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Abstract

Genome-wide association studies (GWAS) have found the majority of disease-associated variants to be non-coding. Major efforts into
the charting of the non-coding regulatory landscapes have allowed for the development of tools and methods which aim to aid in
the identification of causal variants and their mechanism of action. In this review, we give an overview of current tools and methods
for the analysis of non-coding GWAS variants in disease. We provide a workflow that allows for the accumulation of in silico evidence
to generate novel hypotheses on mechanisms underlying disease and prioritize targets for follow-up study using non-coding GWAS

variants. Lastly, we discuss the need for comprehensive benchmarks and novel tools for the analysis of non-coding variants.

Introduction

Charting the regulatory function of the non-coding genome has
been an ongoing effort for over a decade. Although the claims of
the ENCODE project that 80% of the whole genome is functional
is heavily debated (1,2), a plethora of regulatory features, ranging
from small binding motifs to changes in chromatin-packing, has
been discovered in what was once considered to be ‘junk’ DNA
(3,4). These mechanisms reveal a strong involvement of the non-
coding genome in gene regulation (5).

The role of protein-coding variants in disease is relatively clear.
Loss or gain of function mutations can disrupt normal protein
function and are therefore able to exert potentially detrimental
effects on a phenotype (6). The role of a non-coding variant is less
obvious. Genome-wide association studies (GWAS) have found
an abundance of statistical associations between both coding
and non-coding variants and disease. How these associated vari-
ants may impact biological functions, provides insight into the
genetic background of disease susceptibility. When considering
fine-mapped GWAS hits, a strong enrichment in coding variants
and a small depletion of non-coding variants are observed when
compared with the expected distribution of GWAS hits given the
size of the coding and non-coding genome (7). This indicates that
a given coding variant is more likely to be statistically associated
with phenotypical change than a non-coding variant. Neverthe-
less, since vast majority of the genome is non-coding, we observe
that approximately 95% of the high confidence fine-mapped SNPs
are in non-coding and flanking regions (7). This implicates a
substantial role for non-coding variation in disease.

Research into the regulatory functions of non-coding DNA has
allowed for the development of a host of computational tools
that aid in the interpretation of disease-associated non-coding
variants. Here we provide a non-exhaustive overview of current
tools and methods which can be used to interpret and generate

hypotheses on the role of non-coding disease-associated variants
identified by GWAS.

Exploring GWAS results in an era
of data abundance

As the amount of performed GWAS has seen a steady increase, so
has the number of available resources at a researcher’s disposal to
interpret GWAS results. This is particularly helpful for analyzing
non-coding variants, where there are no obvious protein alter-
ations that may explain phenotypic effects. Instead, these non-
coding variants impact the phenotype by alteration of regulatory
elements such as enhancers (8,9), transcription factor binding
sites (10) and chromatin state (11). To give an example in a
disease context: multiple studies have linked point mutations in
the promotor sequence of the TERT gene to cancer (12-15). Rele-
vant resources for the regulatory functions of non-coding regions
can be found in the ENCODE (3,16), FANTOMS5 (17), Epigenomics
Roadmap (18) and GTEx consortium atlas (19) projects. Yet the
abundance of information available from these resources renders
manual annotation of variants of interest time-consuming, inef-
ficient and error-prone.

To address this problem, specific tools have been developed
that automatically annotate variants, and cross-reference them
with relevant data repositories. For example, ANNOVAR (20),
FUMA (21), GEMINI (22), HaploREG (23), RegulomeDB (24) and VEP
(25) annotate variants with a broad range of sources, including
the resources mentioned before (Table 1). The GWAS results
can be visually explored using LocusZoom (26) or FUMA (21).
FUMA annotates and visualizes GWAS risk loci and allows for
interactive investigation of GWAS results. LocusZoom visualizes
the Manhattan plots of risk loci and their underlying linkage-
disequilibrium structure. FUMA provides a demonstration case
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of the relevancy of these annotation tools in investigating non-
coding variants in disease: several non-coding variants associated
with BMI are located in an intronic region of the FTO gene, which
was thought to be the causal genes. Annotation of these variants
revealed them to be expression quantitative trait loci (eQTLs) for
IRX3, which functional studies revealed to be the actual causal
gene (27), exemplifying the use of variant annotation tools in
non-coding variant analysis (21). Most of these tools were not
developed exclusively for the exploration of non-coding variants,
yet they are a useful first step in the analysis of disease-associated
non-coding variants.

Predicting non-coding variant effects

When interpreting common or rare variants in a disease risk
locus, it is often unclear which non-coding variants may have
phenotypical consequences. Although the tools mentioned in the
previous paragraph help annotate data with a range of functional
genomic features, it can still be difficult to identify whether a
polymorphism within a feature will have a phenotypic effect.
For example, if ANNOVAR annotates a variant to be within an
enhancer region, this does not indicate that the variant alters the
enhancer function. To this extent a range of tools has been devel-
oped which aim to infer the effect of inputted variants (Table 2).
These tools aim to predict whether a variant has a functional
effect or is pathogenic based on the local genetic sequence and
features. These predictions are mostly made outside of a specific
context, such as cell type or disease. In other words, a variant
predicted to be pathogenic/functional will most likely have a
phenotypical effect but it is unknown what the precise effect may
be on your trait of interest. Nevertheless, these tools can be useful
for identifying potential causal variants from a list of disease-
associated variants for further investigation.

The host of variant pathogenicity prediction tools makes use
of different strategies and functional data. Current methods com-
monly apply one or more of the following three strategies (28):

(1) Machine learning classification relying on the integration
of genomic annotation features (EIGEN (29), GWAVA (30),
FATHMM-MKL (31), FATHHM-XF (32), DIVAN (33) and FunSeq?
(34).

(2) Leverage evolutionary data, combined with functional genomic
data to predict variant deleteriousness (CADD (35), DANN (36),
JARVIS (37) and LINSIGHT (28)).

(3) Motif disruption-based prediction, where the disruption of
genetic features such as gain/loss of transcription factor bind-
ing sites or splicing sites indicate pathogenicity (DeepSEA (38),
DeltaSVM (39) and JARVIS (37)).

The diversity of methods attests to the competitiveness in
pathogenicity prediction algorithm development. With the large
variety of tools, utilizing different methods and background data,
it can be difficult to select one that best suits a given research
project.

Benchmarking this variety of predictive tools is not a trivial
task. Typically, a small proportion of tools is chosen to predict
variant pathogenicity and benchmarked based on one or two
reference databases (e.g. ClinVar or COSMIC). In a recent bench-
marking of 24 pathogenicity prediction tools, Wang et al. showed
that there is a large variation in tool performance depending
on the chosen benchmarking dataset. In this benchmark, four
ground truth datasets were constructed using rare somatic can-
cer variants from COSMIC, rare germline variants from ClinVar,
regulatory variants from multiple eQTL databases and disease-
associated GWAS variants. LINSIGHT and FunSeq2 were the best

performers across all four benchmarking datasets (40). Where
FATHMM-MKL was the clear winner in a previous benchmark
(41), the newer FATHMM-XF was the top performer only on the
ClinVar benchmarking set. The earlier benchmark also reports
higher predictive accuracy by GWAVA for variants in the COSMIC
database than any of the 24 tools benchmarked by Wang et al. (41).
It is relatively unclear how the motif-focused deep learning tools
JARVIS and DeepSEA perform compared with other tools across
different datasets. From this brief overview of recent benchmark-
ing efforts of pathogenicity prediction algorithms, it is evident
that none of the tools consistently outperform all others across
every benchmarked reference dataset, suggesting that each tool
has different sensitivities to the underlying genetic architecture
that is most represented in each reference database. Cooper et al.
also demonstrate that variant pathogenicity prediction methods
correlate poorly with each other and further show that they also
correlate poorly with the results from massive parallel reporter
assays for non-coding variants associated with Alzheimer’s dis-
ease and Progressive Supranuclear Palsy. This implies the need for
experimental validation after prioritization using pathogenicity
prediction tools (42).

Despite their shortcomings, these tools have proven useful
for the prioritization of causal disease variants for follow-up
studies. Examples of their practicality in disease research are
many. FATHMM and LINSIGHT have proven useful in pinpoint-
ing novel functional mutations in PMS2 in cancer genomes (43).
CADD has aided in prioritizing pathogenic variants associated
with Alzheimer’s disease (44). Given the large variation in per-
formance of the currently available tools, it is clear that when it
comes to a one-size-fits-all pathogenicity prediction tool we are
still far from the end-game. As such, the 2013 clinical guidelines
for categorizing a non-coding variant as pathogenic, which decree
the use of at least three different computational tools, still seem
relevant today (45). When selecting algorithms, we encourage the
consultation of recent benchmarks on a dataset containing vari-
ants with an expected similar genetic architecture as the input
variants for the best performing tools. Overall, when combined
and selected with care, pathogenicity prediction algorithms are a
powerful tool for extracting potentially causal variants from a list
of variants of interest.

Quantitative trait loci: a black box approach

One of the core difficulties in non-coding variant analysis is
the identification of the mechanisms and biological pathways
through which a variant might impact a phenotype. Linking vari-
ants to effector genes allows us to shift the analysis to a more
interpretable unit of study. One approach to link variants to
genes is colocalizing variants with molecular quantitative trait
loci (molQTL). MolQTLs are associations between the presence of
a variant and a molecular measurement, such as RNA expression
levels (eQTL), protein abundance (pQTL) or differential splicing
(sQTL). Although molQTLs are blind to the precise mechanism
of action, they provide a direct link from variant to gene. To
incorporate this data for the analysis of non-coding variants,
colocalization methods, such as COLOC (46) and ezQTL (47), have
been developed to test whether the overlap between the GWAS
and molQTL signal is statistically significant (Table 3). A different
molQTL approach has been developed in the machine learn-
ing classifiers FIRE (48) and TIVAN (49) (Table 3). Both methods
embody machine learning classifiers trained on annotated cis-
regulatory eQTL variants, which aim to predict whether input
variants are QTLs for nearby genes, which can aid causal variant
interpretation. Note that these tools were not trained to predict
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Figure 1. Workflow from non-coding variants to disease insights. Relevant annotation and visualization tools are highlighted in Table 1. Pathogenicity
prediction tools are listed in Table 2. Tools and methods for MolQTL analysis are listed in Table 3. Finally, tools and methods for functional mapping and

integration of experimental SNP-to-gene data can be found in Table 4.

trans effects which might arise from chromatin interaction for
example. MolQTL analyses have increased the interpretability of
non-coding variant risk alleles of diseases such as type 1 diabetes
(T1D) and schizophrenia. Through eQTL analysis, it was found
that two T1D risk alleles converge in upregulating interferon-y
response genes (50). Dysregulation of the genes FURIN, TSNARE1,
CNTN4, CLCN3 and SNAP91 have been implicated by eQTL analysis
of schizophrenia GWAS hits (51), which were later separately
prioritized by chromatin interaction analysis of schizophrenia risk
variants (52).

Despite their practicality, QTLs are far from perfect. One should
be aware that the molQTLs can be tissue or cell-type specific. If
the investigated trait of interest is analyzed based on molQTLs
of non-relevant tissues or cell types this could lead to incorrect
prioritization of genes (53). Preliminary results from a recent

investigation show GWAS hits and eQTLs have a different makeup
of genomic features, suggesting that a large part of GWAS hits
cannot be explained by eQTLs (54). Still, QTLs can be a powerful
tool for interpreting the role of non-coding variants in disease
when appropriate tissue types from well-powered samples are
combined with additional lines of evidence.

Linking variants to genes and regulatory
mechanisms

Most of the earlier mentioned methods pool a variety of
genomic annotations and features to make in silico predictions
of pathogenicity or prioritize genes. It can therefore be hard to
interpret why a specific variant is predicted to be pathogenic in
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a specific disease context. Linking variants to genes or epigenetic
effects allows for easier integration with known information
on the studied disorder. Hi-C (55), enhancer studies (17,56,57),
chromatin accessibility (58,59), DNase I hypersensitivity site—
gene promotor correlation (60) and the activity-by-contact (61)
model can all be used to connect the genomic region containing
the variant of interest to a gene it potentially regulates. This
does not immediately implicate that the variant alters normal
gene regulation. Recently, massive parallel reporter (42,62) and
CRISPR/Cas9 (63) have been used to assess whether variants in a
single genomic position alter gene regulation. Using data related
to a single (epi)genetic mechanism to link non-coding variants to
genes allow for easier interpretation than molQTLs, and provide
more concrete evidence of biological functionality of the variant
of interest than in silico pathogenicity predictions.

The downside of using functional data for prioritizing poten-
tially causal genes in a non-coding locus is that these datasets
might not cover the relevant tissue or cell type and that different
datasets/strategies often indicate different causal genes (72). This
makes integrating multiple data sources for the prediction of
the causal gene for a GWAS signal difficult. Recent attempts
to solve this integration problem through the use of machine
learning and regression models which predict causal genes from
coding and non-coding variants seem to be relatively accurate
(64,65). Owing to the exhaustive preprocessing and statistical fine-
mapping steps combined with the necessary data to annotate
variants we have yet to see these one-size-fits-all functionally
informed gene prioritization methods be made available in user-
friendly tools and broadly applicable tools.

Additionally, there are methods for prioritizing genes in non-
coding risk loci, such as Polygenic Prioritization Score (PoPS) (66)
or the simple nearest gene method, which do not utilize exper-
imentally derived SNP-to-gene data. PoPS is a ridge regression
framework that leverages the polygenic signal in coding regions
to identify enriched shared features such as pathways, protein—
protein interaction networks and co-expression modules and pri-
oritize genes in all risk loci (including non-coding loci). The near-
est gene method simply states that the nearest gene body to the
(lead) variant is most likely the effector gene. This is underpinned
by the recent whole exome sequencing (WES) of 454787 UK
biobank participants which showed that genes containing rare
coding variants significant at P< 10~ are 45.5 times more likely
to be the closest gene to a GWAS lead variant for the same
trait than expected by chance (67). Weeks et al. demonstrate that
overlapping the nearest gene with PoPS prioritizations, or either
with any prioritizations based on functional data, the causal gene
prediction accuracy is around 80%. Overall, these methods are
lessinterpretable than causal gene prediction based on functional
data, yet when combined, they can prioritize causal genes in non-
coding risk loci with decent accuracy.

Recommendations

Throughout this review, we have showcased multiple compu-
tational tools for the interpretation of non-coding variants in
a disease GWAS context. At its core, in silico analysis of GWAS
results remains a highly complex task, especially when analyzing
non-coding variants. Eventually, a researcher must be able to
integrate multiple lines of converging evidence to form a plausible
hypothesis of which implicated variants might indeed be causal,
and how these variants disrupt normal cell function. Here we
provide a proposed workflow that can be used for the post-GWAS
analysis of non-coding variants (Fig. 1).

The workflow highlighted before allows for the accumulation
of multiple lines of evidence in order to identify putative causal
variants and their implications for disease. Eventually no in silico
evidence is as robust as in vivo/vitro evidence. Nevertheless, the
in silico analysis of disease-associated variants is an invaluable
resource for identifying which variants, genes, pathways and cell
types should be considered for functional follow-up studies.

Future developments

The variety of different tools and strategies to interpret non-
coding variants in a disease context touched upon in this review
highlight one underlying truth. There is currently no perfect,
one-size-fits-all tool or method to find causal SNPs from GWAS
findings. As the costs of WES and WGS are decreasing it is feasible
that rare and deleterious coding variants of large effect size will
allow us to more easily pinpoint causal genes for a variety of
disorders. This luxury is absent for non-coding variants. There-
fore, we foresee the need for continued improvement of non-
coding variant analysis tools. Accumulation of massively parallel
reporter (42,62) and CRISPR/Cas9 (63) assays may in the coming
years be a valuable additional source of data for the improvement
of predictive algorithms.

Conclusions

The number of databases, roadmaps and atlases (3,16-19) that
have been developed over the last years make this an exciting time
for investigating the complex and diverse regulatory mechanisms
in the non-coding part of the genome. There is a broad range of
tools available that allow researchers to accumulate evidence for
regulatory effects of non-coding variants that are expected to be
causally associated with a disease phenotype (Tables 1-4). Finding
the correct tool for your research question can be a challenge.
Both the prediction of causal/pathogenic variants and the
prediction of effector genes and pathways of non-coding variants
display a large amount of variation in their performance. More
frequent, comprehensive benchmarks would allow researchers
to make more informed choices on which tool suits their
research best.

Despite differences in performance across tools, the abun-
dance of data allows for the development of hypotheses on dis-
ease mechanisms by the accumulation of functional evidence
across multiple tracks from non-coding GWAS hits. Currently,
there is no one-size-fits-all tool for identifying causal genes and
mechanisms from disease-associated non-coding variants. We
therefore strongly encourage the continuation of the development
of tools that prioritize causal genes and variants, capitalizing on
novel data and insights. These tools should be easy to use for
researchers without (bio)informatics backgrounds, and provide
interpretable prioritization metrics.

In the end, the tools and suggested workflow highlighted in
this review are merely instruments for the development of novel
insights and hypotheses into the mechanisms driving a specific
disease. Although their results can be used as supporting evi-
dence, in vitro/vivo experimental validation remains necessary to
truly establish a causal relationship between non-coding variants
and disease.

Acknowledgements

Figure 1 has been created using BioRender.com.



Conflict of Interest statement. No conflicts of interest to declare.

Funding

Netherlands Organization for Scientific Research - Gravita-
tion project ‘BRAINSCAPES: A Roadmap from Neurogenetics

to Neurobiology’

(024.004.012); European Research Council

advanced grant ‘From GWAS to Function’ (ERC-2018-ADG 834057).

References

1.

10.

11.

12.

13.

14.

15.

16.

Graur, D, Zheng, Y., Price, N,, Azevedo, R.BR., Zufall, R.A. and
Elhaik, E. (2013) On the immortality of television sets: “Function”
in the human genome according to the evolution-free gospel of
ENCODE. Genome Biol. Evol., 5, 578-590.

Doolittle, W.E. (2013) Is junk DNA bunk? A critique of ENCODE.
Proc. Natl. Acad. Sci., 110, 5294-5300.

Dunham, I, Kundaje, A., Aldred, S.F, Collins, PJ., Davis, CA,,
Doyle, E, Epstein, C.B,, Frietze, S., Harrow, J., Kaul, R. et al. (2012)
An integrated encyclopedia of DNA elements in the human
genome. Nature, 489, 57-74.

Pennisi, E. (2012) ENCODE project writes eulogy for junk DNA.
Science, 337, 1159-1161.

Barrett, L.W, Fletcher, S. and Wilton, S.D. (2012) Regulation of
eukaryotic gene expression by the untranslated gene regions
and other non-coding elements. Cell. Mol. Life Sci., 69, 3613-3634.
Claussnitzer, M., Cho, J.H., Collins, R., Cox, N.J., Dermitzakis,
E.T, Hurles, M.E,, Kathiresan, S., Kenny, E.E, Lindgren, CM,,
MacArthur, D.G. et al. (2020) A brief history of human disease
genetics. Nature, 577, 179-189.

Watanabe, K., Stringer, S,, Frei, O., Umicevi¢ Mirkov, M., de Leeuw,
C., Polderman, TJ.C., van der Sluis, S., Andreassen, O.A., Neale,
B.M. and Posthuma, D. (2019) A global overview of pleiotropy and
genetic architecture in complex traits. Nat. Genet., 51, 1339-1348.
Bauer, DE., Kamran, S.C, Lessard, S, Xu, J, Fujiwara, Y, Lin,
C., Shao, Z., Canver, M.C,, Smith, E.C, Pinello, L. et al. (2013)
An erythroid enhancer of BCL11A subject to genetic variation
determines fetal hemoglobin level. Science, 342, 253-257.
Corradin, O. and Scacheri, P.C. (2014) Enhancer variants: evalu-
ating functions in common disease. Genome Med., 6, 85.
Deplancke, B, Alpern, D. and Gardeux, V. (2016) The genetics of
transcription factor DNA binding variation. Cell, 166, 538-554.
Kadota, M, Yang, H.H,, Hu, N,, Wang, C., Hu, Y., Taylor, PR., Bue-
tow, K.H. and Lee, M.P. (2007) Allele-specific chromatin immuno-
precipitation studies show genetic influence on chromatin state
in human genome. PLoS Genet., 3, e81.

Heidenreich, B., Rachakonda, P.S., Hemminki, K. and Kumar, R.
(2014) TERT promoter mutations in cancer development. Curr.
Opin. Genet. Dev., 24, 30-37.

Horn, S, Figl, A., Rachakonda, P.S,, Fischer, C., Sucker, A., Gast,
A., Kadel, S, Moll, I, Nagore, E., Hemminki, K., Schadendorf, D.
and Kumar, R. (2013) TERT promoter mutations in familial and
sporadic melanoma. Science, 339, 959-961.

Huang, EW, Hodis, E., Xu, MJ,, Kryukov, G.V, Chin, L. and Gar-
raway, L.A. (2013) highly recurrent TERT promoter mutations in
human melanoma. Science, 339, 957-959.

Killela, PJ., Reitman, ZJ, Jiao, Y., Bettegowda, C., Agrawal, N,
Diaz, L.A., Friedman, A.H., Friedman, H., Gallia, G.L., Giovanella,
B.C. et al. (2013) TERT promoter mutations occur frequently in
gliomas and a subset of tumors derived from cells with low rates
of self-renewal. Proc. Natl. Acad. Sci., 110, 6021-6026.

Davis, C.A., Hitz, B.C., Sloan, C.A., Chan, E.T,, Davidson, JM.,
Gabdank, I, Hilton, J.A., Jain, K., Baymuradov, UK., Narayanan,

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Human Molecular Genetics, 2022, Vol. 31, No. R1 | R81

AK. et al. (2018) The Encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Res., 46, D794-D801.
Andersson, R., Gebhard, C., Miguel-Escalada, I., Hoof, 1., Born-
holdt, J., Boyd, M., Chen, Y., Zhao, X., Schmidl, C,, Suzuki, T. et al.
(2014) An atlas of active enhancers across human cell types and
tissues. Nature, 507, 455-461.

Bernstein, B.E., Stamatoyannopoulos, J.A., Costello, J.E, Ren, B,
Milosavljevic, A., Meissner, A, Kellis, M., Marra, M.A., Beaudet,
AL, Ecker, JR. et al. (2010) The NIH roadmap epigenomics map-
ping consortium. Nat. Biotechnol., 28, 1045-1048.

Lonsdale, J,, Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad,
S, Hasz, R, Walters, G, Garcia, F, Young, N. et al. (2013) The
genotype-tissue expression (GTEx) project. Nat. Genet., 45,
580-585.

Wang, K., Li, M. and Hakonarson, H. (2010) ANNOVAR: functional
annotation of genetic variants from high-throughput sequenc-
ing data. Nucleic Acids Res., 38, e164.

Watanabe, K., Taskesen, E., van Bochoven, A. and Posthuma, D.
(2017) Functional mapping and annotation of genetic associa-
tions with FUMA. Nat. Commun., 8, 1826.

Paila, U, Chapman, B.A, Kirchner, R. and Quinlan, A.R. (2013)
GEMINI: integrative exploration of genetic variation and genome
annotations. PLoS Comput. Biol., 9, e1003153.

Ward, L.D. and Kellis, M. (2012) HaploReg: a resource for explor-
ing chromatin states, conservation, and regulatory motif alter-
ations within sets of genetically linked variants. Nucleic Acids
Res., 40, D930-D934.

Boyle, A.P, Hong, E.L, Hariharan, M., Cheng, Y., Schaub, M.A,,
Kasowski, M., Karczewski, K J.,, Park, J,, Hitz, B.C., Weng, S., Cherry,
JM. and Snyder, M. (2012) Annotation of functional variation
in personal genomes using RegulomeDB. Genome Res., 22,
1790-1797.

McLaren, W, Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R.S., Thor-
mann, A, Flicek, P. and Cunningham, F (2016) The Ensembl
variant effect predictor. Genome Biol., 17, 122.

Boughton, A.P, Welch, R.P, Flickinger, M., VandeHaar, P, Taliun,
D, Abecasis, G.R. and Boehnke, M. (2021) LocusZoom.js: interac-
tive and embeddable visualization of genetic association study
results. Bioinformatics, 37, 3017-3018.

Claussnitzer, M., Dankel, SN., Kim, K.-H., Quon, G., Meuleman,
W., Haugen, C,, Glunk, V, Sousa, 1.S., Beaudry, J.L., Puviindran, V.
etal. (2015) FTO obesity variant circuitry and adipocyte browning
in humans. N. Engl. . Med., 373, 895-907.

Huang, Y.-F, Gulko, B. and Siepel, A. (2017) Fast, scalable pre-
diction of deleterious noncoding variants from functional and
population genomic data. Nat. Genet., 49, 618-624.

Ionita-Laza, I., McCallum, K., Xu, B. and Buxbaum, J.D. (2016) A
spectral approach integrating functional genomic annotations
for coding and noncoding variants. Nat. Genet., 48, 214-220.
Ritchie, G.R.S,, Dunham, [, Zeggini, E. and Flicek, P. (2014) Func-
tional annotation of noncoding sequence variants. Nat. Methods,
11, 294-296.

Shihab, H.A., Rogers, M.E, Gough, J., Mort, M., Cooper, D.N,,
Day, LN.M,, Gaunt, T.R. and Campbell, C. (2015) An integrative
approach to predicting the functional effects of non-coding and
coding sequence variation. Bioinformatics, 31, 1536-1543.
Rogers, M.F, Shihab, H.A., Mort, M., Cooper, DN., Gaunt, T.R.
and Campbell, C. (2018) FATHMM-XF: accurate prediction of
pathogenic point mutations via extended features. Bioinformat-
ics, 34, 511-513.

Chen, L., Jin, P.and Qin, Z.S. (2016) DIVAN: accurate identification
of non-coding disease-specific risk variants using multi-omics
profiles. Genome Biol., 17, 252.



R82

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

| Human Molecular Genetics, 2022, Vol. 31, No. R1

Fu, Y, Liu, Z, Lou, S, Bedford, J., Mu, XJ, Yip, K.Y, Khurana, E.
and Gerstein, M. (2014) FunSeq2: a framework for prioritizing
noncoding regulatory variants in cancer. Genome Biol., 15, 480.
Kircher, M., Witten, DM, Jain, P,, O'Roak, BJ.,, Cooper, G.M. and
Shendure, J. (2014) A general framework for estimating the
relative pathogenicity of human genetic variants. Nat. Genet., 46,
310-315.

Quang, D, Chen, Y. and Xie, X. (2015) DANN: a deep learning
approach for annotating the pathogenicity of genetic variants.
Bioinformatics, 31, 761-763.

Vitsios, D,, Dhindsa, R.S., Middleton, L., Gussow, A.B. and Petro-
vski, S. (2021) Prioritizing non-coding regions based on human
genomic constraint and sequence context with deep learning.
Nat. Commun., 12, 1504.

Zhou, J. and Troyanskaya, O.G. (2015) Predicting effects of non-
coding variants with deep learning-based sequence model. Nat.
Methods, 12, 931-934.

Lee, D, Gorkin, D.U., Baker, M., Strober, BJ., Asoni, A.L., McCallion,
A.S. and Beer, M.A. (2015) A method to predict the impact of
regulatory variants from DNA sequence. Nat. Genet., 47, 955-961.
Wang, Z., Zhao, G, Li, B, Fang, Z., Chen, Q.,, Wang, X., Luo, T,
Wang, Y., Zhou, Q., Li, K. et al. (2022) Performance comparison of
computational methods for the prediction of the function and
pathogenicity of non-coding variants. Genom. Proteom. Bioinform.
Drubay, D, Gautheret, D. and Michiels, S. (2018) A benchmark
study of scoring methods for non-coding mutations. Bioinformat-
ics, 34, 1635-1641.

Cooper, Y.A,, Davis, J.E., Kosuri, S, Coppola, G. and Geschwind,
DH. (2021) Functional regulatory variants implicate distinct
transcriptional networks in dementia. Functional regulatory
variants implicate distinct transcriptional networks in demen-
tia. BioRxiv, 2021.06.14.448395.

Chalmers, Z.R., Connelly, C.F, Fabrizio, D, Gay, L., Ali, SM., Ennis,
R., Schrock, A., Campbell, B, Shlien, A., Chmielecki, J. et al.
(2017) Analysis of 100,000 human cancer genomes reveals the
landscape of tumor mutational burden. Genome Med., 9, 1-14.
Park, J.S, Lee, J, Jung, E.S,, Kim, M.-H,, Kim, LB, Son, H., Kim, S,,
Kim, S., Park, Y.M., Mook-Jung, L., Yu, SJ. and Lee, ].H. (2019) Brain
somatic mutations observed in Alzheimer’s disease associated
with aging and dysregulation of tau phosphorylation. Nat. Com-
mun., 10, 3090.

Wallis, Y., Payne, S., McAnulty, C., Bodmer, D. and Sister, E. (2013)
Practice guidelines for the evaluation of pathogenicity and the
reporting of sequence variants in clinical molecular. Genetics,
Association for Clinical Genetic Science and the Dutch Society
of Clinical Genetic Laboratory Specialists.

Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hin-
gorani, A.D, Wallace, C. and Plagnol, V. (2014) Bayesian test for
colocalisation between pairs of genetic association studies using
summary statistics. PLoS Genet., 10, e1004383.

Zhang, T, Klein, A, Sang, ], Choi, J. and Brown, K.M. (2022) ezQTL:
a web platform for interactive visualization and colocalization
of quantitative trait loci and GWAS. BioRxiv, 2022.03.08.483491
Ioannidis, N.M., Davis, J.R., DeGorter, M.K., Larson, N.B., McDon-
nell, SK., French, AJ.,, Battle, AJ, Hastie, TJ.,, Thibodeau, S.N,,
Montgomery, S.B. et al. (2017) FIRE: functional inference of
genetic variants that regulate gene expression. Bioinformatics, 33,
3895-3901.

Chen, L., Wang, Y., Yao, B, Mitra, A, Wang, X. and Qin, X.
(2019) TIVAN: tissue-specific cis-eQTL single nucleotide variant
annotation and prediction. Bioinformatics, 35, 1573-1575.
Westra, H.-J,, Peters, M.J,, Esko, T., Yaghootkar, H., Schurmann,
C., Kettunen, J.,, Christiansen, M.W,, Fairfax, B.P,, Schramm, K.,

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Powell, J.E. et al. (2013) Systematic identification of trans eQTLs
as putative drivers of known disease associations. Nat. Genet., 45,
1238-1243.

Fromer, M., Roussos, P, Sieberts, SK., Johnson, J.S.,, Kavanagh,
D.H., Perumal, T.M., Ruderfer, DM, Oh, E.C,, Topol, A., Shah, H.R.
et al. (2016) Gene expression elucidates functional impact of
polygenic risk for schizophrenia. Nat. Neurosci., 19, 1442-1453.
Won, H., de la Torre-Ubieta, L., Stein, J.L., Parikshak, N.N.,, Huang,
J, Opland, CK., Gandal, M J, Sutton, GJ,, Hormozdiari, F, Lu, D.
et al. (2016) Chromosome conformation elucidates regulatory
relationships in developing human brain. Nature, 538, 523-527.
Guo, H., Fortune, M.D,, Burren, O.S., Schofield, E., Todd, J.A. and
Wallace, C. (2015) Integration of disease association and eQTL
data using a Bayesian colocalisation approach highlights six
candidate causal genes in immune-mediated diseases. Hum. Mol.
Genet., 24, 3305-3313.

Mostafavi, H., Spence, J.P, Naqgvi, S. and Pritchard, JK. (2022)
Limited overlap of eQTLs and GWAS hits due to systematic
differences in discovery. BioRxiv, 2022.05.07.491045.

Jung, I, Schmitt, A, Diao, Y, Lee, AJ, Liu, T, Yang, D, Tan,
C., Eom, J, Chan, M., Chee, S. et al. (2019) A compendium of
promoter-centered long-range chromatin interactions in the
human genome. Nat. Genet., 51, 1442-1449.

Javierre, B.M., Burren, O.S., Wilder, S.P, Kreuzhuber, R., Hill, S M.,
Sewitz, S., Cairns, J,, Wingett, SW.,, Varnai, C., Thiecke, M.J. et al.
(2016) Lineage-specific genome architecture links enhancers
and non-coding disease variants to target gene promoters. Cell,
167, 1369-1384.e19.

Nasser, J., Bergman, D.T,, Fulco, C.P, Guckelberger, P., Doughty,
B.R. Patwardhan, T.A., Jones, T.R., Nguyen, T.H., Ulirsch, J.C,
Lekschas, F. et al. (2021) Genome-wide enhancer maps link risk
variants to disease genes. Nature, 593, 238-243.

Pliner, H.A., Packer, J.S., McFaline-Figueroa, J.L., Cusanovich, D.A.,
Daza, R.M., Aghamirzaie, D, Srivatsan, S, Qiu, X, Jackson, D,
Minkina, A. et al. (2018) Cicero predicts cis-regulatory DNA inter-
actions from single-cell chromatin accessibility data. Mol. Cell,
71, 858-871.e8.

Satpathy, A.T., Granja, J M., Yost, K.E,, Qi, Y., Meschi, F, McDer-
mott, G.P, Olsen, B.N.,, Mumbach, M.R., Pierce, S.E., Corces, M.R.
et al. (2019) Massively parallel single-cell chromatin landscapes
of human immune cell development and intratumoral T cell
exhaustion. Nat. Biotechnol., 37, 925-936.

Thurman, R.E,, Rynes, E., Humbert, R, Vierstra, ], Maurano, M. T,
Haugen, E., Sheffield, N.C, Stergachis, A.B,, Wang, H., Vernot, B.
et al. (2012) The accessible chromatin landscape of the human
genome. Nature, 489, 75-82.

Fulco, C.P,, Nasser, ], Jones, T.R., Munson, G., Bergman, D.T., Sub-
ramanian, V., Grossman, S.R., Anyoha, R., Doughty, B.R., Patward-
han, T.A. et al. (2019) Activity-by-contact model of enhancer-
promoter regulation from thousands of CRISPR perturbations.
Nat. Genet., 51, 1664-1669.

Tewhey, R., Kotliar, D, Park, D.S, Liu, B, Winnicki, S., Reilly,
SXK. Andersen, K.G., Mikkelsen, T.S., Lander, E.S., Schaffner,
S.F. and Sabeti, P.C. (2016) Direct identification of hundreds of
expression-modulating variants using a multiplexed reporter
assay. Cell, 165, 1519-1529.

Gasperini, M., Findlay, G.M., McKenna, A., Milbank, J.H,, Lee, C,,
Zhang, M.D,, Cusanovich, D.A. and Shendure, J. (2017) CRISPR/
Cas9-mediated scanning for regulatory elements required for
HPRT1 expression via thousands of large, programmed genomic
deletions. Am. J. Hum. Genet., 101, 192-205.

Gazal, S, Weissbrod, O., Hormozdiari, F, Dey, K.X,, Nasser, J,
Jagadeesh, K.A., Weiner, DJ., Shi, H., Fulco, C.P,, O’Connor, L.J. et al.



65.

66.

67.

68.

69.

(2022) Combining SNP-to-gene linking strategies to identify dis-
ease genes and assess disease omnigenicity. Nat. Genet., 54,
827-836.

Mountjoy, E., Schmidt, E.M., Carmona, M., Schwartzentruber, J.,,
Peat, G., Miranda, A., Fumis, L., Hayhurst, J,, Buniello, A., Karim,
M.A. et al. (2021) An open approach to systematically prioritize
causal variants and genes at all published human GWAS trait-
associated loci. Nat. Genet., 53, 1527-1533.

Weeks, E.M., Ulirsch, J.C, Cheng, N.Y, Trippe, B.L, Fine, R.S,
Miao, J., Patwardhan, T.A., Kanai, M., Nasser, J., Fulco, C.P. et al.
(2020) Leveraging polygenic enrichments of gene features to
predict genes underlying complex traits and diseases. MedRxiv,
2020.09.08.20190561.

Backman, J.D, Li, A.H., Marcketta, A., Sun, D, Mbatchou, ],
Kessler, M.D, Benner, C., Liu, D., Locke, A.E., Balasubramanian,
S. et al. (2021) Exome sequencing and analysis of 454,787 UK
Biobank participants. Nature, 599, 628-634.

Otlu, B, Firtina, C, Keleg, S. and Tastan, O. (2017) GLANET:
genomic loci annotation and enrichment tool. Bioinformatics, 33,
2818-2828.

Jager, M., Wang, K., Bauer, S., Smedley, D, Krawitz, P. and Robin-
son, PN. (2014) Jannovar: a Java Library for exome annotation.
Hum. Mutat., 35, 548-555.

70.

71.

72.

73.

74.

75.

Human Molecular Genetics, 2022, Vol. 31, No. R1 | R83

Cingolani, P, Platts, A., Wang, L.L., Coon, M., Nguyen, T, Wang, L.,
Land, SJ., Lu, X. and Ruden, D.M. (2012) A program for annotating
and predicting the effects of single nucleotide polymorphisms,
SnpEff. Fly (Austin), 6, 80-92.

Pan, Q, Liu, Y.-J, Bai, X.-F, Han, X.-L., Jiang, Y, Ai, B, Shi, S.-S,,
Wang, F, Xu, M.-C.,, Wang, Y.-Z. et al. (2021) VARAdb: a compre-
hensive variation annotation database for human. Nucleic Acids
Res., 49, D1431-D1444.

Gao, L., Uzun, Y, Gao, P, He, B, Ma, X, Wang, J, Han, S
and Tan, K. (2018) Identifying noncoding risk variants using
disease-relevant gene regulatory networks. Nat. Commun., 9,
702.

Hormozdiari, F, van de Bunt, M., Segré, AV, Li, X., Joo,].W.J,, Bilow,
M., Sul, JH,, Sankararaman, S., Pasaniuc, B. and Eskin, E. (2016)
Colocalization of GWAS and eQTL signals detects target genes.
Am. J. Hum. Genet., 99, 1245-1260.

Wen, X., Pique-Regi, R. and Luca, F. (2017) Integrating molec-
ular QTL data into genome-wide genetic association analysis:
probabilistic assessment of enrichment and colocalization. PLoS
Genet., 13, e1006646.

Liu, B, Gloudemans, M.J,, Rao, A.S., Ingelsson, E. and Montgomery,
S.B. (2019) Abundant associations with gene expression compli-
cate GWAS follow-up. Nat. Genet., 51, 768-769.



	 Demystifying non-coding GWAS variants: an overview   of computational tools and methods
	 Introduction  
	 Exploring GWAS results in an era  of data abundance
	 Predicting non-coding variant effects
	 Quantitative trait loci: a black box approach
	 Linking variants to genes and regulatory mechanisms
	 Recommendations
	 Future developments
	 Conclusions
	 Acknowledgements
	 Funding


