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ABSTRACT

Lipopolysaccharide (LPS) is a bacterially-derived
endotoxin that elicits a strong proinflammatory
response in intestinal epithelial cells. It is well estab-
lished that LPS activates this response through
NF-kB. In addition, LPS signals through the
mitogen-activated protein kinase (MAPK) pathway.
We previously demonstrated that the Krüppel-like
factor 5 [KLF5; also known as intestine-enriched
Krüppel-like factor (IKLF)] is activated by the MAPK.
In the current study, we examined whether KLF5
mediates the signaling cascade elicited by LPS.
Treatment of the intestinal epithelial cell line, IEC6,
with LPS resulted in a dose- and time-dependent
increase in KLF5 messenger RNA (mRNA) and protein
levels. Concurrently, mRNA levels of the p50 and p65
subunits of NF-kB were increased by LPS treatment.
Pretreatment with the MAPK inhibitor, U0126, or the
LPS antagonist, polymyxin B, resulted in an attenu-
ation of KLF5, p50 and p65 NF-kB subunit mRNA lev-
els from LPS treatment. Importantly, suppression of
KLF5 by small interfering RNA (siRNA) resulted in a
reduction in p50 and p65 subunit mRNA levels and
NF-kB DNA binding activity in response to LPS.
LPS treatment also led to an increase in secretion
of TNF-a and IL-6 from IEC6, both of which were
reduced by siRNA inhibition of KLF5. In addition,
intercellular adhesion molecule-1 (ICAM-1) levels
were increased in LPS-treated IEC6 cells and this
increase was associated with increased adhesion of
Jurkat lymphocytes to IEC6. The induction of ICAM-1
expression and T cell adhesion to IEC6 by LPS were

both abrogated by siRNA inhibition of KLF5. These
results indicate that KLF5 is an important mediator
for the proinflammatory response elicited by LPS in
intestinal epithelial cells.

INTRODUCTION

The gastrointestinal tract is under constant assault by a wide
variety of microbial pathogens. The body’s first line of defense
is the innate immune response. This requires the recognition of
pattern-associated membrane proteins (PAMPs), which are
bacterial components, by sensors called pattern recognition
receptors (PRRs). Toll-like receptors (TLRs) are examples
of these PRRs (1). A TLR is made up of single-spanning
transmembrane domain, extracellular leucine-rich repeats
and a cytosolic TIR (Toll/interleukin-1 receptor) domain.
To date, 13 TLRs have been identified in mice and 11 in
humans (2). TLR4, which is recognized by the bacterial endo-
toxin, lipopolysaccharide (LPS), utilizes a dual MyD88-
dependent and -independent pathway (3–5). Both pathways
lead to the activation of NF-kB and the subsequent induction
of expression of proinflammatory genes (6–9).

Alternatively, LPS can trigger proinflammatory cytokine
gene expression by activation of a number of mitogen-
activated protein kinase (MAPK) pathways that include
extracellular signal-regulated kinase1/2 (ERK1/2), p38 and
c-jun-N-terminal kinase (JNK). The three MAPK pathways
are regulated by different upstream components: ERK1/2
by MAP/extracellular-regulated kinase1/2 (MEK1/2); p38
by protein kinase R (PKR); and JNK by MEK1/4 (10,11).
Previous reports indicate that endotoxin exposure results in
the expression of tumor necrosis factor-a (TNF-a) through the
Ras/MEK signaling pathway (10,12–14). Inhibition of the
Ras/MEK pathway by U0126, a MEK1/2 inhibitor, results
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in a reduction of cytokine secretion (15). Furthermore, LPS
also induces the expression of the early response gene, Egr-1, a
downstream target of MEK1/2 (13,16). Collectively, these
published results indicate that LPS can activate cellular
response through the MAPK.

Krüppel-like factors (KLFs) are zinc finger-containing tran-
scription factors that exhibit homology to Krüppel from
Drosophila (17,18). Two KLFs are highly expressed in the
intestinal epithelium: KLF4 (also known as gut-enriched
Krüppel-like factor or GKLF), found in upper villus region,
and KLF5 (also known as intestine-enriched Krüppel-like fac-
tor or IKLF), present in the lower crypt compartment (19,20).
Expression of KLF4 is associated with epithelial differentia-
tion and post-mitotic arrest (21). Recently, KLF4 has been
shown to be regulated by LPS in macrophages (22). Our earlier
studies indicate that KLF5 is a pro-proliferative regulator in
cultured fibroblasts and intestinal epithelial cells (23–25).
Studies also demonstrate that KLF5 is activated by the
MAPK, ERK1/2, through Egr-1 (24,26). Because LPS also
activates the MAPK pathway, we sought to determine whether
KLF5 can be activated by LPS in cultured intestinal epithelial
cells and to determine the consequence of such activation on
signals elicited by LPS. We show that treatment of intestinal
epithelial cells, IEC6, with LPS leads to the induction in KLF5
expression and subsequently KLF5-dependent induction in
NF-kB expression. We also demonstrate that KLF5 is crucial
in mediating LPS-elicited proinflammatory responses due to
its critical involvement in the induction of expression of proin-
flammatory genes. These results indicate an important role
played by KLF5 in innate immunity in response to LPS.

MATERIALS AND METHODS

Cell culture

The intestinal epithelial cells, IEC6, were maintained in
DMEM containing 5% fetal bovine serum (FBS), 0.1 U/ml
insulin and 1% streptomycin. Upon reaching confluency, cells
were treated with varying concentrations of E.coli 0111:B4
LPS (List Biologicals; Campbell, CA) or vehicle only (water)
for various periods of time. Where indicated, cells were also
treated with 10 mg/ml polymyxin B (PMXB) (Sigma), a LPS
antagonist (27); 1 mM U0126 (Promega), a MAPK inhibitor
(15); or 10 mM Na-p-Tosyl-L-lysine chloromethyl ketone
(TLCK; Sigma), a NF-kB inhibitor (28). The human lympho-
cytic leukemic T cell line Jurkat E6.1 was obtained from the
American Type Culture Collection (ATCC, Rockville, MD)
and maintained in RPMI medium 1640 (Invitrogen, Grand
Island, NY) supplemented with 10% (v/v) heat-inactivated
FBS (Invitrogen).

Northern blot analysis

Total RNA was extracted using the TRIzol reagent (Invitro-
gen). RNA was dissolved in deionized water and quantified
using a spectrophotometer. Twenty micrograms of RNA were
loaded into a denaturing agarose gel (1.2% agarose, 10·
MOPS buffer, 37% formaldehyde and DEPC-treated water)
and followed by transfer to nylon membrane (Hybond;
Amersham). The full-length cDNA probe for mouse KLF5
was kindly provided by Dr J. Lingrel (19). Complementary

DNA probes encoding the p50 and p65 subunits of NF-kB and
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) were
generated by RT–PCR using the following primer pairs:
p50, forward primer 50-CACCTAGCTGCCAAAGAAGG-30

and reverse primer 50-CAGTGAGGGACTCCGAGAAG-30;
p65, forward primer 50-GGCCTCATCCACATGAACTT-30

and reverse primer 50-GAGGTACCATGGCTGAGGAA-30;
GAPDH, forward primer 50-ACCCAGAAGACTGTGGAT-
GG-30 and reverse primer 50-GGATGCAGGGATGATG-
TTCT-30. Probes were labeled with [a-32P]dATP using a
random-primed labeling kit (Stratagene). The membrane
was hybridized in a QuikHyb solution (Stratagene), washed
under high-stringency conditions and scanned with a phospho-
rimager (Amersham).

Western blot analysis

Cells were subjected to a 1· lysis buffer (Cell Signaling). Cell
lysates were centrifuged at 10 000 g for 20 min and super-
natants were collected. Protein concentrations were measured
using BCA solution (Sigma) at 450 nm. Fifty micrograms of
proteins per lane were loaded into a 10% Tris–HCl Criterion
gel (Bio-Rad) and then transferred onto a nitrocellulose mem-
brane (Schleicher & Schuell). A rabbit polyclonal KLF5 anti-
body (Biosource International/QCB; Hopkinton, MA) was
generated against amino acids 106–122 of the mouse KLF5
(19). Antibodies against intercellular adhesion molecule-1
(ICAM-1) and actin were purchased from Santa Cruz and
Calbiochem, respectively.

Electroporation

Cells cultured in 25 · 150 mm culture dishes (Corning) were
washed with HANKS buffer, trypsinized, centrifuged and
resuspended in DMEM (antibiotic- and serum-free). Ten
micrograms of non-specific small interfering RNA (siRNA)
or siRNA specific for KLF5 were introduced into 5 · 106 cells
in a 0.5 mm cuvette (Bio-Rad), which was then subjected to
electroporation using a Bio-Rad Gene Pulser Xcell (250 V and
500 Farads). The cells were then plated in 12-well dishes with
standard media and incubated for an additional 24 h before
treatment with LPS. The KLF5-specific siRNA sequence was
50-AAC CCG GAU CUG GAG AAG CGA-30 (Dharmacon).
The non-specific siRNA sequence was 50-GCG CGC UUU
GUA GGA UUC G-30.

Electrophoretic gel mobility shift assay

Nuclear proteins from mock-, non-specific siRNA- or KLF5
siRNA-transfected IEC6 cells treated with vehicle (water) or 5
mg/ml LPS were extracted according to the manufacturer’s
protocol (Panomics). A consensus NF-kB-binding sequence
(50-AGT TGA GGG GAC TTT CCC AGC C-30) (29) was
labeled with [g-32P]ATP (Amersham) using T4 polynucleotide
kinase (Invitrogen). For binding assays, 5 mg of nuclear
extracts were incubated at room temperature for 20 min
with radiolabeled NF-kB-binding sequence in DNA binding
buffer (20% glycerol, 5 mM MgCl2, 2.5 mM DTT, 250 mM
NaCl, 50 mM Tris–HCl, pH 7.5 and 0.25 mg/ml poly(dI–dC).
The protein–DNA complexes were resolved by 5% non-
denaturing polyacrylamide gel electrophoresis. For competi-
tion experiments, 150-fold excess of unlabeled NF-kB probe
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was pre-incubated with nuclear extracts prior to incubation
with the labeled NF-kB probe.

Quantification of TNF-a and IL-6

Cells were treated with LPS or vehicle control for various
periods of time. Supernatants were collected and assayed
for the content of TNF-a and IL-6 by using enzyme-linked
immunosorbent assay (ELISA) kits purchased from Bio-
source. Cytokines were measured using a microplate reader
(Molecular Devices).

Cell adhesion assay

Cell adhesion assays were performed using published
approach (30,31). Cultured human leukemic T lymphocyte,
Jurkat E6.1, were labeled with 5 mM of the fluorescent dye,
20,70-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein ace-
toxymethyl ester (BCECF-AM; Molecular Probes, Eugene,
OR) for 30 min at 37�C. Cells were washed twice and
resuspended in RPMI (GIBCO). IEC6 cells were cultured
in 12-well plates, pretreated with 5 mg/ml of LPS for 24 h
and incubated with the fluorescently labeled Jurkat E6.1 cells
at 37�C for 2 h. The co-cultured cells were washed twice with
phosphate-buffered saline (PBS), and lysed in Tris/EDTA/
NaCl with 1% Triton X-100. The lysed cells were then incu-
bated in a revolver for 30 min, followed by centrifugation at
10 000 g for 30 min. The fluorescence intensity of the super-
natant was measured at 520 nm using a Hitachi F4500 fluo-
rescence spectrophotometer (Hitachi, Danbury, CT; excitation
at 492 nm).

RESULTS

LPS activates KLF5 gene expression in IEC6 cells

We first determined whether LPS leads to an increase in KLF5
gene expression by treating IEC6 cells with 5 mg/ml of E.coli
0111:B4 LPS for various periods of time. As shown in
Figure 1A, the addition of LPS to the cells led to a relatively
acute but transient increase in the level of KLF5 messenger
RNA (mRNA) after 2 h of treatment. In contrast, there was no
such increase in cells treated with water control (Figure 1B).
Figure 1C is a dose–response study in IEC6 cells treated with
LPS for 2 h. As seen, there was a dose-dependent increase in
the KLF5 mRNA levels. We used a concentration of 5 mg/ml
LPS in all subsequent experiments.

We then measured the levels of KLF5 protein in IEC6
cells treated with LPS. Figure 1D shows that LPS treatment
of IEC6 cells led to a sustained increase in the levels of KLF5
from 2 to 12 h. In contrast, no such increase was observed in
cells treated with water control (Figure 1E). These results
indicate that LPS leads to an increase in KLF5 transcript
levels followed by an increase in KLF5 protein levels in
IEC6 cells.

LPS activates NF-kB subunit gene
expression in IEC6 cells

The transcription factor NF-kB plays an important role
in mediating the proinflammatory response of cells to
external stresses (32). Previous studies indicate that LPS
activates NF-kB by a post-translational mechanism involving

modification and degradation of the inhibitor of NF-kB, IkB,
followed by nuclear translocation of NF-kB (33,34). We
sought to determine whether LPS can regulate NF-kB activity
at the level of transcription in IEC6 cells. Figure 2A shows

Figure 1. Northern and western blot analyses of KLF5 mRNA and protein in
IEC6 cells in response to LPS. IEC6 cells were treated from 0 to 24 h with 5 mg/
ml E.coli 0111:B4 LPS (A) or water control (B). Twenty micrograms of total
RNA from each time point was analyzed by northern blot analysis using labeled
cDNA probe for KLF5 or GAPDH (as a loading control.). (C) IEC6 cells were
treated for 2 h with a range of LPS concentrations from 0 to 10mg/ml. Blots were
hybridized with cDNA probe for KLF5 or GAPDH. For protein measurement,
IEC6 cells were treated from 0 to 12 h with 5 mg/ml LPS (D) or water control
(E). Fifty micrograms of protein were loaded per lane and examined by western
blot using antibodies against KLF5 or actin (as a loading control).

Figure 2. Northern blot analyses of the effects of LPS, PMXB and U0126 on
expression of KLF5 and the p65 and p50 subunits of NF-kB in IEC6 cells. (A)
IEC6 cells were treated with 5 mg/ml LPS for the time periods specified before
extraction of RNA. Twenty micrograms of RNA were loaded in each lane and
probed with cDNA encoding KLF5, and the p65 and p50 subunits of NF-kB.
GAPDH was used as a loading control. (B) IEC6 cells were pretreated with 10
mg/ml PMXB for 30 min (lanes 3 and 4) and then treated with 5 mg/ml LPS
(lanes 2 and 4) or water control (lanes 1 and 3) for 2 h before being analyzed for
the mRNA levels of KLF5, and the p65 and p50 subunits of NF-kB. (C) IEC6
cells were pretreated with water control (lanes 1 and 2), the vehicle, DMSO
(lanes 3 and 4), or the MAPK inhibitor, U0126 (lanes 5 and 6), for 30 min and
followed by treatment with 5 mg/ml LPS (lanes 2, 4 and 6) or water control
(lanes 1, 3 and 5) for 2 h before northern analyses for the mRNA stated. GAPDH
was used as a loading control in both panels.
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that LPS treatment of IEC6 cells led to an increase in
the levels of mRNA for the p65 and p50 subunits of
NF-kB, as well as those for KLF5. The induction of
NF-kB subunit transcripts by LPS has not previously been
reported.

We then determined the effect of PMXB, a LPS antagonist
that interferes with the interaction of TLR4 and LPS (27), on
expression of KLF5 and NF-kB subunits in IEC6 cells fol-
lowing LPS treatment. Figure 2B shows that cells treated
with LPS alone had increased mRNA levels of KLF5, and
p65 and p50 subunits of NF-kB (lane 2). The levels of
these transcripts were also increased when cells were treated
with PMXB alone (lane 3). This finding is consistent with a
recent observation that PMXB had a direct effect on
monocyte-derived human dendritic cells including activation
of ERK1/2 (35). However, when cells were treated by both
LPS and PMXB, there was a nearly complete abolishment of
the three mRNAs (lane 4). This reveals that the induction in
KLF5 expression is a response to LPS treatment, possibly
through TLR signaling.

Previous studies demonstrate that LPS induces cellular
response through the MAPK pathway (13). Our recent studies
indicate that KLF5 is regulated by MAPK (24). To determine
whether LPS can stimulate KLF5 through the MAPK pathway,
we pretreated IEC6 cells with U0126, a MAPK inhibitor. In
both water control- and vehicle- [dimethyl sulfoxide (DMSO)]
treated cells, the levels of KLF5, p50 and p65 transcripts were
significantly elevated in the presence of LPS (Figure 2C; lanes
2 and 4, respectively). However, when cells were treated with
U0126, the increase in KLF5 and NF-kB subunit mRNAs in
response to LPS was abrogated (Figure 2C; lane 6). These
results indicate that LPS-stimulated KLF5 expression is medi-
ated by the MAPK pathway, as is expression of the two NF-kB
subunits.

Inhibition of KLF5 by siRNA results in
abrogation of LPS-stimulated expression
of NF-kB subunits in IEC6 cells

We next determined whether the LPS-stimulated KLF5
expression in IEC6 cells is responsible for the increased
expression of NF-kB subunits. This was accomplished by
siRNA. Figure 3A shows that the increased levels of KLF5
mRNA in response to LPS were significantly attenuated in
cells transfected with KLF5-specific siRNA as compared to
mock-transfected cells or cells transfected with non-specific
(NS) siRNA. Importantly, increased mRNA levels of the p65
and p50 NF-kB subunits in response to LPS were also reduced
in cells transfected with KLF5-specific siRNA as compared to
mock-transfected cells or cells transfected with non-specific
siRNA (Figure 3A). Moreover, NF-kB binding activity in
response to LPS was significantly reduced in cells transfected
with KLF5-specific siRNA when compared to mock-
transfected cells or cells transfected with non-specific (NS)
siRNA (Figure 3B). This reduction correlated with blocked
induction of KLF5 protein in the presence of LPS in cells
transfected with KLF5-specific siRNA (Figure 3B). Lastly,
treatment of cells with TLCK, an NF-kB inhibitor, did not
result in a reduction in the levels of KLF5 mRNA in response

to LPS (Figure 3C). These results indicate that KLF5 is an
upstream mediator of NF-kB subunit expression following
LPS treatment.

Inhibition of KLF5 results in diminished secretion
of TNF-a and IL-6 from IEC6 cells following
LPS treatment

Studies showed that LPS activates expression of proin-
flammatory genes, such as those encoding cytokines and
cell adhesion molecules, in a pathway that is dependent on
NF-kB (36). We thus treated IEC6 cells with LPS for various
periods of time and measured the quantities of two cytokines,
TNF-a and IL-6, in the media. As shown in Figure 4A and B,
LPS significantly increased the secretion of both cytokines
over that of the control from 8 to 72 h. To determine whether
KLF5 plays a role in LPS-stimulated secretion of TNF-a
and IL-6, we inhibited expression of KLF5 by siRNA followed
by LPS treatment. Figure 4C and D show that secretion of
both cytokines was increased in mock-transfected or cells
transfected with non-specific (NS) siRNA following 48 h
of LPS treatment. In contrast, LPS treatment failed to increase
the secretion of either TNF-a or IL-6 in cells transfected
with KLF5-specific siRNA (Figure 4C and D). Combining
the results of Figures 3 and 4, our studies demonstrate
that KLF5 is necessary for the induction of NF-kB
gene expression and subsequent TNF-a and IL-6 production
in IEC6 cells treated with LPS.

Figure 3. Inhibition of KLF5 expression by siRNA abrogates induction of
NF-kB subunit levels and binding activity in response to LPS. (A) IEC6 cells
were transfected by electroporation with non-specific (NS) siRNA or
KLF5-specific siRNA. Mock-transfected cells were used as control.
Twenty-four hours following transfection, cells were treated with 5 mg/ml
LPS or water control for 2 h, followed by northern blot analysis for the various
mRNAs indicated. (B) Nuclear extracts were prepared from mock-transfected
IEC6 cells or cells transfected with non-specific (NS) siRNA or KLF5-specific
siRNA that have been treated with 5 mg/ml LPS or water control for 2 h.
Electrophoretic mobility shift assay (EMSA) was then performed with a labeled
consensus NF-kB binding sequence using 5 mg nuclear extracts per lane. In the
last lane (Comp.), 150-fold excess of unlabeled NF-kB probe was included in
the reaction containing nuclear extracts from mock-transfected and LPS-treated
cells. The same nuclear extracts were also analyzed for the content of KLF5 or
actin by western blotting, as shown below the EMSA. (C) IEC6 cells were
pretreated with 10 mM of the NF-kB inhibitor, TLCK, or water control for 1 h
and then treated with 5mg/ml LPS or water control for 2 h before being analyzed
for the mRNA levels for KLF5 or GAPDH by northern hybridization.
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KLF5 inhibition in IEC6 cells results in diminished
induction of ICAM-1 expression and heterotopic
cell adhesion in response to LPS

Previous studies showed that expression of ICAM-1 is
increased in LPS-treated endothelial cells and that this
increase mediates subsequent neutrophil–endothelial interac-
tions (37,38). We sought to determine whether ICAM-1
expression is also increased in IEC6 cells treated with LPS
and whether such increase mediates increased cell–cell adhe-
sion. Figure 5A shows that LPS treatment of IEC6 cells exhib-
ited a time-dependent increase in the level of ICAM-1 protein
up to 24 h and that this increase was preceded by the increase
in KLF5 protein level. Transfection of cells with KLF5-
specific siRNA resulted in a diminished induction of KLF5
and ICAM-1 protein levels in response to LPS as compared to
mock-transfected cells or cells transfected with non-specific
(NS) siRNA (Figure 5C). Importantly, using a co-culture sys-
tem, we showed that adhesion of the Jurkat T lymphocytes to
IEC6 cells in response to LPS treatment was abolished in IEC6
cells transfected with KLF5-specific siRNA (Figure 5B). In
contrast, adhesion of Jurkat to IEC6 cells was increased after
LPS treatment in mock-transfected or cells transfected with
non-specific siRNA (Figure 5B). These results demonstrate
that KLF5 is crucial in mediating increased cell adhesion
between lymphocytes and IEC6 cells from LPS treatment
by activating expression of ICAM-1.

DISCUSSION

TLRs are pathogen recognition molecules that activate the
immune system as part of the innate immune response. Micro-
bial recognition by TLRs plays a crucial role in the host

Figure 4. Increased secretion of TNF-a and IL-6 in IEC6 cells in response to LPS requires KLF5. IEC6 cells were treated with water control (open bars) or 5 mg/ml
LPS (filled bars) for the periods of time specified. The amounts of TNF-a (A) and IL-6 (B) in the supernatants were determined by ELISA. N ¼ 4 in all experiments.
*P < 0.05 compared to control. Mock-transfected IEC6 cells or IEC6 cells transfected with non-specific (NS) siRNA or KLF5-specific siRNA were treated with
water control (open bars) or 5 mg/ml LPS (filled bars) for 48 h. The amounts of TNF-a (C) and IL-6 (D) in the supernatants were determined by ELISA. N ¼ 4 in all
experiments. *P < 0.05 compared to control.

Figure 5. Increased expression of ICAM-1 and adhesion of Jurkat T cells to
IEC6 cells in response to LPS requires KLF5. (A) IEC6 cells were treated with 5
mg/ml LPS for the time periods specified before protein extraction. Fifty micro-
grams of protein were loaded in each lane and analyzed for the content of KLF5,
ICAM-1 or actin by western blotting. (B) Fluorescently labeled Jurkat E6.1
lymphocytes were co-cultured with mock-, non-specific (NS) siRNA or KLF5-
specific siRNA-transfected IEC6 cells that were pretreated with either water
control (open bars) or 5 mg/ml LPS (filled bars) for 24 h. After 2 h of co-
culturing, cells were washed, lysed and attachment of Jurkat cells to IEC6 cells
determined by a spectrophotometer. Results are expressed as relative fluores-
cence units (RFU). N ¼ 6 in all experiments. *P < 0.01 compared to control.
(C) Western blot analysis was performed using the same set of cells that were
used in (B) for the protein content of KLF5, ICAM-1 or actin.
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immune system’s decision to respond or not to a particular
microbial infection. LPS, a membrane glycolipid of
Gram-negative bacteria, exhibits strong immunostimulating
activity among TLR ligands and has been studied in great
detail. Recent studies have shown that cell surface TLR4-
MD2 physically interacts with LPS and triggers the release
of an LPS signal, revealing a host–pathogen interaction
mediated by TLR (39). It is now well established that the
nuclear transcription factor, NF-kB, plays a crucial role in
mediating the intracellular signaling generated by LPS that
eventually leads to the induction of expression of proinflam-
matory genes (4). Abundant literature has documented that the
activation of NF-kB by LPS is mediated by post-translational
modification and proteosomal degradation of IkB, an inhibitor
of NF-kB (40).

The intestinal epithelium is an integral part of the innate
immunity in defense of bacterial infection (41). Previous
studies indicate that TLR4 is present in several intestinal
epithelial cell lines, including IEC6, rendering the cells
responsive to LPS (9,42–45). The rationale behind our
study was based on the previous findings that LPS activates
the MAPK, ERK1/2 (46–48) and that ERK1/2 stimulates
KLF5 expression (24). Furthermore, recently published data
showed a member of the Krüppel-like factor family, KLF4, is
induced in macrophages in response to LPS (22). However, in
IEC6 cells, expression of KLF4 is not significantly induced by
LPS (results not shown). Instead, we demonstrated an alter-
native and independent mechanism by which NF-kB becomes
activated by LPS that requires the induction of expression of
the gene encoding KLF5 in IEC6 cells. We showed that the
levels of KLF5 mRNA and protein are increased in IEC6 cells
treated with LPS (Figure 1A and D, respectively). This
increase is inhibited by treatment of cells with the MAPK
inhibitor, U0126 (Figure 2C), confirming that the induction
of KLF5 in response to LPS is mediated by MAPK. Impor-
tantly, LPS treatment of IEC6 cells also increases the mRNA
levels of the two NF-kB subunits, p65 and p50 (Figure 2A),
and that this increase is attenuated by the transfection of cells
with siRNA that inhibits KLF5 expression (Figure 3A). Fur-
thermore, the increase in NF-kB DNA binding activity in
response to LPS is also abrogated in cells transfected with
KLF5-specific siRNA (Figure 3B). These results indicate
that KLF5 is necessary and sufficient for the induction of
NF-kB subunit expression secondary to LPS. This finding
is further confirmed by the observation that TLCK, an NF-
kB inhibitor, fails to inhibit the increase in KLF5 mRNA level
in response to LPS, therefore placing KLF5 upstream of NF-
kB in the LPS-induced signaling pathway.

NF-kB has been shown to be critically involved in the
transcriptional activation of numerous downstream genes
that encode mediators of inflammatory and immune responses
(36). Among the cytokines activated by NF-kB are TNF-a and
IL-6 (49). We showed that secretion of TNF-a and IL-6 is
significantly increased in IEC6 cells treated with LPS
(Figure 4A and B), a response likely mediated by the activa-
tion of NF-kB. Similar findings have been documented in
previously published studies (9,50). Importantly, inhibition
of KLF5 by siRNA abolishes LPS-stimulated secretion of
both TNF-a and IL-6 (Figure 4C and D), indicating a critical
role for KLF5 in mediating the production of proinflammatory
cytokines as a result of LPS treatment.

In addition to secretion of proinflammatory cytokines, an
occurrence during innate immune response is the recruitment
of leukocytes to the target of infection. ICAM-1, a cell adhe-
sion molecule expressed in endothelial and epithelial cells
mediates interactions with immune cells expressing CD11a/
CD18 and CD11b/CD18 (51). LPS stimulation results in an
increase in ICAM-1 expression in intestinal epithelial cells and
subsequent adhesion of monocytic cells (52). Here, we demon-
strated that LPS stimulates ICAM-1 production in IEC6 cells
(Figure 5A) and increases adhesion of the Jurkat T lympho-
cytes (Figure 5B). Notably, the induction of KLF-5 production
in response to LPS precedes that of ICAM-1 (Figure 5A).
Furthermore, inhibition of KLF5 expression abolishes LPS-
stimulated ICAM-1 production and adhesion of lymphocytes
(Figure 5B and C, respectively). Thus, KLF5 also plays an
important physiological role in recruiting leukocytes by
LPS-activated IEC6 cells.

Based on the findings of this and previous studies, we pre-
sent a model in which KLF5 plays an important role in medi-
ating the proinflammatory response elicited by LPS in
intestinal epithelial cells (Figure 6). Here, KLF5 functions
primarily as an upstream activator of expression of the two
NF-kB subunits, p65 and p50, which subsequently stimulates
expression of the three proinflammatory genes studies, TNF-a,
IL-6 and ICAM-1. This mechanism may represent a relatively
‘late’ response as compared to the classical mechanism of NF-
kB activation through post-translational modification. Addi-
tionally, although NF-kB has been shown to activate the
expression of each of the three downstream proinflammatory
genes (49,52), our results do not rule out a role for the direct
involvement of KLF5 in the transcriptional activation of any or
all of the three target genes. Moreover, results of previous
studies demonstrate a synergistic effect of KLF5 and
NF-kB on transcriptional activation of target genes through
a mechanism that involves physical interaction between KLF5
and NF-kB subunits (53,54). It is possible that all of these
mechanisms exist as a way to ensure the establishment of a

Figure 6. A model for the role of KLF5 in mediating the proinflammatory
response in IEC6 cells elicited by LPS. Treatment of IEC6 cells by LPS acti-
vates MAP kinase activity, which leads to induction of KLF5 mRNA and
protein levels. The increased KLF5 then transcriptionally activates expression
of the p65 and p50 subunits of NF-kB with a subsequent increase in NF-kB
binding activity, leading to increased production of TNF-a, IL-6 and ICAM-1,
and subsequent proinflammatory response.

Nucleic Acids Research, 2006, Vol. 34, No. 4 1221



robust proinflammatory response to a harmful bacterial prod-
uct. Be that as it may, the results of our studies clearly establish
a physiologically significant role played by KLF5 in mediating
signaling elicited by LPS. Whether KLF5 may mediate
signaling by other TLR ligands is currently being investigated.
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