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ABSTRACT
Objectives  To explore the efficacy of machine learning 
(ML) techniques in predicting under-five mortality (U5M) in 
low-income and middle-income countries (LMICs) and to 
identify significant predictors of U5M.
Design  This is a cross-sectional, proof-of-concept study.
Settings and participants  We analysed data from the 
Demographic and Health Survey. The data were drawn 
from 34 LMICs, comprising a total of n=1 520 018 children 
drawn from 956 995 unique households.
Primary and secondary outcome measures  The 
primary outcome measure was U5M; secondary outcome 
was comparing the efficacy of deep learning algorithms: 
deep neural network (DNN); convolution neural network 
(CNN); hybrid CNN-DNN with logistic regression (LR) for 
the prediction of child’s survival.
Results  We found that duration of breast feeding, number 
of antenatal visits, household wealth index, postnatal care 
and the level of maternal education are some of the most 
important predictors of U5M. We found that deep learning 
techniques are superior to LR for the classification of 
child survival: LR sensitivity=0.47, specificity=0.53; DNN 
sensitivity=0.69, specificity=0.83; CNN sensitivity=0.68, 
specificity=0.83; CNN-DNN sensitivity=0.71, 
specificity=0.83.
Conclusion  Our findings provide an understanding of 
determinants of U5M in LMICs. It also demonstrates that 
deep learning models are more efficacious than traditional 
analytical approach.

INTRODUCTION
Recent global estimates showed that 
5.3 million under-five deaths occurred in 
2018; this is equivalent to 15 000 deaths every 
day and 39 deaths per 1000 live births.1 A 
majority of the children who die before their 
fifth birthday live in sub-Saharan Africa and 
Southeast Asia; most of these deaths result 
from preventable and treatable causes.1 2 
Although these estimates represent a signif-
icant improvement in under-five mortality 
(U5M) levels when compared with the levels 
in the early 1990s, ‘preventable death of one 
child is still too many’.1 2

High levels of U5M in low-income and 
middle-income countries (LMICs) is usually 
a syndromic feature of a weak health system,3 
and U5MR is a key barometer of the state of 
a nation’s health system and an important 
impact measure that is reliant on health 
system input such as health financing, health 
workforce and infrastructure.3 4 These inputs 
in turn determine health service access, read-
iness, quality and safety and consequently 
influences coverage of interventions such 
as antenatal care coverage, postnatal care, 
demand for family planning satisfied, skilled 
birth attendance, care for childhood illnesses, 
nutritional supplementation, etc.4 5

Studies have shown that improving child 
survival requires engaging intricately with a 
host of child health determinants, including 
biological, environmental and socioeconomic 
factors such as level of maternal education, 
household income, environmental sanita-
tion and hygiene.5–7 The framework of distal 
and proximate social, environmental and 
biological determinants was first described 
by Mosley and Chen.5 Unfortunately, many 
LMICs are constrained by limited finances 
and limited health budgets, and are unable 
to intervene on all of the determinants of 
child health at the same time.3 It is therefore 
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►► The models were tested using a very large data 
sample, drawn from over 1 million households.

►► The survey used a cluster sampling approach and is 
representative of each country included.

►► Socioeconomic, political and cultural differences 
between the included countries may limit general-
isability of the results.

►► The cross-sectional design of the study means we 
can only infer association and not causality.

►► Our study does not reflect subnational trends and 
patterns.
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increasingly important to identify the most important 
determinants to be prioritised and to determine the most 
pressing socioeconomic issues that can serve as a starting 
point for government and policy makers to focus on 
intervention strategy.

Furthermore, intervention measures need to be 
equity-oriented in order to be effective.8 Hence, disag-
gregated household level monitoring of coverage and 
impact indicators are crucial for informing policies and 
programmatic interventions in the sustainable develop-
ment goal (SDG) era.9 It is important to understand the 
status of every child as against simply exploring global 
trends, in order to ‘leave no one behind’ and to ‘reach 
the furthest behind first’.10 In light of the SDG pledge, 
monitoring changes at household or community level 
may require new methodological approaches in engaging 
with the ‘big data’, which continues to be generated 
through ongoing household surveys such as the Demo-
graphic Health Survey (DHS) and Multiple Indicator 
Cluster Survey.11 12 An expansion of traditional analytical 
approach may be pertinent and key to effectively monitor 
health intervention coverage and impact. Machine 
learning (ML) techniques may represent a novel analyt-
ical approach to unravel previously unseen trends; these 
techniques expand on existing statistical approaches and 
use methods that are not based on a priori assumptions 
about the distribution of the data.13

Artificial intelligence (AI) described ‘as a scien-
tific discipline rooted in mathematics, philosophy and 
computer science attempts to develop systems with prop-
erties of intelligence’.13 ML is a subdiscipline of AI, ‘where 
computer programs learn to solve new problems for which 
they weren’t explicitly programmed, by learning associa-
tions and patterns from example data’.13 ML deploys a 
broader set of statistical models than those traditionally 
used in medicine or public health. Example of such being 
deep learning models.13 AI and ML techniques broaden 
existing statistical models and offer additional tool sets to 
achieve public health milestones that may not have been 
previously feasible. For example, ML has been used for 
real-time surveillance of disease outbreak through social 
media data mining,14 AI have been used in large-scale 
evidence synthesis to guide health promotion and health 
policy.15 It is important to state that although AI offers 
new possibilities for targeted and personalised public 
health practice, its application must still be guided by 
social and structural determinants of health; this has also 
been highlighted by other AI researchers.16

In a report recently released by the United States 
Agency for International Development (USAID) centre 
for innovation and impact, on the use of AI in global 
health, AI-enabled population health was identified as 
one of AI use cases that could have the greatest impact 
on improving health quality, cost and access in LMICs.17

AI-enabled population health encompasses public 
health surveillance and prediction, population risk 
management, population health intervention selection 
and targeting.17 In this current study, we explored the 

efficacy of deep learning as a technique for population 
health surveillance and intervention targeting. Deep 
learning ‘discovers intricate structure in large data sets 
by using backpropagation algorithm to indicate how a 
machine should change its internal parameter used to 
compute representation in each layer from the repre-
sentation in the previous layer’.18 Deep learning algo-
rithms have shown excellent performance in genomics, 
proteomics, drug discovery, speech recognition, visual 
recognition, object detection and several other domains.18

There have been numerous empirical studies on the 
various applications of ML in hospital settings for prog-
nostication,19 20 triage21 and prediction of mortality in 
the hospital setting.22 However, application of ML is yet 
to be demonstrated in population health studies, where 
it may represent a potential transformative tool.13 The 
objective of our study is to fill the gap on application of 
ML in population health studies, and other previously 
highlighted gaps. One of the previously highlighted gaps 
concerns the need to identify the most important deter-
minants of U5MR. To explore these determinants, we 
employed a data-driven approach by using the random 
forest algorithm for feature selection, rather than using 
the traditional hierarchical approach for multivariate 
analysis, which tends to be highly user-driven and usually 
involving the development of conceptual frameworks that 
prejudges the relevance of a limited set of determinants 
(independent variables).23 Random forest is an efficient 
classification and regression algorithm that combines 
several randomised decision trees and aggregates their 
predictions. It is especially useful when the number of 
variables is larger than the number of observations.24

The random forest approach allows an unlimited 
number of variables or determinants to be incorpo-
rated into the model. The algorithm automatically tests 
several hypothesis and selects features that best predicts 
the outcome, based on information gained from each 
variable.20

Another gap is the need for new ways to gain insights 
and to unravel previously unseen trends in the predic-
tion of U5M from disaggregated household level data. 
To fill this gap, we also compared the efficacy of deep 
learning algorithms: deep neural network (DNN); convo-
lution neural network (CNN); hybrid CNN-DNN with 
logistic regression (LR) for classifying child survival, and 
for predicting age of death. We hypothesise that deep 
learning methods will outperform traditional methods 
such as LR in the prediction of U5M.

Finally, in this work, we make recommendations on 
ML implementation, and the new regulatory and ethical 
considerations for the use of novel ML techniques in 
public health.25

METHODS
Data source and analytical tools
We conducted an analysis on DHS data from 34 LMICs. 
The DHS is a nationally representative household survey 
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developed by the USAID in the 1980s.26 The survey 
provides data on fertility, family planning, maternal and 
child health, gender, HIV/AIDS, malaria and nutrition.27 
In total, over 350 surveys have been carried out in over 90 
countries.26 The survey uses a two-stage cluster sampling 
design, further details about the survey and its design are 
published elsewhere.27 Combined multicountry data for 
this study were obtained from the IPUMS-DHS portal.28 
Combined DHS data were available for a total of 34 LMICs 
on the IPUMS-DHS database. We used all available data 
in these countries from 1987 to 2017 (see online supple-
mentary table 1) . Permission to use data for all included 
countries was granted by the DHS programme. Analysis 
was conducted using Python software V.3.7. The program-
ming codes used for the various analysis are accessible on 
Github using the following link: https://​github.​com/​
drulna/​u5mr_​predict

Patient and public involvement
There are no patients involved in this study.

Data preprocessing
Any real-world dataset needs preprocessing to convert it 
into a representation that can be used to train a model. 
This can heavily affect the model’s performance. This 
dataset had several irrelevant features, such as IPUMS 
identifiers created to merge multicountry data. We 
excluded 14 such features and included 41 features in 
the final model. Like many census data, the DHS data 
often contain variables with missing observations. All vari-
ables except place of residence (rural/urban) had some 
level of missingness which range from 5% to 60% of the 
observation in certain cases, we removed all variables on 
anthropometric measure due to significant missingness. 
We performed data preprocessing using the forward-fill 
approach to replace missing data. There exist multiple 
strategies that can be deployed to handle missing values,29 
we tested other approaches and tested the models accord-
ingly, only the forward-fill approach was found to provide 
reproducible and plausible outcomes . ‘Forward Fill’ 
strategy involves replacing every missing value with the 
next real values for each column. This clean and prepro-
cessed data were used for the rest of the analysis.

Variables
Outcome variable
The outcome variable is the risk of death before the age 
of 5 years, measured as the duration of survival in months 
from birth.

Independent variables (model features)
The determinants included in the model can be broadly 
classified into maternal-level determinants, house-
hold socioeconomic characteristics and child-level 
determinants.

Maternal factors
These encompasses maternal behavioural and determi-
nants within the reproductive care continuum, which 

includes duration of breast feeding, number of ante-
natal visits when the child was in utero, highest level of 
maternal education, administration of tetanus injection 
during pregnancy, provision of prenatal care by a skilled 
provider, delivery care provider, postpartum health 
check, unmet need for family planning, prenatal care, 
pregnancy wanted or not wanted.

Household socioeconomic factors
The household factors included are the household 
wealth index, the geographical location of the household 
(urban or rural) and who has final say of the woman’s 
health within the household.

Child-level factors
These include child’s postnatal check, sex of the child, 
oral polio vaccination, measles vaccination, diphtheria, 
pertussis and tetanus vaccination, BCG vaccination, age 
of the child and care for childhood illnesses such as diar-
rhoea and suspected symptoms of pneumonia. Survey-
specific definition of all included determinants are 
published elsewhere.28

Feature selection
We use random forest to check feature importance with 
respect to its predictive power. figure 1 shows the feature 
importance (red bar) and variance of each tree in random 
forest (black vertical line). It can be observed that ‘dura-
tion of breast feeding’ has the most importance to predict 
a child’s death. However, there are some features that 
are of limited importance. We perform feature selection 

Figure 1  Architecture of the deep neural network (DNN)-
convolution neural network (CNN) ensemble model. FC, fully 
connected.

https://dx.doi.org/10.1136/bmjopen-2019-034524
https://dx.doi.org/10.1136/bmjopen-2019-034524
https://github.com/drulna/u5mr_predict
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4 Adegbosin AE, et al. BMJ Open 2020;10:e034524. doi:10.1136/bmjopen-2019-034524

Open access�

based on this information. We drop all features whose 
importance are <0.001, because we found that the accu-
racy of the classifier does not improve beyond this level, 
and adding the additional attributes only creates unnec-
essary additional computational overhead. In total, 29 
features fell within our cut-off for feature importance and 
included in the final model. For comparing the utility 
of feature selection, we perform two experiments. One 
without feature selection (on all original 41 features) and 
one with feature selection (on selected 29 features).

Model selection
We selected multivariate LR as an example of traditional 
model.20 Three deep learning techniques (DNN, CNN 
and DNN-CNN) were selected as modern ML approaches. 
For all the four models, we pose this problem as a multi-
class problem, such that each value in the label is assigned 
an integer and then we binarize the output (ie, one-hot 
encoding). All categorical attributes are also converted 
to numerical, that is, dummy variables, by mapping each 
unique value to a number. After careful consideration, we 
concluded that the best ratio for training is 75% of the 
data, while the remaining 25% of the data are reserved for 
testing purposes. This choice is in line with literature and 
close to 80/20, which is quite a commonly used training/
testing ratio, often referred to as the Pareto principle. 
We compare the performance of LR as a representative 
of traditional model, with three deep learning methods: 
DNN, CNN and hybrid CNN-DNN.

Model architecture
Deep neural networks
DNNs are a special kind of neural network with multiple 
hidden layers and usually hundreds of units in hidden 
layers. Each neuron of one layer is connected to every 
neuron of subsequent layer, also called fully connected 
(FC) layers. For each layer in DNN, a weight matrix is 
learnt. DNNs act as blackbox and can learn the data 
representation automatically with backpropagation of the 
error at final layer. A softmax layer is usually used to get 
final prediction for the class label.

Convolutional neural networks
CNN is a specific deep learning architecture that learns 
a filter instead of weight matrix. This filter is used to 
perform convolution with input data to get a feature map. 
This feature map can then be forwarded to a final softmax 
layer for prediction. A key advantage of using CNN over 
DNN is that it requires fewer parameters and less itera-
tions to converge as only last layer is FC.

In our presentation, we give results for DNN, CNN and 
a hybrid of DNN and CNN. We show that the later gives 
the most optimal results, leveraging benefits of the two 
worlds.

Hybrid DNN-CNN ensemble model
In this model, the input is forwarded to two streams, where 
one represents DNN while the other CNN. As our input 
is one dimensional (1D), we use 1D CNN. With regard to 
DNN stream, the input is forwarded to an FC layer with 
100 units. For non-linearity, the activation function ReLU 
is used which is defined as ‍max

(
0, x

)
‍. This is followed by 

a batch normalisation (BN) and dropout (DO) layer to 
avoid feature co-adaptation. Then a second FC layer with 
50 units is used to squash the information, which is again 
followed by BN and DO layers. The output of this layer 
is forwarded for concatenation with the output of CNN 
stream (figure 1).

Regarding the CNN stream, the input is forwarded 
to a 1D CNN layer with 128 filters and kernel/filter 
size of 2, with ReLU non-linear activations. The output 
is followed by a maxpooling to drop low information 
activations. This is followed by a BN and DO layer. The 
information is squashed into an FC layer with 50 units, 
which is again followed by BN and DO. Finally, the 
output is forwarded for concatenation with the output 
of DNN stream.

The combined features of both streams are then 
forwarded to a single FC layer with softmax activation, 
which results in class probabilities. The class label is 
assigned based on maximum probability. The detailed 
diagram of the architecture is shown as figure 1.

To optimise the hyperparameters such as optimizer, 
DO rate and learning rate, we used grid search. The avail-
able choices for hyperparameters and the selected value 
are given in table 1. To stop the training, we employed 
early stopping strategy where the training was stopped if 
the validation accuracy did not improve for 20 epochs. A 
checkpoint was created at the epoch where the validation 
accuracy showed improvement as compared with previous 
checkpoint. The choice of number of layers, number of 
neurons in each layer and number of filters in CNN was 
made empirically.

Model evaluation
We evaluated the performance of each model using a 
receiver operating characteristic (ROC) plot, we also 
derived the weighted precision, sensitivity (also known 
as recall), specificity, f1-score and area under the curve 

Table 1  Hyperparameters choice and selected values through grid search

Hyperparemeter Available choice Selected choice

Optimizer Adam, Adadelta, RMSprop Adam

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5 0.2

Learning rate 0.002, 0.004, 0.006 0.004
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(AUC) for each model. The formula for calculating the 
performance metrics are as follows:

Precision = ‍
True Positives

True Positives+False Positives ‍ ; F1-score = 

‍2 × precision × recall
precision +recall , where recall = True Positives

True Positives+False Negatives ‍ ; 

Specificity =‍
True Negatives

True Negatives + False Positives ‍
The models were evaluated before and after feature 

selection. Analysis was initially conducted using all prese-
lected variables. We thereafter optimised the various 
models based on empirical results from the random forest 
analysis. As this is a multiclass problem, the ROC plots 
and performance metrics are all based on micro-averages.

RESULTS
Characteristics of the study population
A total population size of (n=1, 520 018) children drawn 
from 956 995 unique households were included in 
the study, the sample was drawn across 34 LMICs. The 
sample size drawn from each of the included countries 
is presented in online supplementary table 1. The mean 
age of the total children population is 1.89 (±1.40). 
Majority (n=1 100 211; 72.7 %) resides in rural areas. 
Just under half (n=636 882; 45.2%) were in the lowest 
two wealth quintile (Q1 and Q2). Majority (n=1 100 262; 
73.2%) were uneducated or had only primary educa-
tion, majority received some form of postnatal check, 
delivery care tetanus injection before birth and approx-
imately two-third breast fed their children for >6 months 
(table 2). A total of n=111 907 (7.3%) under-five deaths 
were recorded survey-wide across all 34 countries. Nearly 
half, 48.9% (n=54 825) of these deaths were neonatal 
death.

Feature importance
Overall, key determinants of U5MR include maternal 
factors such as duration of breast feeding, number of 
antenatal visits when the child was in utero, provision 
of maternal postnatal care by a skilled provider, highest 
level of maternal education, administration of tetanus 
injection during pregnancy, prenatal care provision by 
a skilled provider. Significant household socioeconomic 
factors include household wealth index and geograph-
ical location of the household. Time to child’s postnatal 
check was found to be the most significant child level 
determinant (figure 2).

Model comparisons (before feature selection)
Comparison of the performance of the models before 
feature selection reveals that hybrid of CNN-DNN 
performs the best in terms of all metrics (sensitivity=0.68, 
specificity=0.83), while LR performs the worst (sensi-
tivity=0.47, specificity=0.53) (table 3).

Figure  3 shows the ROC curves for all the classifiers. 
It shows that hybrid CNN-DNN model outperforms all 
other models.

Model comparisons (after feature selection)
We found that feature selection does not improve the 
performance of LR. However, for all deep learning-based 

models, feature selection results in performance gain. 
The most performance gain is shown by CNN-DNN 
(sensitivity=0.71, specificity=0.83). CNN-DNN model 
performs the best out of all classifiers in both settings, 
that is, before feature selection and after feature selection 
(table 4).

In figure 4, we present ROC curves for all the classifiers. 
It shows that hybrid CNN-DNN model remains the top 
performer of all the models.

DISCUSSION
A number of maternal-level, child-level and socioeco-
nomic indicators were found to influence U5M. Duration 

Table 2  Descriptive analysis of the study population

Variables n (%) M (SD)

 � Age of child (years) 1.89 (1.40)

 � Gender

 � Male 775 957 (51.0)

 � Female 744 061 (49.0)

 � Residence

 � Urban 413 705 (27.3)

 � Rural 1 100 211 (72.7)

 � Wealth quintile

 � Poorest 334 135 (23.7)

 � Poorer 302 747 (21.5)

 � Middle 283 295 (20.9)

 � Richer 260 049 (18.4)

 � Richest 231 177 (16.4)

 � Maternal education level

 � No education 670 115 (44.6)

 � Primary 430 147 (28.6)

 � Secondary 342 889 (22.8)

 � Higher 60 517 (4)

 � Postnatal check received

 � Yes 283 683 (52.6)

 � No 255 752 (47.4)

 � Prenatal care received

 � Yes 839 821 (79)

 � No 223 913 (21)

 � Delivery care received

 � Yes 1 393 930 (95.8)

 � No 60 774 (4.2)

 � Tetanus injection before birth

 � Yes 387 999 (75.5)

 � No 125 889 (24.5)

 � Duration of breast feeding

 � <6 months 517 671 (36.4)

 � 6 months or more 903 170 (63.6)

N=1 520 018.

https://dx.doi.org/10.1136/bmjopen-2019-034524
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of breast feeding was found to be a significant maternal-
level determinant. Previous studies corroborate our find-
ings, it has been shown that children breast fed for a 
longer duration have lower infectious disease morbidity 
and mortality, and better chance of survival than those 
who are breast fed for shorter periods, or not breast 
fed at all.30 Multiple studies have also shown that early 
initiation of breast feeding, and exclusive breast feeding 
reduces both neonatal and early infant mortality.30 31 In 
addition to breast feeding, several other factors within the 
continuum of essential obstetric care, such as antenatal 
care visits, postnatal care, delivery care and maternal 
tetanus immunisation were found to be significant 
predictors of U5M. These may partly be explained by our 
finding, which showed that nearly half of the mortality 
occurred during early neonatal life, which is in line with 
other previous studies.32 33 Several previous studies have 
shown that provision of essential obstetric care is vital for 
survival during the neonatal period.34 35 In addition, we 
found that the household wealth index was a slightly more 
important determinant compared with maternal level of 
education. This finding however contradicts the work 
of Fuchs et al, where they argued that mother’s educa-
tion is the fundamental determinant of child mortality 
and is relatively more important than income level. 
They argued that education impacts the child’s health 
through better maternal health, increased health-specific 

knowledge, avoidance of traditional, harmful behaviours, 
greater economic resource as a consequence of educa-
tion and general female empowerment.36 They however 
highlighted that other social scientists have often consid-
ered education and income as generally highly correlated 
and tend to be regarded as interchangeable indicators of 
socioeconomic status.36

The timing of the child’s postnatal check and the 
gender of the child were also found to be predictive of 
child’s survival. Postnatal check within 24 hours of birth 
have been shown to be crucial in identifying, managing 
or referring complications and ultimately in preventing 
child mortality.35

Our findings regarding the superiority of ML over 
traditional approaches such as LR in predictive analysis 
are also in line with findings elsewhere.20 37

Figure 2  Feature importance using random forest.

Table 3  Performance comparison (without feature 
selection)

Performance metrics LR DNN CNN
CNN-
DNN

Sensitivity 0.47 0.67 0.66 0.68

Specificity 0.53 0.84 0.83 0.83

Precision 0.35 0.58 0.57 0.62

F1-score 0.38 0.62 0.60 0.63

AUC 0.93 0.97 0.97 0.97

AUC, area under the curve; CNN, convolution neural network; 
DNN, deep neural network; LR, logistic regression.

Figure 3  Micro-average receiver operating characteristic 
(ROC) curve before feature selection. CNN, convolution 
neural network; DNN, deep neural network; LR, logistic 
regression.

Table 4  Metrics comparison after feature selection

Performance metrics LR DNN CNN
CNN-
DNN

Sensitivity 0.47 0.69 0.68 0.71

Specificity 0.53 0.83 0.83 0.83

Precision 0.35 0.62 0.62 0.67

F1-score 0.38 0.63 0.62 0.67

AUC 0.93 0.97 0.97 0.97

AUC, area under the curve; CNN, convolution neural network; 
DNN, deep neural network; LR, logistic regression.
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This study however has some limitations. First, this is 
proof-of-concept cross-sectional study; hence, we can 
only draw inference on associations, and not on causality. 
Second, we did not measure change over time. Future 
studies should consider incorporating temporal data 
points, to draw inference on changes over time, and 
possibly causality. Finally, we did not explore individual 
country, regional and subgroup level variations and 
cannot conclude that the degree of association is the 
same across different countries and subgroups, due to 
differences in socioeconomic, geographical, cultural and 
political realities. Hence, future studies should consider 
disaggregating with stratifiers such as income, education 
and place of residence, to explore subgroup differences.

Recommendations for ML implementation, governance and 
ethics
Our recommendations regarding the implementa-
tion and regulation of ML are fourfold. First, there is a 
burgeoning risk that the adoption and benefits of ML 
may be imbalanced.38 High-income countries are begin-
ning to increasingly adopt and benefit from deploying 
some of these novel technologies; therefore, there is the 
risk of extending the disparity between LMICs and high-
income countries even further. To achieve equity in the 
implementation of this technology, there is a need for 
capacity building across board and collaborative use of 
technological resources between LMICs.

Second, regarding AI research governance and ethics 
(regulation), the capabilities of AI application in public 
health are not yet fully understood, and its application 

is still evolving. This implies that any regulatory attempt 
will effectively require understanding the capabilities of 
AI as a tool in public health and medicine. Like other 
medical research endeavours, the regulatory framework 
and ethical guidelines will have to evolve, as our under-
standing of the application of AI evolves. As such, we posit 
that there is a concordance between regulation, gover-
nance, research and development of AI technology. In the 
light of this, we suggest collaboration between research 
institutions, academic stakeholders, policy makers and 
regulatory authorities. There is a need to engage with all 
stakeholders across the spectrum of AI research, develop-
ment and ethics.

Third, we believe that existing medical research ethical 
guidelines are highly applicable and cover several aspects 
of ML research. However, there is a need to strengthen 
regulatory aspects pertaining to data security and 
protection. The growth in the adoption of ML analyt-
ical techniques will usher an increase in the level of data 
transactions and with this, comes the potential risk of 
breaches to health data privacy. There are existing capa-
bilities to re-identify anonymised data, using a few param-
eters within the data. Hence, regulatory efforts need to 
focus on data security, especially reducing the risks of 
data re-identification.

Fourth, as knowledge and application of AI continues 
to grow in leaps and bounds, and while regulatory efforts 
are still rudimentary and trying to catch up, we envisage 
a vacuum in governance, which will have to be filled. As 
such, there may be a need for the development and rati-
fication of regulatory framework, which may be possible 
through the collaboration of multiple stakeholders.

CONCLUSIONS
This study demonstrates the superiority of ML as a tool for 
understanding previously unseen insights in large global 
health data. We have shown that ML algorithms such as 
random forest, may be more insightful than the user-
dependent traditional hierarchical approach of testing 
a limited set of determinants for outcome prediction in 
multivariate analysis. Using random forest, we found that 
duration of breast feeding, household wealth index and 
level of maternal education are the most important deter-
minants of U5MR. In addition, we also show that deep 
learning algorithms are more sensitive and specific for 
the prediction of U5MR and this finding may be appli-
cable to other multivariate models, for data-rich popula-
tion studies.

Going forward, the most important implication of this 
study is that if deep learning algorithms such as the one 
we describe in this study, are deployed in production in 
combination with spatial data, it is possible to identify and 
flag children who are most at risk and not likely to survive 
until the age of 5, such that necessary interventions can 
be targeted to communities where those children live. To 
the best of our knowledge, there are no existing studies 

Figure 4  Micro-average receiver operating characteristic 
(ROC) curve after feature selection. CNN, convolution neural 
network; DNN, deep neural network; LR, logistic regression.



8 Adegbosin AE, et al. BMJ Open 2020;10:e034524. doi:10.1136/bmjopen-2019-034524

Open access�

that have investigated U5M, using a similar analytical 
approach.
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