96-well chamber apparatus.

Each well is then filled with a solution containing a different GST-

SH2 domain probe, and after incubation and washing, the bound

probe is quantified for each spot. The amount of binding depends

on the number and affinity of tyrosine phosphorylated protein sites

in the sample. With this approach, which we term the ‘‘rosette’’

assay, it is possible to profile the total level of binding for virtually

all SH2 domains in the genome (94 SH2 domain probes and one

PTB domain representing 90 distinct proteins) using minimal

amounts of protein sample.

To investigate the relatedness of different cell lung cancer cell

lines, quantitative SH2 binding values were subjected to

unsupervised hierarchical clustering analysis (see Methods).

Results are shown in heat map format in Fig. 2A and the raw

image data is shown in Suppl. Fig. S1. Data with low signal/

background were discarded; data for the remaining 70 probes

were median-centered for clustering; red indicates higher than

median binding, green lower. The processed data can be found in

Suppl. Table S2. Data can also be accessed using a web-based

viewer (http://proteome.moffitt.org/sh2/). In this analysis, cell

lines harboring mutant EGFR cluster together in three distinct

sub-clusters, while two large clusters (of four and eight cell lines)

consist entirely of lines with wild-type (wt) EGFR. These results

suggest that SH2 profiling can identify subsets of lung cancer cells,

and that such clusters appear related to EGFR mutation status.

The second SH2 profiling approach uses far-Western blotting to

obtain more detailed information about the relative abundance

and apparent molecular weight (MW) of phosphoproteins that

bind different SH2 domain probes. Protein samples are separated

on the basis of size by gel electrophoresis and transferred to

membranes, which are then probed with labeled SH2 domains.

SH2 binding proteins are revealed as bands, and the apparent

MW of these bands may provide clues to their identity. We

developed software tools that allow SH2 binding data from far-

Western blots to be quantified in ‘‘bins’’ by apparent MW, e.g. 20

bins per lane. The data from each bin (corresponding to

phosphoproteins of a particular MW range that bind to the SH2

probe) can then be used as the basis for classification of samples.

Thus instead of a single value for each sample and SH2 domain, as

in the rosette assay, quantitative far-Western blotting provides at

least 20 different data points, greatly increasing the potential

discrimination between samples.

Far-Western blots of lung cancer cell lines were probed with 36

SH2 or PTB domains, as well as anti-pTyr antibody. Raw image

data can be found in Suppl. Movie S1, and quantitative data in

Suppl. Table S2. When quantitative results were subjected to

hierarchical clustering, the samples clustered into 3 distinct classes,

plus two outliers (Fig. 2B). One of these (cluster 3) consists entirely

of cells with wt EGFR and is highly enriched for cells with

activating K-RAS mutations. In contrast, clusters 1 and 2 are

enriched for cells with EGFR mutations; within each of these

clusters, cells with wt and mutant EGFR are segregated. Thus

quantitative far-Western blotting appears to provide additional

information on tyrosine kinase signaling state that can be used to

functionally classify cells on the basis of RTK activation status.

Overall the clustering results from the Rosette and far-Western

assays are similar but not identical, as discussed below.

Binding of a set of SH2 domains is enhanced in cells
harboring activating EGFR mutations

We next asked whether the binding of any individual SH2

domain probes was highly associated with activating EGFR

mutations. From rosette binding experiments we identified 7

probes whose binding was correlated in a statistically significant

fashion with EGFR mutation status: Grb2, ShcA(ptb), Grap2, Brk,

Txk, CblB and CblA (Fig. 3A) (refer to Suppl. Table S3 for SH2

domain names and corresponding proteins). We input these

domains into PPI Spider, a tool for interpreting proteomics data in

the context of known protein-protein interaction networks. This

analysis showed that five of these proteins (ShcA, Grb2, CblA,

CblB, and Brk) have been reported to bind directly to EGFR,

while Grap2 is potentially linked to EGFR through ShcA (Fig. 3B).

SH2 Profiling of Lung Cancer
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The fact that binding sites for Grb2 and ShcA (and the close Grb2

relative Grap2) are closely associated with EGFR mutation is

particularly intriguing, as increased binding of these SH2 domains

would be strongly predicted to lead to activation of the RAS

signaling pathway via recruitment of the RAS activator Sos

[32,33].

A similar analysis was performed using data from far-Western

blotting. We found that a number of specific bands on far-Western

blots correlated significantly with EGFR mutation (Fig. 3C). Here

it is interesting to consider bands whose binding tends to increase

in EGFR mutant cells (red) versus those whose binding tends to

decrease in EGFR mutant cells (green). We note that for probes

predicted (on the basis of known signaling activity) to be associated

with stimulation of the RAS pathway (Grb2 and Shc), increased

binding in the molecular weight range containing phosphorylated

EGFR family members (MW194, arrow) is seen for EGFR mutant

cells. This likely reflects increased binding of these effectors to

abnormally activated EGFR, compared with the wt receptor. This

is also true for SH2 domains of other known positive effectors of

EGFR signaling, including Vav2, PI 3-kinase (PI3K; P85B), and

PLCc Plcg1).

In contrast to EGFR mutation, we found no individual SH2

domains whose binding correlated strongly with RAS mutation

status by rosette or far-Western blotting. Despite this, we noticed

an interesting apparent correlation between clustering based on

global SH2 profiles and K-RAS mutation status. This is

particularly clear in the case of far-Western blotting (Fig. 2B),

where two major clusters consist entirely of cells with wt K-RAS,

whereas a third major cluster (cluster 3) consists almost entirely of

cells with wt EGFR but mutant K-RAS. We were initially puzzled

by the appearance of H1299 in cluster #3, as K-RAS is wt in these

cells. However, further examination of sequence data revealed that

the K-RAS relative N-RAS is mutated in H1299 (http://www.

sanger.ac.uk/genetics/CGP/CellLines/), but not in any of the

other cell lines used in this study. Thus a prediction based on SH2

profiling, that H1299 cells are likely to harbor activated RAS, was

borne out, strongly validating the biological relevance of this

approach. This cluster of RAS mutants (6 of 6 cell lines harboring

RAS mutation) is highly unlikely to have occurred by chance

(p = 0.001, permutation test, n = 100,000). These results indicate

that tyrosine phosphorylation patterns can sub-classify cells based

on RAS mutation status. The lack of correlation between

individual SH2 domain probes and RAS mutation (as opposed

to correlation based on the global tyrosine phosphorylation profile)

may reflect the fact that RAS functions downstream of tyrosine

kinases. We are currently testing the model that constitutive Ras

activity leads to activation of feedback pathways that broadly

downregulate tyrosine kinase signaling.

Figure 1. Overview of approach. Human lung cancer cell lines (Suppl. Table S1) were cultured in the presence or absence of tyrosine kinase
inhibitors erlotinib or dasatinib. Cell proteins were extracted and analyzed by rosette and far-Western blotting using an array of SH2 domain probes
(Suppl. Table S3). Bioinformatic analysis of quantified data was used for classification and biomarker screening.
doi:10.1371/journal.pone.0013470.g001

SH2 Profiling of Lung Cancer

PLoS ONE | www.plosone.org 3 October 2010 | Volume 5 | Issue 10 | e13470



Figure 2. Unsupervised clustering of lung cancer cell lines based on SH2 binding. (A) Rosette data clustered by SH2 domain and cell line.
Each row represents a single SH2 domain and each column represents a single cell line. Biological characteristics (EGFR mutation, K-RAS mutation,
erlotinib sensitivity) are shown above in black and white. For erlotinib sensitivity, positive/sensitive: IC50 ,10 nM; intermediate/moderately sensitive:
10–1000 nM; negative/insensitive: .1000 nM. (B) Far-Western data clustered by SH2 domain-specific bin and cell line. Each row represents a single
MW bin (20 bins/lane) for a particular SH2 domain and each column represents a single cell line.
doi:10.1371/journal.pone.0013470.g002

SH2 Profiling of Lung Cancer
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Figure 3. SH2 domains correlated with EGFR mutation. (A) SH2 domains whose binding is significantly correlated with EGFR mutation
(q,0.1). Bar plot of SH2 signal for mutant and wild-type EGFR cell lines is shown as mean with standard error bars. "SH2 domain" is used in figures for
all probes, including PTB domains and anti-pTyr antibody. (B) Protein-protein interaction map for EGFR (gray circle) and proteins with SH2 domains
whose binding is significantly correlated with EGFR mutation (white circles). Lines indicate reported direct binding interactions. (C) Far-Western
domain-specific bands significantly correlated with EGFR mutation. Colored boxes indicate the results of statistical significance in a Mann-Whitney

SH2 Profiling of Lung Cancer
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A set of SH2 probes is correlated with sensitivity of lung
cancer cells to EGFR TKI

We next determined if SH2 domain binding correlated with the

sensitivity of lung cancer cell lines to erlotinib, a small molecule

EGFR kinase inhibitor. Such domains could serve as the basis for

predictive biomarkers to identify tumors likely to respond to TKI

therapy. SH2 profiling data were examined for possible correlation

with the IC50 for erlotinib for each cell line (IC50 was assayed for

this study under the same culture conditions used for SH2

profiling). We found that the binding of 13 probes corresponding

to 12 proteins correlated in a statistically significant fashion with

erlotinib IC50 (Fig. 4A). These include Grb2 (shown in Fig. 4B),

ShcA, ShcA (ptb), p85B, Cis1, Arg, Eat2, Plcg1, Ptk70/Srms, Fes,

Lnk, Tem6, and Btk. Network analysis confirms reports of direct

test for differences (q,0.1) among the 22 cell lines shown in Figure 2B. Arrow indicates bin corresponding to EGFR family members. The numbers
adjacent to bins indicate apparent MW, e.g. "291.0" = MW between 256–291 kDa.
doi:10.1371/journal.pone.0013470.g003

Figure 4. Correlation of SH2 binding with erlotinib sensitivity. SH2 domain signal in untreated cells was compared to ln IC50 for erlotinib.
(A) Domains significantly correlated to ln IC50. Negative correlations indicate higher SH2 binding in cells more sensitive (lower IC50) to erlotinib.
(B) Scatter plot of Grb2 SH2 domain binding vs. the ln (IC50) for erlotinib. (C) Protein-protein interaction map for EGFR and proteins with SH2 domains
whose binding is significantly correlated with erlotinib sensitivity. Lines indicate reported direct binding interactions. (D) Heatmap representing
correlation of each domain-specific bin to erlotinib sensitivity. Pearson’s correlation was calculated for each domain-specific bin across 22 cell lines
and the ln (IC50) for the corresponding cell line. Each heatmap location represents correlation coefficient for that bin; green indicates increasing SH2
signal with decreasing IC50 values (greater sensitivity); red indicates increasing SH2 signal with increasing IC50 values (see color bar). Arrow indicates
MW bin containing EGFR family proteins. (E) List of the 46 domain-specific bins with |correlation coefficient| .0.5.
doi:10.1371/journal.pone.0013470.g004
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interaction between EGFR and Grb2, ShcA, p85B, Cis1, Arg,

Plcg1, Fes, and Btk (Fig. 4C). Overall the results are consistent

with a model where erlotinib sensitivity is associated with

particularly strong signaling from activated EGFR to known core

downstream effectors, including the MAPK (Grb2 and ShcA),

PI3K/Akt (p85B), and PLCc (PLCg1) pathways.

Far-Western blotting also identified bands that correlated with

erlotinib sensitivity (Fig. 4D&E). For a large number of SH2

domains, higher apparent binding to EGFR family members

(arrow at MW194 in Fig. 4D) was associated with erlotinib

sensitivity, while CSK (which downregulates Src-family kinases)

was unique in that lower apparent binding of its SH2 domain to

EGFR was associated with erlotinib sensitivity. These results were

very similar to those seen for EGFR mutation (Fig. 3C), suggesting

that increased binding of RAS activators and decreased binding of

CSK to EGFR are associated both with EGFR mutation and

erlotinib sensitivity. While in principle our analysis could be

confounded by the known correlation between EGFR mutation

and erlotinib sensitivity, we included in our analysis several lines

that are resistant to erlotinib despite having activating EGFR

mutations (H1975, H820, H2279, and H1650), as well as lines

with wt EGFR that are sensitive to erlotinib (H292, H358, H1648,

and H322). It is particularly intriguing that CSK is the only SH2

domain whose binding to the region of the blot containing EGFR

decreases in both EGFR mutant cells and in cells sensitive to

erlotinib. CSK negatively regulates Src family kinases, a key class

of nonreceptor tyrosine kinases [34]. Although CSK SH2 binding

is relatively weak and differences between the cell lines are modest,

we have confirmed the statistical significance of the correlation in

several separate experiments (Suppl. Fig. S2).

MET activation is captured by SH2 profiling
A potential strength of SH2 profiling would be to identify

tumors in which multiple hyperactivated tyrosine kinases act in

concert to drive downstream signaling, so we investigated whether

SH2 profiling could identify cell lines in which MET and EGFR

are co-activated. The MET kinase is amplified in H820 and

H1648 cells [20,35], which cluster closely together by both Rosette

and far-western SH2 profiling (Fig. 2). In far-Western blots, we

also noted strong binding of multiple SH2 domains including p85a

to the region of ,148 kDa in H820 and H1648. We observed a

similar band at ,148 kDa for a number of other cell lines,

including HCC827, H4006, H358, and H441 (Fig. 5A). Suspect-

ing this band was a marker for MET activation, we tested this by

probing immunoblots with a phosphospecific antibody that

specifically recognizes activated MET (Suppl. Fig. S3A). This

analysis, together with immunoprecipitation and inhibitor studies,

demonstrated that phosphorylation of the 148 kDa band was

strongly dependent on MET activation (its presence correlated

with activated MET and was inhibited by MET-specific TKI), but

the band was not the MET receptor itself (Suppl. Fig. S3B,C). At

the same time, we indirectly examined the activity of EGFR family

members by quantifying tyrosine phosphorylation of the

,194 kDa region of immunoblots, where EGFR family members

are found (Suppl. Fig. S3A). Immunoprecipitation and inhibitor

studies showed that most of the SH2 binding signal in this region

of the blots could be attributed to EGFR family members (Suppl.

Fig. S3B,C).

We then related MET and EGFR activation state with SH2

profiling results. Remarkably, unsupervised clustering of both

rosette and far-Western data revealed that most cell lines with

strong MET activation cluster in a distinct, tight group

(Fig. 5B&C). Both by rosette and far-Western-based profiling,

most cell lines with strong MET activation form a single cluster

(cluster 1) that is clearly separated from the other cell lines. All of

these cell lines also exhibit strong tyrosine phosphorylation of

proteins co-migrating with EGFR, suggesting co-activation of

MET and EGFR signaling in this group. Information on MET

and EGFR activation also allowed us to more broadly compare

clustering results based on rosette and far-Western data. This

comparison revealed that four distinct clusters were common to

both methods (Fig. 5B,C), encompassing 15 out of the 22 cell lines

(7 lines cluster differently when the two methods are compared).

Cluster 1 consists of cell lines with strong activation of both EGFR

and MET signaling. Cluster 3 consists of cell lines with mutant

RAS and low EGFR and MET activity, all of which are erlotinib

resistant. Cluster 2 can be divided into two subgroups based on

EGFR mutation status. From a clinical perspective these two

subgroups are the most interesting: one consists of lines with

mutant EGFR that are erlotinib resistant (cluster 2b), and the

other includes several lines with wt EGFR that are erlotinib

sensitive.

Next we tested whether the binding of any individual SH2

domain probes was associated with MET activation. By rosette

analysis we found that the binding of 46 SH2 domains was

significantly associated with MET phosphorylation (Fig. 6A).

Similarly, far-Western analysis showed a large number of bands

associated with MET phosphorylation status (Fig. 6B). The

number of SH2 domains and markers that correlate with MET

activation is larger than those associated with EGFR mutation,

suggesting MET activity has a more profound effect on overall

pTyr patterns than EGFR mutation.

The fact that the H1648 cell line clustered tightly with the H820

cell line, which had previously been found to have an activating

EGFR mutation along with MET amplification [20], suggested

that H1648 cells may be similar to H820 in that downstream

signaling is driven by both EGFR and MET. To test this, we

exposed H1648 cells to inhibitors of EGFR (erlotinib), MET

(PHA665752) [36], or the combination and examined downstream

Akt and ERK activation (Fig. 6C). We observed modest reductions

in phosphorylated Akt and ERK in response to either inhibitor

alone, but strong inhibition upon dual EGFR and MET

inhibition. The effects on cell viability mirrored the signaling

responses, as the combination of both agents resulted in enhanced

inhibition of cell growth (Fig. 6D). Thus global pTyr patterns,

assayed by SH2 profiling, predict MET activation and may predict

response to MET TKI in these cell lines.

Perturbation of global pTyr profiles by TKIs
We next used SH2 domain profiling to investigate changes in

global tyrosine phosphorylation in cells exposed to TKIs. Our

expectation was that changes in SH2 binding patterns could be

correlated with biological responses to inhibitors, and that probes

for which binding decreased strongly in TKI-inhibited cells were

likely to represent key pathways for TKI action. Four lung cancer

cell lines (H292, H441, H358 and HCC827) were briefly exposed

to erlotinib, an inhibitor of EGFR, or dasatinib, a SRC family

kinase inhibitor that inhibits multiple tyrosine and serine/

threonine kinases [37,38,39]. These cell lines differ greatly in

their responses to these TKI. In HCC827 cells with activating

EGFR mutation, both inhibitors induce apoptosis; in H358 and

H292 cells with wt EGFR, both agents induce cell cycle arrest; and

H441 cells with wt EGFR are resistant to both agents ([9] and data

not shown). Rosette and far-western SH2 profiling was performed

for all four cell lines in both the treated and untreated groups.

Rosette binding data (log2 fold changes in treated versus

untreated groups) were visualized in waterfall plots ranking

changes in SH2 binding (Fig. 7A, Suppl. Fig. S4A). In HCC827,

SH2 Profiling of Lung Cancer
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erlotinib caused complete collapse of pTyr signaling, as large

decreases in SH2 binding are observed for almost all probes. The

most significant reductions in binding occurred for the Grb2,

Grap2, Vav2, and Vav1 SH2 domains. Broadly similar changes

were observed upon dasatinib treatment, suggesting an overlap of

mechanism, yet fold changes were less for most probes, consistent

with its less potent effects on EGFR phosphorylation [9]. Similar

to HCC827, binding of almost all SH2 domain probes was

markedly reduced in TKI-treated H358 cells, and there was even

greater similarity between the responses to erlotinib and dasatinib.

Figure 5. SH2 profiling identifies cells with EGFR and MET co-activation. (A) Far-Western blot of lung cancer cell lines probed with p85A
SH2 domains. Note prominent band of ,145 kDa in H820 (arrow). (B,C) Hierarchical clustering related to MET and EGFR family activation. Hierarchical
clustering based on rosette data (B) or far-Western data (C), as previously shown in Fig. 2. Colors indicate cell lines that co-cluster by both rosette and
far-Western analysis (clusters 1, 2, 2b, and 3). MET activation = immunoreactivity with phosphospecific MET antibody. pTyr MW 194 =
immunoreactivity with anti-pTyr in 194 kDa bin, which is a readout of EGFR family activation (see Suppl. Fig. S3). Cutoffs for MET activation: positive,
.50% highest value in immunoblotting with anti-MET pY1334/1335; intermediate, 25–50%; negative, ,25%. Cutoff for pTyr MW194: positive, .25%
highest value in immunoblotting with anti-pTyr; intermediate, 10–25%; negative, ,10%.
doi:10.1371/journal.pone.0013470.g005

SH2 Profiling of Lung Cancer
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In H441, which is resistant to TKI, erlotinib and dasatinib evoke

similar overall patterns of change as H358. However the decrease

in SH2 binding was blunted in H441 compared to H358 and

HCC827, and the binding of a larger number of SH2 domains

increased in the presence of both inhibitors compared to untreated

cells. Finally, H292 showed the least dramatic changes in SH2

domain binding, and the overall pattern of response to TKI

treatment in this cell line was very different from the other three.

Furthermore, the erlotinib and dasatinib profiles were more

dissimilar compared to the other cell lines tested. The same

samples were also analyzed by far-Western blotting using a limited

set of SH2 probes (Suppl. Fig. S4B). These data showed that

responses to erlotinib and dasatinib were quite similar in the H358

and H441 cells, again arguing that the two agents have similar

targets in these cells.

In an effort to understand the biological implications of these

results, we compared the response of several classes of SH2

domains to TKI treatment. We chose Grb2 and Shc family

members (Grb2, Grb2(SH23), Grap, Grap2, ShcA, ShcA(ptb))

because of the known importance of Ras activation to

tumorigenesis, and our earlier results linking Ras activation to

erlotinib sensitivity (Fig. 4); and PI3Ks (p85A, P85B, P55G),

because of the strong association between PI3K/Akt activity and

cancer [40]. We also analyzed binding of Crk proteins (Crk and

CRKL) and Nck proteins (Nck1 and Nck2), based on the

involvement of these adaptors in RTK-dependent actin cyto-

skeletal rearrangements [41,42] and our unpublished observa-

tions that these SH2 domains bind to distinct targets compared to

most RTK effectors. We found that binding of the SH2 domains

of RAS activators, Crks, and PI3Ks decreased with TKI

treatment, with the exception of H292 cells (Fig. 7B). Ncks were

unique in that SH2 binding consistently increased upon TKI

treatment (Fig. 7B, Suppl. Fig. S4B). This is consistent with other

work showing that Nck binding sites diminish upon RTK

stimulation, in concert with loss of focal adhesions and stress

fibers ([42] and L. Jia, KM, and BJM, unpublished observation).

On average, the degree of change in binding of RAS activators

approximates the erlotinib sensitivity of the cells; for HCC827,

H358, and H441 cells the average log2 fold change is 23.1, 21.6,

and 20.8, respectively. For dasatinib, inhibition of the PI3K

pathway may also be important, as PI3K SH2 binding is reduced

significantly in H358, whereas in the resistant H441 line binding

is virtually unchanged. H292 cells have an anomalous pTyr

response to TKI that may reflect very low overall tyrosine

phosphorylation levels and lack of either EGFR or KRAS

mutation in this line.

When quantitative changes in SH2 binding upon TKI

treatment were used as the basis for unsupervised hierarchical

clustering, several general principles become apparent (Fig. 7C,

Suppl. Fig. S5). For HCC827, H358, and H441, the same cell

lines treated with different inhibitors were more similar in their

responses than different cell lines treated with the same inhibitor.

Thus for each of these three cell lines, the critical molecular targets

for both erlotinib and dasatinib are likely to overlap. However, the

dissimilarity in the responses to TKI when different cell lines are

compared indicates that these critical targets are not identical in

the three lines. The fact that the response of a particular cell line to

different TKI is more similar than the response of different cell

lines to the same TKI is interesting and rather unexpected,

suggesting that TKI response is highly dependent on the cell-

specific signaling milieu. This idea is reinforced by the anomalous

response of H292, which suggests these cells are driven by very

different molecular abnormalities, and that their TKI-induced cell

cycle arrest is mechanistically distinct from that seen in the other

lines. Therefore SH2 profiling provides novel insight into the

mechanisms whereby TKI suppress tumor cell growth, though

much more work is needed to correlate particular phosphorylation

changes with biological responses to TKI.

Discussion

Our results strongly suggest that SH2 profiling is a useful

molecular diagnostic approach for analyzing tyrosine kinase

signaling in tumor cells. Not only can the overall SH2 profiling

patterns serve as the basis for classification of tumors with potential

prognostic and/or predictive value, but this approach can also

identify molecular probes and phosphorylated proteins that may

individually or in combination serve as clinically useful biomark-

ers. This strategy combines the advantages of global analysis,

which does not depend on preconceived notions of the key

molecular drivers involved, with a tight focus on tyrosine

phosphorylation, which is known to play a central role in many

aspects of tumor biology.

Our studies were initially driven by the hypothesis that in lung

cancer cell lines, tyrosine phosphorylation patterns would be

related to the state of EGFR signaling, and in particular to EGFR

mutation status. Consistent with this idea, we found higher binding

of several SH2 probes, including Grb2 and ShcA, in EGFR

mutant cells. However mutant EGFR does not drive the entire

tyrosine phosphorylation pattern in lung cancer, as cells with

mutant EGFR can form distinct clusters. This is perhaps not

surprising given the abundance of tyrosine kinases implicated in

lung cancer biology [4]. Our results are also consistent with the

finding that distinct mutant alleles of EGFR can lead to

measurable differences in tyrosine phosphorylated peptides [25].

SH2 profiling therefore reveals heterogeneity of downstream

signaling outputs despite common genomic properties (EGFR

mutation), and could therefore provide additional predictive or

prognostic information in tumor classification.

It is interesting to note that classification based on SH2 profiles

correlated quite closely with two other molecular markers, MET

activation and K-RAS activation. In the case of MET, both rosette

and far-Western SH2 profiling clearly distinguished a cluster of

cells with high levels of activating MET phosphorylation. This

strongly suggests that in lung cancer, global patterns of tyrosine

phosphorylation are at least as dependent on MET activation as

they are on EGFR mutation. This important and rather

unexpected insight is a clear indication of the value of unbiased,

global approaches.

The correlation we observed between SH2 binding pattern and

activating RAS mutation (Fig. 2B) is also surprising, given that

RAS is expected to act downstream of tyrosine kinases (thus

Figure 6. SH2 domains correlated with MET activation. (A) SH2 domains correlated with MET phosphorylation (p,0.01, q,0.1). Bar plot of
SH2 signal for high and low MET phosphorylation. Mean and standard errors are shown. For this analysis ‘‘Low’’ includes both intermediate and low/
negative categories (Fig. 5). (B) Far-Western domain-specific bands correlated with MET phosphorylation. Colored boxes indicate statistical
significance in Mann-Whitney test for differences (q,0.1). (C) H1648 cells were exposed to control (DMSO), 1000 nM erlotinib (E), 1000 nM
PHA665752 (P), or combination (E+P) for 3 h and analyzed by immunoblotting. Lysates from untreated H820 cells served as control for p-MET. Anti-b-
actin was used to confirm equal loading. (D) Cell viability for H1648 cells exposed to 60 nM erlotinib (E), 300 nM PHA665752 (P), or combination
(E+P).
doi:10.1371/journal.pone.0013470.g006
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Figure 7. SH2 profiling of cells treated with erlotinib or dasatinib. Change in SH2 binding in presence of EGFR TKI (erlotinib) or SRC TKI (dasatinib)
for four lung cancer cell lines (H292, H358, H441 and HCC827). Cells were treated for 1 h with inhibitors prior to analysis. (A) The log2 fold change in SH2
binding upon erlotinib and dasatinib treatment (relative to untreated) as determined by rosette assay is shown for all probes, ranked in order of fold change
in response to erlotinib. Each cell line is represented in a separate panel. For each SH2 domain probe, values for changes upon erlotinib treatment are shown
as red bars, for dasatinib as blue bars. Colored arrows indicate position of SH2 domains for RAS activators (blue), PI3Ks (green), Crk family (red), and Nck family
(purple). (B) Bar graph of mean log2 fold change for indicated SH2 domain groups and cell lines treated with erlotinib (E) or dasatinib (D). (C) Dendrograms
obtained from hierarchical clustering of log2 fold changes (TKI-treated vs. untreated).Results for rosette assay are shown on top and far-Western blotting
below. See Suppl. Fig. S5A for heatmaps.
doi:10.1371/journal.pone.0013470.g007
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constitutive RAS activation should render cells independent of

pTyr-based signals). This result implies that SH2 profiling provides

useful information even for tumors not driven by tyrosine kinase

activation. Notably, of the three K-RAS mutant cells not included

in the major cluster of K-RAS mutants (Fig. 2B), H441 and H358

have recently been reported to have a more epithelial phenotype

[43], while A549 was shown to have a mixed epithelial-

mesenchymal phenotype [44]. Thus, SH2 profiles may also reflect

the epithelial phenotype in the context of K-RAS mutation. The

fact that most K-RAS mutant cells cluster together also implies a

common pattern of tyrosine phosphorylation in cells where RAS

activity is decoupled from RTK activation. Such a pattern could

be generated by feedback loops that normally function to

downregulate pTyr signaling following RAS activation. We note

that while overall SH2 binding is decreased in the mutant RAS

cluster compared to other cell lines (see cluster 3, Fig. 2B), in far-

Western blots the binding of the ubiquitin ligases CblA and CblB

to high-molecular weight phosphoproteins is increased in these

cells, consistent with Cbl-dependent downregulation of RTKs.

Guha and colleagues also observed decreased tyrosine phosphor-

ylation of several proteins in human bronchial epithelial cells

expressing mutant K-RAS [25].

The results presented here suggest that SH2 domain binding

sites could be used as biomarkers of EGFR TKI sensitivity. We

found 13 probes whose binding correlated with erlotinib

sensitivity. A number of these, including Grb2 and ShcA, are

from proteins predicted to promote downstream activation of the

RAS/MAPK pathway when bound to activated RTKs. Similar

correlations were seen for SH2 domains of PI3K and PLCc, two

other key pathways downstream of EGFR signaling. It is

particularly striking that binding sites for known RAS pathway

activators are associated both with activating EGFR mutations

and with erlotinib sensitivity. RAS activation has long been

associated with proliferative signals, and RAS itself is activated by

mutation in a large number of human cancers. By examining pTyr

signaling in an unbiased fashion on a global scale, our results

confirm the central importance of RAS signaling in lung cancer,

and suggest that particularly strong activation of RAS may be a

hallmark of cancers that are driven by EGF receptor mutation and

are sensitive to EGFR inhibitors (i.e. are ‘‘addicted’’ to EGFR

signaling). It will be important to determine how SH2 profiling

could add additional information beyond known predictors of

EGFR TKI response such as EGFR mutation status, gene

amplification, gene expression profiles, and autocrine signaling

[13,14,15,17,18,19,45]. In particular, developing predictors based

on multiple SH2 domain probes is likely to improve the

discriminating power of SH2 profiling, and is therefore a high

priority for future studies.

Importantly, SH2 domain profiling interrogates the entire

spectrum of tyrosine phosphorylation sites, thereby detecting

signaling driven by diverse tyrosine kinases in their native cellular

environment. Using this approach we were able to identify a

pattern of SH2 binding characteristic of cells driven both by

EGFR and MET that could require dual EGFR and MET

inhibition to block downstream signaling. In one example, we

showed that in H1648 cells, which cluster together with other cell

lines in which EGFR and MET signaling is co-activated,

downstream signaling and cell growth were synergistically

inhibited by erlotinib and PHA665752, a MET-specific TKI.

Thus, information provided by SH2 profiling may be useful for

guiding therapeutic decisions. Future studies will explore the

potential correlation of SH2 binding patterns with activation of

other RTKs implicated in lung cancer, such as IGFR, FGFR,

PDGFR, ALK, and EPH receptors.

SH2 profiling is highly complementary to other current

methods for analyzing global tyrosine phosphorylation patterns,

such as phosphospecific antibodies and MS [46,47]. Phosphospe-

cific antibodies (raised against specific tyrosine phosphorylated

sites) can be sensitive and specific, but have the disadvantage that

they require knowledge of the relevant phosphorylated sites, and

they are available for only a small fraction of known sites. Mass

spectrometry (with or without initial enrichment by pull-down or

immunoprecipitation using anti-pTyr antibodies) can be used to

identify specific phosphorylated sites in a sample [4,25], but has

the disadvantages that coverage and sensitivity are modest,

relatively large amounts of sample are required, and absolute

quantification of individual sites is difficult. By contrast, SH2

profiling is comprehensive, highly sensitive, and quantitative, but

has the disadvantage that the individual phosphoproteins respon-

sible for SH2 binding are not identified. Ultimately, the

combination of SH2 profiling with MS analysis of selected

samples should allow the development of specific and sensitive

molecular tests to discriminate tumor subtypes based on tyrosine

phosphorylation pattern. We note that three cell lines used in this

study (HCC827, H441, and H358) were also analyzed by Rikova

et al. using MS [4]. Their clustering results (based on MS) and ours

based on SH2 profiling agree that HCC827 and H441 are very

closely related by pTyr pattern; in the case of H358, clustering

based on MS and rosette suggest these cells are rather distantly

related to the other two lines, while clustering based on FW

blotting suggests a closer relationship.

Going forward, it will be important to demonstrate that primary

human lung cancer samples exhibit SH2 binding patterns similar

to those seen in lung cancer cell lines. Using the current rosette

assay, it is possible to profile the level of binding for virtually all

SH2 domains using less than 100 mg total protein. We and

colleagues have also developed a high-throughput multiplexed

SH2 profiling platform based on tagging of SH2 domains with

specific oligonucleotides [27]. Because a PCR amplification step

makes this assay extremely sensitive, it may provide the basis in the

future for standardized clinical SH2 profiling assays for molecular

diagnostics.

SH2 domain profiling of TKI-treated cells also provides a novel,

global approach to understand kinase inhibitor activity in vivo.

Comprehensive analysis of changes in tyrosine phosphorylation in

response to TKI is likely to highlight key targets of inhibitor action

and uncover differences in cellular responses to inhibitors.

Surprisingly, we found some tumor cells (H358 and H441) had

very similar pTyr responses to two distinct TKI (erlotinib and

dasatinib), despite the different spectrum of kinases inhibited by

these agents. In principle SH2 profiling could be used to compare

multiple TKI responses and to group kinase inhibitors according

to mechanism of action. This is analogous to the efforts of the

Connectivity Project, which uses gene expression as a way to

group chemical compounds with similar mechanism of action

[48]. Given the promiscuity of some inhibitors such as dasatinib,

this may be one way to assess the overall impact of inhibiting

multiple kinases in concert [38,39].

In conclusion, our results demonstrate that SH2 profiling can

recognize distinct patterns of EGFR signaling in lung cancer cells,

and more broadly provides a straightforward and comprehensive

approach to profile the global state of tyrosine phosphorylation

signaling in tumors. These results could inform therapeutic

decisions regarding TKI in lung cancer, and can provide a novel

basis for tumor classification complementary to existing methods.

This approach also provides new insights into the basic wiring of

tyrosine kinase signaling networks in tumor cells, and how those

networks are affected by TKI treatment.
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Materials and Methods

Cell Lines and Reagents
Human lung cancer cell lines H292, H358, H441, A549, H460,

H1703 and H1299 were obtained from ATCC (Manassas, VA).

HCC827 cells were provided by Dr. Jon Kurie (MD Anderson

Cancer Center), H1648, H2122, H226 and H157 cells were

provided by Dr. John Minna (UT Southwestern Medical Center),

H322 were provided by Dr. Paul Bunn (University of Colorado),

H23 cells were provided by Dr. Gerold Bepler (Moffitt Cancer

Center), and UK29 cells were provided by Dr. Penni Black

(University of Kentucky). All cell lines were maintained in RPMI-

1640 medium supplemented with 10% newborn calf serum (NCS)

from Sigma (St. Louis, MO). Erlotinib was provided by OSI

Pharmaceuticals (Melville, NY), dasatinib by Bristol Myers

Oncology (Princeton, NJ), and PHA665752 by Pfizer (San Diego,

CA) [36]. Stock solutions in 100% DMSO were diluted directly in

the media to indicated concentrations.

SH2 Profiling
SH2/PTB domain binding assays were performed as described

[28,49]. Briefly, lung cancer cell lines were lysed in KLB buffer

(150 mM NaCl, 25 mM Tris-HCl pH 7.4, 5 mM ethylene

diamine tetraacetic acid (EDTA), 1 mM phenyl methyl sulfonyl

fluoride (PMSF), 1% Triton X-100, 10% glycerol, 0.1% sodium

pyrophosphate, 10 mM b-glycerophosphate, 10 mM NaF,

5 mg/ml of Aprotinin (Sigma A6279, St. Louis MO), 50 mM

pervanadate). Precipitated proteins were resuspended in spotting

solution (180 mM Tris–HCl, pH 6.8, 30% glycerol, 6% sodium

dodecyl sulfate (SDS), 15% b-mercaptoethanol, and 0.03%

bromophenol blue) and briefly boiled. 0.1 ml lysate (400 ng total

protein) was spotted in arrays on nitrocellulose membranes and

incubated with purified GST-SH2 or -PTB domains (,100 nM)

for 2 h. Probe binding was detected by enhanced chemilumines-

cence (ECL) (PerkinElmer, Waltham MA) using HRP-labeled

anti-GST antibody (Sigma A7340) or GSH-glutathione conjugate

(Sigma G6400) and digitally captured (Kodak Image Station). The

binding assay was performed four times, including at least two

separate experiments, and average signal intensity for each spot

was quantified by densitometry (ImageJ v1.40).

Far-Western analysis for lung cancer cell lysates was performed

as described [50,51]. Briefly, proteins were separated by SDS-

PAGE using NuPAGE precast gels (Invitrogen, Grand City NY)

and transferred to nitrocellulose membranes. Replica membranes

were incubated with GST-SH2 domains for 2 h, and bands were

detected by ECL and digitally captured. Blots were stripped and

reprobed several times with additional SH2 domains and anti-

pTyr antibody (PY100, Cell Signaling, Beverly MA). To quantify

bands on multiple blots derived from different gels, SH2 blot

images were aligned in reference to corresponding anti-pTyr blots

using Photoshop (Adobe). The aligned blot images from two

independent experiments were quantified using a custom-made

plug-in written for ImageJ densitometry (H. Zhang, J. Maddox,

and D.G. Shin, University of Connecticut).

Protein Expression Analysis
Cells were washed with ice-cold PBS and extracted with chilled

lysis buffer (10 mM Tris, pH 8.0, 60 mM KCl, 1 mM EDTA,

1 mM DTT, 0.5% NP-40, 10 mM Na3VO4, 50 mM NaF, 1 mM

PMSF, 1 mg/ml aprotinin, 1 mg/ml leupeptin, 1 mg/ml pepstatin).

Total cellular proteins were separated on SDS-PAGE, transferred

to nitrocellulose membranes, and probed with rabbit polyclonal

antibodies specific for pTyr 1344/45 MET, pThr202/Tyr204-

p44/42 ERK, and pSer473 AKT (Cell Signaling) and b-actin

(Sigma). Detection was by horseradish-peroxidase conjugated

secondary antibodies and ECL (Amersham, Piscataway, NJ).

Drug Sensitivity Assays
Cell viability assays (MTT) were performed using the Cell

Proliferation Kit (Roche, Indianapolis, IN) following the manu-

facturer’s recommendations. Cells were plated at 2–56103 cells

per well in 96-well plates, incubated overnight, exposed to a serial

dilution of dasatinb or erlotinib in complete media with 5%

newborn calf serum, and viability assessed after 5 d. The IC50 was

calculated by non-linear regression analyses using MATLAB

scripts that pair data points with sigmoidal curves that predict a

signal response based on a four-parameter fit. Data presented

represent three separate experiments with 8 data points separating

each dose per condition. Data are expressed as mean 6 SD.

EGFR and K-RAS Genotyping
Genomic DNA extraction from each NSCLC cultured cell lines

was performed using DNeasy Kit (Qiagen, Düsseldorf). Sequencing

of exon 19, 20, and 21 of EGFR was performed as previously

described [15]. For K-RAS, the primers were K-RAS exon 1

(forward), 59 TTAACCTTATGTGTGACATGTTCTAA-39 and

(reverse) 59-AGAATGGTCCTGCACCAGTAA-39, which gener-

ates a fragment of 225 bp, and K-RAS exon 2 (forward), 59-

TCAAGTCCTTTGCCCATTTT-39 and (reverse) 59-TGCATGG-

CATTAGCAAAGAC-39, which generates a fragment of 374 bp.

Network Analysis
SH2 domain binding data were input into PPI Spider (http://

mips.helmholtz-muenchen.de/proj/ppispider/). Analyses were

run with 100 random networks and only proteins that directly

connect to each other through no more than one edge were

allowed for visualization. Networks were subsequently input into

Cytoscape for visualization.

Clustering Analysis
For rosette data, hierarchical clustering was performed on the

70 probes (after median centering) using full linkage and

uncentered correlation using Cluster 3.0 and Java Treeview. For

far-Western data, 720 domain-specific bands (20 bands635 SH2

domains) were filtered to retain those with a standard deviation

.5, and at least 11 of 22 cell lines having intensity above 5.0 for a

specific domain-specific band. Hierarchical clustering was per-

formed on the remaining 188 bands using full linkage and

uncentered correlation using Cluster 3.0 and visualized using Java

Treeview. No normalization was used in clustering, but for

visualization purposes, the intensities were median-centered so

that green represents values below the median probe value and red

above. Further details on rosette and far-western data analysis are

provided in the Suppl. Methods S1 and Suppl. Figures S6 and S7.

Statistical Analysis
Details are described in Suppl. Methods S1. Briefly, hierarchical

clustering was performed using Cluster 3.0 and Java Treeview. To

identify probability of a clustering pattern occurring by chance,

permutation tests were performed. Domains were identified as

statistically significant with respect to dichotomous characteristics

using a Mann-Whitney test applied to each domain. To correct for

multiple testing problems, false discovery rates (q values) were

calculated using the Q Value package in Bioconductor [52] and a

10% FDR (q#0.1) was considered significant. Bar graphs showing

differences between groups were displayed using mean and

standard errors. Pearson’s correlation coefficient was computed
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for each domain related to erlotinib sensitivity. To characterize

changes with treatment, differences in signal were quantified as the

log2 fold change (log2 (treated/untreated)) and hierarchical

clustering was performed using these values.

Supporting Information

Supplemental Methods S1 Supplemental methods and

references.

Found at: doi:10.1371/journal.pone.0013470.s001 (0.05 MB

DOC)

Table S1 Characteristics of cell lines used in this study. Adeno

= adenocarcinoma; Squamous = squamous cell carcinoma; BAC

= bronchiolioalveolar carcinoma; Large = large cell carcinoma;

NOS = not otherwise specified; WT = wildtype.

Found at: doi:10.1371/journal.pone.0013470.s002 (0.06 MB

DOC)

Table S2 Processed SH2 binding data. Sheet 1: raw rosette data

used for the analysis. The matrix consists of 70 (SH2 domain

probes)622 (lung cancer cell lines). 26 domains with lower signal

were removed based on statistical analysis (Figure S2; see also

supplementary methods, below). Sheet 2: far-Western data used

for the analysis. The matrix consists of 720 (SH2 domain

probe_bin number) 622 (lung cancer cell lines).

Found at: doi:10.1371/journal.pone.0013470.s003 (0.36 MB

XLS)

Table S3 List of probes used in this study. 96 far-Western probes

consist of 94 GST-SH2 domains, a GST-PTB domain (ShcA), and

GST alone (negative control). Probe name, protein name, Entrez

GeneID, source organism, SH2 insert amino acid region, and

structure of construct are shown.

Found at: doi:10.1371/journal.pone.0013470.s004 (0.02 MB

XLS)

Figure S1 SH2 rosette assays. The SH2 rosette assay (high

throughput dot blotting) was performed as described [1,2]. Lung

cancer and control cell lysates were spotted in duplicate on

nitrocellulose membrane as indicated (top) in register with wells of

a 96-well chamber plate. Each well was separately incubated with

GST-SH2/PTB domain, GST control, anti-phosphotyrosine

antibody, or anti-actin antibody (probe list is on the right).

Control = negative control (phosphatase-treated lysate); p-control

= positive control (mixed lysates from pervanadate-treated cell

lines); see [2] for details. Two independent experiments were

performed in duplicate, providing four quantifiable data points for

each probe/sample pair. Array images were background-subtract-

ed and the integrated density of each spot was measured using

ImageJ densitometry (v1.40).

Found at: doi:10.1371/journal.pone.0013470.s005 (5.97 MB TIF)

Figure S2 Correlation of Csk SH2 binding and EGFR mutation

status. Top: Signal intensity from far-Western analysis using CSK

SH2 probe was quantified in multiple blots. Black bars represent

average of two independent blots (Expt. 1; these data are provided

in Suppl. Table S2 and were used for clustering analysis). White

bars represent data from an independent blot performed at

another time with a subset of cell lines. EGFR mutation status of

cell lines (mut = mutant, wt = wild-type) is indicated below.

Bottom: Average CSK signal intensity for mutant vs. wt cell lines.

Differences are statistically significant by unpaired T test as

indicated by P values.

Found at: doi:10.1371/journal.pone.0013470.s006 (1.64 MB TIF)

Figure S3 MET and EGFR family activation. (A) Left: Lysates

from lung cancer cell lines were separated by SDS-PAGE,

transferred to membranes, and blotted with phosphospecific

anti-MET antibody (recognizing pY1334/1335). Signal was

detected by chemiluminescence and the pMET band (arrow)

was quantified using ImageJ densitometry. Representative blot

(upper) and quantified result from multiple experiments (lower) are

shown. Right: Similarly, protein bands of approximately 194 kDa

on anti-pTyr blots (at molecular weight of EGFR family members,

arrow) were quantified. Values are given as percent of maximum

signal. (B) Cell lines indicated were treated with vehicle (DMSO),

or with erlotinib (E1000) or PHA665752 (PHA1000) at 1 mM for

24 h to inhibit EGFR or MET, respectively. Immunoblots were

probed with different antibodies or p85a SH2 domain as indicated

on right. Tyrosine phosphorylation and binding of p85A SH2

domain to proteins in the MW194 bin was strongly inhibited by

erlotinib in erlotinib-sensitive cells (red arrows), while tyrosine

phosphorylation and binding of p85A SH2 domain to proteins in

the MW148 bin was strongly inhibited by PHA665752 (blue

arrows). (C) HCC827 cell lysates were immunoprecipitated twice

with antibody to MET (top) or EGFR (bottom). Lysate before

immunoprecipitation (PreIP), first immunoprecipitate (P1), second

immunoprecipitate (P2), and cleared lysate after immunoprecip-

itation (postIP) were immunoblotted with anti-MET or anti-EGFR

antibodies or probed with p85a SH2 domain as indicated.

Found at: doi:10.1371/journal.pone.0013470.s007 (9.02 MB TIF)

Figure S4 Changes in SH2 profiles following TKI treatment. (A)

Median fold change (FC) and the median absolute deviation

(MAD) for all SH2 domains whose binding significantly changed

(p, = 0.125) by rosette assay after treatment with EGFR TKI. (B)

Heat maps of far-Western binding data for each cell line treated

with each tyrosine kinase inhibitor. Green indicates reduction in

SH2 domain binding while red indicates increase in SH2 domain

binding after TKI treatment. Each SH2 domain used for profiling

is listed in columns and molecular weight bin is listed in rows.

Found at: doi:10.1371/journal.pone.0013470.s008 (9.80 MB TIF)

Figure S5 Correlation of changes in SH2 profiles following TKI

treatment. (A) Heat map of log2 fold changes (TKI-treated vs.

untreated) from hierarchical clustering. Results for rosette are

shown on left and far-Western blotting on right. (B) Pearson’s

correlation matrix shows overall similarity in fold changes between

different cell lines and different treatments (compared to untreated

cells; D, dasatinib-treated; E, erlotinib treated) for both the rosette

and far-Western assays.

Found at: doi:10.1371/journal.pone.0013470.s009 (7.04 MB TIF)

Figure S6 Preprocessing of the rosette data (referred to in

Supplemental Methods). (A) Examining potential batch effects in

the rosette assay. (B) Coefficient of Variation (CV) expressed as

mean of the CV calculated for each cell line. (C) Histogram of

signal level for the Abl domain. The histogram suggests intensities

are not normally distributed. (D) Histogram of p values from the

Shapiro test for normality. Most probes do not appear to be

normally distributed. (E) Histograms of normally distributed SH2

domains. Histogram of Vav3 (left) and Rin1 (right) signal, with

negative (green) and positive (red) controls indicated. (F)

Histogram of differences in positive and negative controls across

probes. 13 domains have differences ,0 (white bar). (G)

Histogram of domains with small differences between the positive

and negative controls. Many are near 0. (H) Multidimensional

Scaling (MDS) scatter plots of samples using (left) all domains,

(right) filtered domains. Positive control (red) and negative control

(green) are indicated. Similarity of samples is represented as

pairwise distances. There does not appear to be any significant

change in the relationship between samples as a result of filtering

"noisy" probes.
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Found at: doi:10.1371/journal.pone.0013470.s010 (6.62 MB TIF)

Figure S7 Processing of far-Western blotting data (referred to in

Supplemental Methods). (A) Alignment and quantification of

multiple far-Western blotting results. Blot images from same gel

were aligned using a frame marker of reference shots taken under

normal white light during image scanning (Frame alignment). The

aligned images were linked (Aligned lock) and further aligned with

images from different gels using corresponding anti-phosphotyr-

osine Western blots. (B) Far-Western images were captured and

partitioned into 20 grid elements (bins) per lane. Rows were

numbered from the largest molecular weight (256–291 kDa) to

smallest (,22 kDa). (C) Mapping of far-Western grid row and

molecular weight. (D) Correlation between far-Western molecular

weight bins across cell lines, between replicates. (E) Boxplot of far-

Western signal for bins with correlation coefficients less than 0.5

between replicates. In most cases poor correlation is due to low

signal.

Found at: doi:10.1371/journal.pone.0013470.s011 (9.67 MB TIF)

Movie S1 SH2 far-Western blot results. Images of far-Western

blotting results are compiled as a movie. SH2 domain binding

experiments were performed on lysates of untreated (first half of

the movie) and TKI-treated (second half of the movie) lung cancer

cell lines. After correction for blot-to-blot variation (as shown in

Figure S3), replica blots from two separate experiments were used

for quantification of 20 bins per gel lane. Red grid lines indicate

the location of bins used for quantification; pink line on top

indicates EGFR-mutated cells. Approximate molecular size (in

kDa) indicated in blue for each bin.

Found at: doi:10.1371/journal.pone.0013470.s012 (14.14 MB

MOV)
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