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The complexity of the traumatic brain injury (TBI) pathology, particularly concussive injury, is a serious obstacle
for diagnosis, treatment, and long-term prognosis. Here we utilize modern systems biology in a rodent model of
concussive injury to gain a thorough view of the impact of TBI on fundamental aspects of gene regulation, which
have the potential to drive or alter the course of the TBI pathology. TBI perturbed epigenomic programming, tran-
scriptional activities (expression level and alternative splicing), and the organization of genes in networks cen-
tered around genes such as Anax2, Ogn, and Fmod. Transcriptomic signatures in the hippocampus are involved
in neuronal signaling, metabolism, inflammation, and blood function, and they overlap with those in leukocytes
from peripheral blood. The homology between genomic signatures from blood and brain elicited by TBI provides
proof of concept information for development of biomarkers of TBI based on composite genomic patterns. By
intersecting with human genome-wide association studies, many TBI signature genes and network regulators
identified in our rodentmodelwere causally associatedwith brain disorderswith relevant link to TBI. The overall
results show that concussive brain injury reprograms genes which could lead to predisposition to neurological
and psychiatric disorders, and that genomic information from peripheral leukocytes has the potential to predict
TBI pathogenesis in the brain.
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1. Introduction

Traumatic brain injury (TBI) accounts for over 90% of the brain inju-
ries in USA, and is common in sport related injuries, military, and do-
mestic environments. TBI is characterized by a high level of
complexity based on the multiple components involved in the onset
and progression of the pathology. TBI compromises neuronal function
and cognitive abilities that can last for years after the first incident
(Levin et al., 1988; Levin and Diaz-Arrastia, 2015; Rabinowitz and
Levin, 2014). Mild TBI such as concussive injury is particularly difficult
to diagnose since several of its symptoms such as blurred vision, head-
ache, nausea, dizziness could be caused by other reasons (Levin and
Diaz-Arrastia, 2015; Rabinowitz and Levin, 2014), though about 20% of
patients develop persistent symptoms that can last for years. Neurons
that survive the initial insult show a decline in function (Yamaki et al.,
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1996; Bergsneider et al., 2000), but the underlying regulatory mecha-
nisms have proven difficult to grasp based on information derived
from isolated molecular events. The lack of comprehensive mechanistic
information has left unanswered one of the most intriguing aspects of
TBI, which is whymany patients become vulnerable to other neurolog-
ical disorders such as chronic traumatic encephalopathy (CTE),
Alzheimer's disease (AD), and posttraumatic stress disorder (PTSD)
(Levin and Diaz-Arrastia, 2015; Rabinowitz and Levin, 2014). The com-
plexity of the TBI pathology becomes even a larger limiting factor for the
design of strategies to diagnose and to predict the outcome of concus-
sive injury (Crawford et al., 2012; Kulbe and Geddes, 2016).

To address these knowledge gaps in the pathogenesis of TBI,we con-
ducted a comprehensive systems biology study (Fig. 1) focusing on the
impact of concussive injury on fundamental gene regulatory mecha-
nisms. Unlike previous studies based on microarrays (von Gertten et
al., 2005; Rojo et al., 2011; Samal et al., 2015; Redell et al., 2013) and
more recently RNA sequencing (Lipponen et al., 2016) which have re-
ported changes in gene expression in response to TBI, in the current
study we leveraged the power of system biology to combine genome-
wide transcriptome and DNA methylome analyses in the hippocampus
(a main site of cognitive dysfunction in TBI pathology) with modern
data-driven gene network modeling approaches, which allowed us to
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Overall genomic study design. We assessed transcriptomic and epigenomic profiling of hippocampus and blood leukocytes, followed by network modeling and key driver
identification. Transcriptomic and epigenomic profiling of blood samples was compared to that of hippocampus to identify genomic features in concordance with the brain signals for
biomarker identification. We characterized the functional relevance of the brain genomic signatures and networks to TBI characteristics and behavior outcomes (learning and
memory). By intersecting with human genome-wide association studies (GWAS), many TBI signature genes and network regulators identified in the rodent model were found to be
causally associated with brain disorders with relevant link to TBI.
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extract information about crucial gene regulatory mechanisms (expres-
sion level, alternative splicing, epigenetic regulation) underlying TBI
pathogenesis and to model tissue-specific gene-gene interactions
which have the power to predict essential regulatory points. Gene net-
works are graphical models that depict genes as nodes and connections
(reflecting regulatory relations or interactions) between genes as edges.
Networks can be used to identify key driver genes that connect a large
number of genes in a network affected by TBI, and are likely potent ther-
apeutic targets (Makinen et al., 2014; Meng et al., 2016; Schadt et al.,
2009; Wang et al., 2012; Zhang et al., 2013). To infer translatability to
human pathophysiology, we analyzed the intersection of the molecular
signals from our TBI rodent model with human genome-wide associa-
tion studies (GWAS) of brain disorders.

We also took advantage of our systembiology paradigm to uncover a
possible association between genomic changes in brain and periphery
driven by TBI, which could shed light on the possible implementation
of blood genomic biomarkers of TBI pathology in the brain. The current
standard for biomarker research focuses on individual protein products
in the cerebrospinal fluid or blood plasma (Zetterberg and Blennow,
2016; Zetterberg et al., 2013) that are by-products of TBI pathology
and do not capture central regulatory mechanisms driving pathogene-
sis. Protein biomarkers also impose technical challenges due to limita-
tions in the sensitivity of bioassays (Zetterberg and Blennow, 2016;
Zetterberg et al., 2013). Additionally, blood leukocytes are abundant in
the circulation and have been lately found to serve as a source of surro-
gate markers for AD (Rezai-Zadeh et al., 2009) and Parkinson's disease
(PD) (Masliah et al., 2013). Comparison of the genomic signals between
hippocampus and blood leukocytes facilitates the extraction of blood
genomic markers that can trace the hidden aspects of the brain pathol-
ogy of TBI.

2. Materials and methods

2.1. Fluid percussion injury (FPI) as a rodent model of concussive injury

Adult male Sprague–Dawley rats (Charles River Laboratories, Inc.,
MA, USA) weighing 200–220 g were maintained under standard
housing conditions (room temperature 22–24 °C) with 12 h light/dark
cycle (Agrawal andGomez-Pinilla, 2012). The ratswere kept individual-
ly in polyacrylic cages with free access to food andwater. After acclima-
tization for one week on standard rat chow, rats were randomly
assigned to sham control (n=10) and FPI (n=10) groups. FPIwasper-
formed by making a 3-mm diameter craniotomy with a trephine cen-
tered on the sagittal suture between bregma and lambda. A Teflon
disk (1 mm) was placed over the craniotomy, and the cap was filled
with 0.9% saline solution. At the first sign of hind-limb withdrawal to
a paw pinch, a moderate fluid percussion pulse (approx. 1.8–2.3 atm)
was administered using a FPI device (Virginia Commonwealth Universi-
ty). Apnea and unconsciousness times were determined. Sham animals
underwent an identical preparationwith the exception of FPI. All exper-
iments were performed in accordance with the United States National
Institutes of Health Guide for the Care and Use of Laboratory Animals
and were approved by the University of California at Los Angeles
(UCLA) Chancellor's Animal Research Committee (ARC). Rats were
sacrificed at two post-injury time points and samples from both 24 h
and 7 d were used for molecular analysis. The acute period of TBI
(24 h) is crucial for biomarker discovery (Kulbe and Geddes, 2016;
Zetterberg and Blennow, 2016), and was used to predict the pathology
that is further developed by the sub-acute period (7d) including inflam-
mation, degeneration, and early regeneration. In addition, we used the
gene profile from 7 d to assess the overlap between signature genes
and candidate genes of brain disorders since at this stage the pathology
is underway.

2.2. Barnes maze test

Rats were tested with the Barnes maze test before and after TBI. An-
imals were trained to locate a dark escape chamber, hidden underneath
a hole positioned around the perimeter of a disk, brightly illuminated by
four overhead halogen lamps to provide a low level aversive stimulus.
Animals were trained before TBI with two trials per day for five consec-
utive days. A trail started by placing the animal in the center of themaze
covered under a cylindrical start chamber; after a 10-s delay, the start
chamber was raised. A training session ended after the animal has
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entered the escape chamber or when a pre-determined time (5 min)
has elapsed. In order to assess memory retention, two trials were
given on day 7 post-TBI. We recorded and quantified behavior using
AnyMaze video tracking software (San Diego Instruments).

2.3. Tissue collection

Right after the last memory test, rats were sacrificed by decapitation
and hippocampus were dissected out, frozen on dry ice, and stored at
−70 °C for later use. Blood samples were collected retro-orbitally
under isoflurane anesthesia into EDTA-coated Vacutainers (BDDiagnos-
tics, Franklin Lakes, New Jersey) 24-h post FPI, and immediately centri-
fuged at 1600g for 10 min at 4 °C. The buffy coat layer containing
leukocytes and plateletswas carefully transferred to a new tubewithout
disturbing the underneath leukocytes, and washed twice with 15 ml of
EL Buffer (QIAGEN GmbH, Hilden, Germany) for 15 min at 4 °C. Total
cellular DNA and RNA were extracted using the AllPrep DNA/RNA
mini kit (QIAGEN GmbH, Hilden, Germany).

2.4. RNA sequencing (RNA-Seq) and data analyses

RNA samples from hippocampus and leukocytes (n = 5 per treat-
ment group per tissue) were used for RNA-Seq to assess alterations in
the transcriptome. RNA was first processed via poly-A selection and
fragmentation, reverse transcribed into cDNA, and sequencing adapters
ligated using the Illumina Paired-End sample prep kit. Fragments of
250-400 bp were isolated, amplified, and sequenced on an Illumina
Hiseq2500 System. Paired-end RNA-Seq reads were mapped using
TopHat2/Bowtie2 (Langmead et al., 2009). Differentially expressed
genes, transcripts, and alternative splicing events were further identi-
fied using Cufflinks and Cuffdiff (Trapnell et al., 2012, 2010). A statistical
cutoff of p b 0.01 was used to define TBI gene signatures. Multiple test-
ing was corrected using false discovery rate (FDR) estimated with the
Benjamini-Hochberg (BH) method (Benjamini and Hochberg, 1995).
The RNA-Seq data was deposited to Gene Expression Ominbus (GEO)
with accession number GSE64978 (hippocampus) and GSE68207
(leukocytes).

2.5. Quantitative real-time PCR (qPCR) to confirm top transcriptome signals

We chose to validate 7 differentially expressed genes (F5, Lgmn, Pls1,
Cd63, Cdr2, Gch1, Vwf) that were common between hippocampus and
leukocytes using qPCR. First-strand complementary DNA was synthe-
sized using the iScript cDNA Synthesis kit (Bio-Rad Laboratories, Hercu-
les, California) and 100 ng total RNA according to the manufacturer's
instructions. qPCRwas carried out using the SsoFast EvaGreen Supermix
kit (Bio-Rad Laboratories, Hercules, California) to amplify the candidate
genes in the CFX96 Real-Time PCRDetection System (Bio-Rad Laborato-
ries, Hercules, California), with Glyceraldehyde-3-phosphate dehydro-
genase (Gapdh) as an endogenous control. Each experiment was
repeated twice independently.

2.6. Functional annotation of genes altered by TBI

Signature genes identified fromRNA-Seq analyseswere classified for
their biological functionsusingMolecular SignaturesDatabase (MSigDB,
http://www.broadinstitute.org/gsea/msigdb/index.jsp) (Subramanian
et al., 2005),which catalogs canonical pathways or functional categories
from various databases including Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG; http://www.genome.jp/kegg/pathway.html), BioCarta
(http://www.biocarta.com/genes/index.asp), Reactome (http://www.
reactome.org/), and gene sets derived from Gene Ontology (GO,
http://www.geneontology.org/). Fisher's exact test was performed to
calculate the enrichment p-values for each pathway or functional cate-
gory within each gene signature. Results were corrected for multiple
comparisons of hundreds of pathways using Bonferroni correction and
Bonferroni-corrected p b 0.05 was considered significant.

2.7. Relationship between gene expression and behavior phenotypes

Gene expression levels of the signature genes identified from RNA-
Seq analysiswere tested for the associationwith behavior traits (latency
time in the BarnesMaze test) by Pearson correlation. p value b 0.05 was
considered significant.

2.8. Reduced representation bisulfite sequencing (RRBS)

RRBS libraries were constructed from the DNA samples of hippo-
campus and leukocytes (n = 5 per treatment group per tissue)
(Meissner et al., 2005) by digesting 1 μg of genomic DNA with
MspI. Digested DNAwas then purified, end-repaired, and adenylated,
followed by ligation to Illumina TruSeq barcode adapters. Fragments
of size 150–300 bp were selected, bisulfite-treated, and sequenced
using an Illumina Hiseq 2500 System. Sequences were called using
standard Illumina software and bisulfite-converted reads were
aligned to the genome using BS Seeker (Chen et al., 2010). Methyla-
tion percentages at each cytosine were computed and compared be-
tween treatment groups using methylKit, an R package implanted
with logistic regression test, and the sliding linear model (SLIM)
(Wang et al., 2011) to adjust p-values to q-values to correct for mul-
tiple testing. Loci with methylation level differing by N25% between
groups and q b 0.05 were considered significant, and defined as dif-
ferentially methylated loci (DMLs). Differential genes from RNA-
Seq and local DMLs within 10 kb distance were compared for overlap
and correlated using Pearson correlation. RRBS data was deposited
to GEO with accession numbers GSE64984 (hippocampus) and
GSE79270 and GSE83776 (leukocytes).

2.9. Assessing overlap between TBI signatures and candidate genes of brain
disorders from human GWAS

We tested the consistency between the genes affected by TBI
from our study and those from human GWAS related to brain func-
tions in two ways. First, we cross-checked genes identified in our
study with top GWAS candidate genes reported in the GWAS catalog
(Hindorff et al., 2009) (http://www.ebi.ac.uk/gwas/) for direct
overlap. Second, we used a SNP Set Enrichment Analysis (SSEA)
(Makinen et al., 2014), which goes beyond the top GWAS hits and
tests the overall enrichment of the genes affected in our TBI animal
model for SNPs that demonstrated disease association in human
GWAS using Kolmogorov-Smirnov (KS) test and Fisher's exact test.
Bonferroni-corrected p b 0.05 by either KS test or Fisher's exact test
was considered significant.

2.10. Network models of TBI genomic signatures

We constructed tissue-specific Bayesian gene networks (BN) maps
based on global gene expression patterns to reflect gene-gene relation-
ship and organization. BNs are graphical models that depict genes as
nodes and connections between genes as edges defined based on global
genomic data. Network connections among genes in BNs have been
shown to accurately capture the functional and mechanistic relation-
ship of genes that can inform on disease mechanisms and help define
composite sets of molecular markers (Chen et al., 2008; Makinen et
al., 2014; Meng et al., 2016; Wang et al., 2012; Yang et al., 2009, 2010;
Zhang et al., 2013; Zhu et al., 2008). BNs for brain and blood were con-
structed based on genetic and transcriptomic data from several large-
scale human and mouse studies (Tu et al., 2012; Wang et al., 2012;
Millstein et al., 2011; Derry et al., 2010; Emilsson et al., 2008) each in-
volving hundreds of individuals, using a previously established method
by Zhu et al. (Zhu et al., 2008, 2007). These studies are all population-
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based and reflect broad spectrums of physiological states and, therefore,
can capture intrinsic gene-gene interactions across conditions. The large
sample sizes involved in these studies also ensure the statistical power
to infer accurate networks from each study. The edges in the BNs are de-
fined by conditional probabilities that characterize the distribution of
states of each gene given the state of its parents (Pearl, 1988). The net-
work topology defines a partitioned joint probability distribution over
all genes in a network. The likelihood of a BN network model given ob-
served transcriptomic data was determined using the Bayes formula.
For each dataset, 1000 Bayesian networks, each using different random
seeds, were reconstructed using Monte Carlo Markov Chain simulation
(Madigan, 1995). Bayesian Information Criteria was used to determine
the model with the best fit for each network. From the resulting set of
1000 networks, edges that appeared in N30% of the networks were
used to define a consensus network. To infer causal directions between
genes in a network, genetic information was used as priors (Zhu et al.,
2004). For each tissue, the union of nodes and edges from BNs of multi-
ple studies was used as the tissue-specific network, and the predictive
power of multi-study union networks has been supported previously
(Makinen et al., 2014; Meng et al., 2016; Wang et al., 2012). To derive
gene subnetworks affected by TBI, we used the signature genes identi-
fied from theRNA-Seq analysis as seeds to extract the topmost connect-
ed subnetworks within the BNs as described previously (Yang et al.,
2009). Network visualization was carried out using Cytoscape (Smoot
et al., 2011).

2.11. Identification of key drivers (KD) of TBI signatures

A previously established Key Driver Analysis (KDA) was used to
identify the potential key regulators, or key drivers (KDs) for the TBI sig-
nature genes based on the topology of BN networkmodels (Wang et al.,
2012; Yang et al., 2010). Conceptually, KDA aims to identify genes
whose network neighbors are more likely to be genes affected by TBI
than expected by random chance. Because these genes act as “hubs”
that are surrounded by TBI genes, it is more likely that they regulate
the activities of genes affected by TBI. Statistically, KDA takes as input
a set of genes G (i.e., genes affected by TBI in each tissue) and a genenet-
work N (BNs described above). For every gene Nk in the network N, the
neighboring genes of Nk within 3-edge distance were tested for enrich-
ment of genes in G using Fisher's exact test. Network genes that reach
Bonferroni-adjusted p b 0.05 were reported as KDs.

3. Results

3.1. TBI promotes large-scale alterations in the transcriptional activities of
genes

We conducted RNA-Seq analysis of hippocampus and leukocyte
samples from rats exposed to TBI (n = 5) or sham surgery (n = 5). At
p b 0.01, we identified 240 and 1052 differentially expressed genes,
111 and 739 differentially expressed transcripts, and 23 and 93 genes
showing alternative exon usage in hippocampus and leukocytes, re-
spectively (Table S1 in Dataset S1). We pooled all these genes to define
268 (121 pass false discovery rate or FDR b 10%) and 1215 (1092 pass
FDR b 10%) unique genes as gene “signatures” for hippocampus and leu-
kocytes, respectively, and used these signatures for downstream inte-
grative analysis. As illustrated in Fig. 2a, a majority of the hippocampal
signatures had increased expression, whereas the opposite is true for
leukocyte, suggesting directional differences in the transcriptional re-
sponse to TBI between the brain and the peripheral. Between the two
tissues, 18 common genes were identified (Fig. 2b), including Abca4,
Adipor1, Aqp1, Asap1, Cd63, Cdr2, Dennd2c, F5, Fam46a, Gch1, Gulp1,
Laptm4b, Lgals3bp, Lgmn, Lrg1, Oasl, Pls1, Vwf. When only considering
the gene-level changes, there were 16 shared genes, with 13 (Abca4,
Adipor1, Aqp1, Cd63, Cdr2, Dennd2c, Gch1, Gulp1, Laptm4b, Lgals3bp,
Lgmn, Oasl, Pls1) showing opposite expression changes and three
(Asap1, Lrg1, Vwf) showing the same direction in both tissues. Addition-
ally, we tested the reliability of the differential signals using qPCRexper-
iments on 7 shared genes (F5, Lgmn, Pls1, Cd63, Cdr2, Gch1, Vwf)
between hippocampus and leukocytes, and confirmed the differential
expression patterns observed in RNA-Seq in both tissues (Table S2 in
Dataset S1).

Among all the hippocampal signatures, there were 28 unique genes
showing expression differences at the levels of transcripts or exons but
not at gene level, indicative of the importance of TBI-induced alternative
splicing in these genes. Similarly, leukocyte signatures also contained
163 unique genes with altered transcriptional activity only at the tran-
script and exon levels, supporting even broader impact of TBI on the
gene alternative splicing events in blood cells. Additionally, many of
the signature genes are known splicing regulators, including the hippo-
campal signature Rbm47 and the leukocyte signatures Bcas2, Clasrp,
Lsm6, Luc7l3, Prpf4b, Qk, Rbm25, Rbm38, Rbpms2, Sfrs18, Snrnp40, and
Uhmk1.

Increasing evidence indicates that alternative splicing is an inherent
mechanism in the etiology of various diseases. Accordingly, TBI affected
alternative splicing of genes involved in diverse functions related to
neurons (Neurod1, Neurod4, P2ry4, P2ry1, Htr2c, Npy, Agrp), comple-
ment and coagulation (C3, F5, Vwf), transcriptions factors (Aff3,
Zbtb16), blood pressure (Sgk1, Ace, Angpt1, Gucy1a3, Gucy1b3), inflam-
mation (Tlr7, Ccl9, Cxcl2, Ccr1, Alox15, Alox12), mitochondria (Atp13a4,
Atp61f, Atp6v0d1, Cox6a1, Cox8a, Cox20, Ndufa8, Ndufa11, Ndufa12), lep-
tin signaling (Npy, Agrp), insulin signaling (Irs1), and extracellular ma-
trix (ECM) genes (Spp1, Mmp2, Bgn). The alternatively spliced genes
F5 and Zbtb16have been associatedwith hippocampal atrophy and con-
duct behavior, respectively in human GWAS.

3.2. Correlation between hippocampal transcriptome signatures of TBI and
behavior phenotypes

As hippocampus is important for cognitive function, we tested the
hippocampal gene expression changes with the effects of TBI on mem-
ory. Among the 240 hippocampal signatures with changes at the gene
level, 5 (Cldn4, Cldn5,Klhdc8a, Lrg1, and Lrrc10b) showed significant cor-
relation with the latency time detected in the Barnes maze (p b 0.05;
Fig. 3).

3.3. Functional categorization of hippocampal and leukocyte transcriptomic
signatures

We annotated the signature genes based on known pathways or
functional categories curated in KEGG, BioCarta, and Reactome, and
found enrichment of both tissue-specific and shared biological path-
ways between hippocampus and leukocytes (Table S3 in Dataset S1).
At Bonferroni-corrected p b 0.05,we found132 and 553 over-represent-
ed pathways for hippocampal and leukocyte signatures, respectively,
among which 97 were in common when only considering exact
matches in pathway names (Fig. 2c). When highly overlapping path-
ways with non-identical names were considered, the converging path-
ways between tissues are even greater, with majority of the
hippocampal pathways captured in the leukocyte pathways. The shared
pathways included axon guidance, neurotransmission, ECM, focal adhe-
sion, lysosome, transmembrane transport of small molecules, hemosta-
sis, platelet activation signaling and aggregation, immune system,
vascular smooth muscle contraction, class A1 rhodopsin-like receptors,
and various signaling pathways for insulin, glucagon, IGF, FGFR, NGF,
neurotrophin, PDGF, and TLR (representative shared pathways are illus-
trated in Fig. 2d). These results indicate that despite the small overlap in
individual signature genes and the largely opposite expression patterns
between hippocampus and leukocytes, at pathway level there is sub-
stantial overlap.

The main hippocampal-specific pathways included olfactory trans-
duction and growth hormone receptor signaling. In contrast, a larger



Fig. 2. Impact of TBI on transcriptome andDNAmethylome in hippocampus and leukocytes. A)Heatmaps of differentially expressed genes in both tissues. Blue to red colors indicate low to
high expression values. B) Overlap of differential transcriptomic signatures between tissues, and enrichment p value according to Fisher's exact test. C) Overlap of over-represented
molecular pathways in the signatures genes between tissues, and enrichment p value according to Fisher's exact test. D) Top shared pathways between tissues. Bars are the fold
enrichment of pathways and the values next to the bars are the Bonferroni-corrected enrichment p values according to Fisher's exact test. E) Heatmap of differential methylation loci
(DML) in both tissues. Blue to red colors indicate low to high expression values. F) Overlap of DML between tissues, and enrichment p value according to Fisher's exact test.
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number of pathways are leukocyte-specific, including cell cycle, oxida-
tive phosphorylation, interferon signaling, cardiomyopathy, PPAR
alpha, metabolic pathways for glucose, lipid and lipoproteins, fatty
acids and triglycerides, and signaling pathways for NCAM, Notch, TGF-
beta, WNT, PARKIN, mTOR, VEGF, and disease related gene sets for AD,
PD, depression, and Huntington's disease.
3.4. TBI induced large-scale DNA methylomic changes in hippocampus and
leukocytes

To identify epigenomic changes associated with TBI, we examined
the DNAmethylome using reduced representation bisulfite sequencing
(RRBS) that measures millions of potential DNA methylation sites at



Fig. 3. Correlation between TBI hippocampal signature genes and latency time in memory test. Gene expression level is represented by fragments per kilobase of transcript per million
RNA-Seq mapped reads (fpkm) on the x-axis and the Barnes maze latency time measured in the matched animals is shown on the y-axis. Correlation strength is indicated by the
correlation coefficient R and the p value.
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single base resolution.We found that TBI induced a large-scale switch of
themethylation patterns in both tissues: at FDR b 5%, 781 and 758of dif-
ferentially methylated loci (DMLs) showed hypomethylation and
hypermethylation inhippocampus, respectively. In leukocytes,we iden-
tified 915 and 892 DMLs with hypomethylation and hypermethylation,
respectively (Fig. 2e). Between the two tissues, there are 269 shared
methylation sites, which represent statistically significant overlap (Fig.
2f).

3.5. Relationship between differential methylation and differential
expression

To explore the potential relationship between DMLs and gene ex-
pression, we mapped the TBI DMLs in each tissue to adjacent genes
within 10 kb distance. We found in both hippocampus and leukocytes,
~50%, ~30%, and 16% of DMLs were located in the intergenic regions,
gene body (including 5′-UTR, intron, coding sequence, and 3′-UTR),
and the upstream or downstream regions of the genes, respectively
(Table S4 in Dataset S1). Assessing the methylome-transcriptome rela-
tionship revealed certain co-clustering of DMLs and gene signatures
(Fig. S1). For instance, 13 out of the 268 (4.8%) hippocampal signature
genes and 65 out of the 1215 (5.3%) leukocyte signature genes co-local-
ized with DMLswithin 10 kb distance; 7 hippocampal and 24 leukocyte
signature genes were significantly correlated with their local DMLs at
p b 0.05 based on Pearson correlation analysis. For example, gene
Atp6v0d1 showed a significant positive correlation with its local DML
(correlation coefficient r = 0.90, p= 2.18E-3), and gene Igf1r had a sig-
nificant negative correlation with its local DML (r=−0.86, p = 6.54E-
3) in leukocytes. Additionally, 32 out of the 268 (11.9%) hippocampal
signature genes and 130 out of the 1215 (10.7%) leukocyte signature
genes co-localizedwith DMLswithin 50 kbdistance (Table S5 in Dataset
S1), suggesting cis-regulation of gene expression by the local DMLs. No-
tably, some of the genes containing local DMLs are transcription factors,
including Irx6 and Zbtb16 from hippocampus and Dpf3, Foxo3, and
Zfp219 from leukocytes, or epigenetic factors such as Gadd45g,
Morf4l1, and Rgs1 from leukocytes, which could in turn trans-regulate
downstream target genes.

3.6. Identification of key drivers and gene subnetworksmediating the effects
of mTBI in hippocampus and leukocytes

To explore the gene-gene relations among the hippocampus or leu-
kocyte signature genes and to identify potential key perturbation points
of TBI that triggered the transcriptomic changes, we employed multiple
data-driven Bayesian networks (BNs) (Zhu et al., 2004, 2008) that elu-
cidate gene-gene regulatory relationships based on brain and blood ge-
nomic data of several large independent human and rodent populations
(detailed in Materials and methods). Using these networks and a net-
work topology-based key driver analysis (KDA),we identified candidate
key driver (KD) genes whose network neighboring genes highly over-
lapped with the signature genes for hippocampus and leukocytes,
among which 127 KDs were common to both tissues (Table S6 in
Dataset S1). As illustrated in Fig. 4a, a subnetwork containing two
sharedKDs,Anxa2 andOgn, was highly enrichedwithboth hippocampal
and leukocyte signatures, although the signature genes themselves did
not overlap. Other notable shared KDs between tissues include ECM
genes such as Fmod, Dcn, Pcolce, Col1a1, Col3a1, and Col23a1 and tran-
scription factors Tcf7l2 and Cebpd. Some of these KDs also form a
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Fig. 4. Shared subnetworks between hippocampal and leukocyte signature genes. A) A subnetwork centered at shared key drivers (KDs) Anax2 and Ogn. B) A subnetwork centered at
shared KDs Fmod, collagen genes, and Cebpd. Larger red nodes are the KDs; blue and yellow nodes denote hippocampal and leukocyte signature genes, respectively. Grey nodes are
network genes in the neighborhood of KDs that are not affected by TBI.

Table 1
Overlapping genes between TBI hippocampal signatures or KDs and human GWAS genes
of brain disorders. Human GWAS candidate genes were derived from the GWAS catalog
(p b 1e-5).

GWAS disease Overlapping gene in TBI hippocampal signature

Alcohol
consumption/dependence

CUX2; SLC26A4; ZDHHC21; ESR1; SERINC2
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subnetwork (Fig. 4b). Both subnetworks coordinate genes primarily
functioning in ECM-receptor interaction, complement and coagulation
cascades, and focal adhesion. The network-level co-localization of
TBI signature genes between the two tissues agrees with the pathway-
level overlap observed above, and suggests that TBI affects similar
functional processes in both tissues through shared regulatory
mechanisms.
AD APOE; NMU; PCDH11X; PPP1R3B; PROX1; SCARA3;
SMC2; TTLL7; ADAMTS9; ARHGAP20; CAMK4; ELMO1;
LIPC; PDE7B; PLEKHG1; SP6

ADHD BCL11A; CDH13; LRRC7; LYPLAL1; NR4A2; SEMA3A;
TCEB1; TGFB2; TSHZ2; ZIC5; PAWR; NDN, ESRRB;
ADAMTS2; LRRN3; TYRP1

Bipolar disorder ANK3; COLEC12; DGKH; DPP10; IRF2BP2; ITIH3;
MRPS23; MSI2; NFIA; PDE10A; PGM5; PPM1M; SIAE;
SP8; TTC39B; UACA; CGNL1; DMTF1; FAT4

Bipolar disorder and
schizophrenia

ARC; ATP6V1B2; BAI1; CACNA2D1; CMYA5;
COMMD10; CST7; CTNND2; DDX52; DMD; HACE1;
IRX1; KAT2B; MRVI1; MYO1E; PRKCQ; PTPRN2; SIM1;
SLC39A12; TMEM212; TTC39B; VPS13C

Brain connectivity CNTN4; EPHA7; NEDD4
Brain structure BOK; CADPS2; GRIN2B
Cognitive function PTPRO; AFAP1L2; CDH13; FAT4; GABRQ; GRIN2B;

HCCS; IMMP2L; IRX1; IRX2; JUN; KIAA1217; KLHL1;
LHX2; LIPC;MCTP2; NR2F2; PLCB1; RIT2; TOX; TSHZ3;
UNC13C; VANGL2; ZNF788; LMO4

Word reading NOS1AP; TACSTD2; TYRP1
Working memory CLDN1; DRD2; LPHN3
Conduct disorder C1QTNF7; MCTP2; NR2F2; RIT2; ST8SIA4; ZBTB16;

KCNA5; PDE10A
Eating disorders CAMK1D; DLGAP1
Hippocampal
atrophy/volume

APOE; COL18A1; F5; MAGI2; MAL2; DPP4; MSRB3

Intelligence CNTN4; COL1A2; GYPC; KIF16B
Major depressive disorder ADCYAP1R1; CCND2; CDH9; EMP1; GRIN2B; HAPLN1;

HOMER1; IGFBP3; KCNH5; NDFIP2; NEUROD6; PCLO;
RASGEF1B; ATP6V1B2

Parkinson's disease BMP4; DLG2; GPRIN3; RIT2; RORA; SEMA5A; STK39;
VPS13C; WNT3

PTSD COBL; PCSK2; PRKCA; SLC4A5
Schizophrenia ANK3; BMP7; CDH13; CXCL12; GNAL; NRGN;

PCDH20; PDC; PTGS2; RORA; SNX7; TCF4; VPS13C
Smoking behavior BDNF; CHRNA3; CHRNA5; KCND2; MAOB; PDE1C
3.7. Relevance of hippocampal and leukocyte signatures and KDs to human
diseases

TBI has been associated with a number of brain disorders. To assess
the relevance of our signals from the rodent TBI model to human path-
ophysiology, we compared the hippocampal and leukocyte signature
genes as well as the KDs to human GWAS of brain related diseases or
traits. Human GWAS genes of brain disorders most likely play causal
roles in disease development, because genetic variations that drive
changes in genes or gene products are inherited at birth and precede
disease manifestation. If TBI affects these disease genes uncovered in
human genetic studies, it is likely that TBI will also impose predisposi-
tion to brain disorders. When directly comparing with top candidate
genes curated in the GWAS catalog, we found numerous overlapping
genes between TBI signature or KD genes and top GWAS hits for a
broad range of brain disorders including AD, attention deficient hyper-
active disorder, autism, depression, addiction, PTSD, schizophrenia,
and PD (representative overlapping genes in hippocampus shown in
Table 1; full lists for both tissues in Table S7 in Dataset S1). When
using a SNP set enrichment analysis (SSEA) that utilized full sets of
GWAS results we had accessed for AD (Heinzen et al., 2010; Lambert
et al., 2013; Naj et al., 2011), cognitive traits (Seshadri et al., 2007), psy-
chiatric disorders (Psychiatry Consortium, 2009), and smoking behavior
Tobacco and Genetics Consortium, 2010), we found that human
orthologs of the TBI signature genes and KDs derived from both hippo-
campus and leukocytes were significantly enriched for genetic poly-
morphisms associated with many of these diseases or traits (Table S8
in Dataset S1).
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4. Discussion

We utilize systems biology strategies that have yielded break-
throughs in our understanding of mechanisms of complex disorders in
recent years (Chen et al., 2008; Huan et al., 2013; Makinen et al.,
2014; Meng et al., 2016; Narayanan et al., 2014; Schadt et al., 2005;
Wang et al., 2012; Yang et al., 2009, 2010; Zhang et al., 2013) to deter-
mine the impact of TBI on fundamental gene regulatory mechanisms
and biological pathways underlying pathogenesis. The majority of the
genetic causal risks of complex human diseases such as Alzheimer's dis-
ease involve alterations of key pathogenic pathways (Lambert et al.,
2013; Manolio, 2010). We found that transcriptomic signatures in hip-
pocampus and in leukocytes converge on functional categories of
genes modulating important cellular functions such as inflammation,
metabolism, and cell communication. The gene regulatory mechanisms
uncovered from the current study span from epigenetic regulation and
alternative splicing to gene network regulation. Alterations of these reg-
ulatory mechanisms studied in our rodent model of TBI could explain
how the incidence of TBI alters the course of brain homeostasis and in-
creases the risk of related brain pathologies in humans. This possibility
was verified by integrating the results of rodent gene signatures with
human GWAS, which catalog putative causal elements in human dis-
eases. We found that key signature genes and their regulators affected
by TBI in rodents have been associated with brain disorders with
known association to TBI. The overall results of our system biology
study provide evidence for the impact of TBI on core aspects of gene reg-
ulation, which offers critical mechanistic information at the molecular
level and can be used as novel elements of diagnosis and treatment.
Compared to previous genomic profiling studies of TBI (von Gertten et
al., 2005; Rojo et al., 2011; Samal et al., 2015; Redell et al., 2013;
Lipponen et al., 2016), our study differs in the molecular features
assessed (gene expression only in previous studies vs. the combination
of epigenome, gene expression, and alternative splicing in the current
study), network modeling approaches (literature-based networks in
previous studies vs data-driven, tissue-specific networks used here), tis-
sues, time points, and TBI severity, which offer unique mechanistic as-
pects of the TBI pathology.

DNA methylation is a major epigenetic mechanism responsible for
changing the program of genes thus deviating towards disease states
(Lardenoije et al., 2015; Szyf et al., 2016). An increasing body of evi-
dence indicates that predisposition to various neurological and psychi-
atric disorders are saved as epigenetic modifications (Jakovcevski and
Akbarian, 2012; Tsankova et al., 2007), and blast exposure results in
changes in neuronal DNA methylation (Haghighi et al., 2015). Our re-
sults showing the impact of TBI on DNA methylation of multiple genes
in both hippocampus and leukocytes provide the opportunity to exam-
ine how the effects of TBI can be saved with the potential to regulate
gene transcription. Indeed, the action of TBI on the epigenome was re-
vealed on select DNA methylomic alterations that co-localized and cor-
related with transcriptomic signature genes. It should be noted that
correlation is not equal to causality and further validation experiments
are warranted to investigate the causal relationship between the epige-
nome and the transcriptome. Alternative splicing is emerging as anoth-
er gene regulatory mechanism by which the genome influences the
etiology of various diseases such as AD (Xiong et al., 2015). Our results
show that TBI affects numerous alternatively spliced genes in the hippo-
campus and leukocytes involved in functions such as coagulation, blood
pressure, inflammation, energy management, and ECM regulation. Fur-
ther examination of these genes could guide the identification of partic-
ularly vulnerable points and mechanisms through which the TBI
pathology could deviate to other disorders. For example, many of the
signature genes are known splicing regulators such as Rbm47, Sfrs18,
Snrnp40, and Uhmk1. Among these, Uhmk1 has been recently related
to genetic disposition to cerebral visual impairment (Bosch et al.,
2016) while Rbm47 confers genetic risk to high blood pressure and car-
diovascular disease (Surendran et al., 2016), and both traits are
common aspects of TBI pathology. Our results portray both epigenomic
modification and alternative splicing events as putative mechanisms by
which TBI impacts gene network programming and disease
predisposition.

To date, perturbations in gene network regulation has also been rec-
ognized as a key component of the pathogenesis of neurological disor-
ders (Narayanan et al., 2014; Zhang et al., 2013). We identified the
impact of TBI on the organization of select networks of genes under reg-
ulatory control of key driver genes, which may be responsible for the
cascade of cellular events involved in the TBI pathology. We found
that TBI affects hippocampal and leukocyte gene networks orchestrated
by key driver genes associated with the extracellular matrix (e.g., Fmod,
Dcn, Pcolce, collagens), transcription factors (e.g., Tcf7l2, Cebpd), and
other functions discussed below (e.g., Anxa2, Ogn). These master
genes are located at the center of gene subnetworks surrounded by
TBI signature genes, and are likely key regulatory points of these net-
works. The extracellular matrix genes Fmod and Pcolce have been re-
cently experimentally validated as key regulators of cognitive and
metabolic functions (Meng et al., 2016). Tcf7l2 and Cebpd are key tran-
scription factors involved inmetabolic processes, diabetes and fat differ-
entiation. The key driver Anxa2 (annexin A2) has been associated with
brain tumor formation (Zhai et al., 2011) and the long-term neurologi-
cal outcomes of focal embolic stroke (Wang et al., 2014). In turn, the fact
thatOgn (osteoglycin) is reduced in the amygdala of animals exposed to
stress (Jung et al., 2012), suggests that this gene can be an important
link between TBI and psychiatric-like disorders such as anxiety and de-
pression (Max, 2014). The fact that TBI-affected genes are tightly con-
nected through key drivers in gene regulatory networks constructed
from completely independent studies supports their functional related-
ness and their synchronized actions. The identification of key regulatory
genes of the entire network spectrum affected by TBI provides a frame-
work for understanding the integrated actions of multiple pathways on
the TBI pathology, and offers plausible key interventional targets
(Kasarskis et al., 2011; Yang et al., 2012; Schadt et al., 2009).

Although an increasing body of information indicates that TBI is a
risk factor for a range of neurological disorders such as CTE, PTSD, AD
(Levin and Diaz-Arrastia, 2015; Rabinowitz and Levin, 2014), mecha-
nisms involved remain elusive. In our rodent model, we found that
the signature genes Cldn4, Cldn5, Klhdc8a, Lrg1, and Lrrc10b are correlat-
ed with the latency time in the Barnes maze. Claudins 4 and 5 belong to
a family of genes whose protein products are components of tight junc-
tions and regulate permeability of molecules to the intercellular space.
Claudin-5 is a tight junction protein that connects endothelial cells,
and is considered important for maintaining permeability of molecules
within the extracellular space (Doherty et al., 2016). Therefore, it is pos-
sible that genes like Claudins could play a role in the regulation of the
BBB, which is a prevalent aspect in the TBI pathology. In turn, the
claudin gene CLDN1 has been associated with working memory in
human GWAS (Table 1). The actions of klhdc8a, Lrrc10b, and Lrg1 in
the brain are poorly understood. However, it has been described that
the expression of klhdc8a is elevated in human glioblastomas (Mukasa
et al., 2010), and that Lrg1 is associated with regulation of stress
(Stankiewicz et al., 2015) and recollection of contextual fear memories
(Barnes et al., 2012). Although none of these genes have been studied
in the context of TBI, some of their known functions overlap with phys-
iological manifestations of the TBI pathology. By integrating our rodent
findings with human GWAS, we found significant overlap between the
rodent TBI genes and candidate genes in human GWAS for several neu-
rodegenerative diseases such as AD, cognitive disorders, PTSD and other
neuropsychiatric disorders. In particular, we found 16 hippocampal
genes including APOE, which are known to provide genetic predisposi-
tion to AD (Lupton et al., 2016), and 9 leukocyte genes that overlapped
with AD genes. Additionally, four hippocampal genes and one leukocyte
gene have known association with human PTSD. Further, we found 14
hippocampal and 5 leukocyte genes are associated with major depres-
sive disorders in humans. These findings provide important genomic

http://topics.sciencedirect.com/topics/page/Endothelium
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leads to elucidate how the TBI pathology can escalate to neurological/
psychiatric disorders, and suggest specific interventional targets.

Our system biology approach was key to reveal a genome-scale
link between central and peripheral gene regulation as studied in cir-
culating leukocytes in response to TBI. We chose to examine the ge-
nomics of blood leukocytes since they are abundant in the circulation
and have been lately found to serve as a source of biomarkers for AD
(Rezai-Zadeh et al., 2009) and PD (Masliah et al., 2013). The compar-
ative analysis of genomic signatures revealed homology between
leukocytes and hippocampus at gene-, epigenome-, pathway-, and
network levels related to vascularity, cell integrity, and immune re-
sponse. These changes are likely a reflection of the early events
post-TBI related to breakdown of the BBB and changes in systemic
inflammation in response to injury (Kulbe and Geddes, 2016). The
18 common signature genes between the brain and peripheral
could point to new leads for leukocyte genomic markers that trace
the gene activities in the hippocampus to assess specific functional
implications. For example, the share gene F5, involved in coagulation
process, has been associated with hippocampal atrophy and conduct
behavior in human GWAS. In addition, there was a substantial over-
lap at pathway and network levels between hippocampus and leuko-
cytes, and the great diversity of common pathways harmonizes with
the characteristic broad symptomatology of TBI such a blurred vision
(rhodopsin-like receptors), headache, nausea, and dizziness (Levin
and Diaz-Arrastia, 2015; Rabinowitz and Levin, 2014). The shared
pathways and networks could be used to develop composite geno-
mic biomarkers that aggregate the information from gene expression
level, alternative splicing status, and DNA methylation patterns of
leukocyte genes within a shared pathway or gene network to accu-
rately predict the pathological state of the brain and link to TBI
phenotypes.

In summary, our comprehensive systems investigation shows that
concussive injury affects fundamental aspects of gene regulatory mech-
anisms that maintain brain homeostasis, including epigenomic pro-
gramming, alternative splicing factors, transcription factors, and novel
network regulators. The alterations induced by TBI in all of these gene
regulatory components provide molecular support for the emerging
clinical reports about the risk posed by TBI on complex human diseases.
This information can be used as elements of prognosis as well as a
framework to start examining mechanisms by which TBI pathology
may contribute to the pathogenesis of select brain disorders. Moreover,
our results are unique to identify the effects of TBI on key driver genes
that have the capacity to direct main pathways involved in the TBI pa-
thology, and suggest key perturbation points which are plausible inter-
ventional targets for TBI. From the biomarker perspective, our results
reveal important homologies between central and peripheral gene reg-
ulatory mechanisms at transcriptome, epigenome, pathway, and net-
work levels that could serve as basis for novel strategies to identify
composite biomarkers of TBI using easily accessible peripheral samples.
Lastly, the intersection between numerous genes altered in the rodent
model of TBI with human GWAS could account for the risk posed by
TBI to neurological and psychiatric disorders in humans. Overall, our re-
sults could serve as a platform to investigate the influence of TBI on the
etiology of brain disorders.
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