
RESEARCH ARTICLE

Physiological random processes in precision

cancer therapy

Nick Henscheid1,2*, Eric Clarkson1,2,3,4, Kyle J. Myers5, Harrison H. Barrett1,2,3,4

1 Center for Gamma-Ray Imaging, University of Arizona, Tucson, AZ, United States of America, 2 Program in

Applied Mathematics, University of Arizona, Tucson, AZ, United States of America, 3 Department of Medical

Imaging, University of Arizona, Tucson, AZ, United States of America, 4 College of Optical Sciences,

University of Arizona, Tucson, AZ, United States of America, 5 Center for Devices and Radiological Health,

Food and Drug Administration, Silver Spring, MD, United States of America

* nhenscheid@math.arizona.edu

Abstract

Many different physiological processes affect the growth of malignant lesions and their

response to therapy. Each of these processes is spatially and genetically heterogeneous;

dynamically evolving in time; controlled by many other physiological processes, and intrinsi-

cally random and unpredictable. The objective of this paper is to show that all of these prop-

erties of cancer physiology can be treated in a unified, mathematically rigorous way via the

theory of random processes. We treat each physiological process as a random function of

position and time within a tumor, defining the joint statistics of such functions via the infinite-

dimensional characteristic functional. The theory is illustrated by analyzing several models

of drug delivery and response of a tumor to therapy. To apply the methodology to precision

cancer therapy, we use maximum-likelihood estimation with Emission Computed Tomogra-

phy (ECT) data to estimate unknown patient-specific physiological parameters, ultimately

demonstrating how to predict the probability of tumor control for an individual patient under-

going a proposed therapeutic regimen.

Introduction

In a seminal paper in 2000, Hanahan and Weinberg [1] identified six traits that are hallmarks

of most if not all cancers. Malignant neoplasms must be able to proliferate without external

growth factors; evade growth suppressors; resist cell death; replicate indefinitely; produce new

blood vessels, and activate invasion and metastasis. In a later paper [2] these same authors

added two other hallmarks—reprogramming energy metabolism and evading destruction by

the immune system—and they noted the crucial role played by the tumor microenvironment.

Each of these traits is associated with a complex set of genetically regulated physiological

processes [3]. For example, the state of oxygenation within a tumor is a crucial factor in the

development and treatment of cancer. In tumors, the protein HIF-1-α (hypoxia-inducible-fac-

tor 1-α) regulates metabolism and promotes angiogenesis in response to hypoxia. Hypoxia

itself, on the other hand, leads to invasion and resistance to radiation or chemotherapy. The
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oxygen content of a tumor can be quantified by the partial pressure, pO2, or the oxygen satura-

tion SaO2 (ratio of oxygenated to total hemoglobin).

In chemotherapy, the spatial and temporal distribution of the drug and the response of the

tumor to the drug are critical physiological processes. The response can be defined by the

change in mitosis (cell division) and apoptosis (programmed cell death) after therapy. In nor-

mal tissues, these two processes are closely balanced, but cancer is characterized by an

increased rate of mitosis and/or a reduced rate of apoptosis. Conversely, anticancer drugs can

either inhibit mitosis or stimulate apoptosis.

It is generally agreed in the literature that the spatial and genetic heterogeneity of these

physiological processes plays a crucial role in initiating the Hanahan-Weinberg traits and

determining their magnitudes [4–8], but there has been less effort towards defining physiologi-

cal heterogeneity in rigorous mathematical terms or describing the interactions between dif-

ferent heterogeneous processes. The first goal of this paper is to introduce a framework for

filling this gap.

Without detailed information about the specific nature and degree of heterogeneity for a

given patient, prediction of clinical outcomes is difficult. We thus also provide a theoretical

framework for making patient-specific measurements of heterogeneous physiological pro-

cesses via molecular imaging. As measurement devices are inherently noisy and their data

incomplete, estimation of patient-specific processes and parameters must be accompanied by

quantification of uncertainty. We thus also aim to provide a statistically rigorous way to quan-

tify uncertainty in estimates of patient-specific, heterogeneous physiological processes and

hence any clinically relevant decision parameters derived from such estimates. In this sense,

we are providing a statistical framework for precision medicine in the context of spatiotempo-

ral physiological quantities and noisy data, where we define precision medicine as the general

tactic of combining patient-specific data, mathematical and statistical modeling and computa-

tional techniques to assist in the clinical decision-making process; refer to Fig 1.

In light of these issues, we adopt the viewpoint that physiological processes can be described

rigorously as spatiotemporal random processes, in a mathematical sense. To be more precise,

one realization of a physiological random process (say for one cancer patient) is a function of

position in the body and time. We can specify the spatial position by Cartesian coordinates (x,

y, z) or, equivalently, by a three-dimensional (3D) vector r with these components. A general

function of space and time is denoted as f(r, t), and if it is a random, unpredictable function,

then it is one realization of a random process, which is to say it is an element of an ensemble of

functions, denoted as {f(r, t)}. In this paper the processes are physiological, and f(r, t) typically

specifies the magnitude of the physiological effect (e.g., pO2 in our oxygenation example or

apoptosis and mitosis rates) at location r and time t. There are two types of ensembles that are

relevant to cancer physiology. First, as each patient can be considered as a sample drawn from

a population, we can consider a population-level ensemble. For example, the ensemble {f(r, t)}
for the oxygenation example would consist of a large set of possible functions f(r, t) describing

the spatiotemporal concentration of oxygen in a well-defined region of the body, and a realiza-

tion of this process fj(r, t) corresponds to a patient (j) drawn at random from the population.

Second, due to uncertainties inherent in the data collection and processing steps, each individ-

ual patient gives rise to an ensemble of functions which are consistent with the data collected.

These ensembles could be called prior and posterior ensembles, though we do not necessarily

imply the usage of Bayesian techniques [9].

We distinguish random functions from random variables or random vectors. A random

variable, such as an image feature, is a single random scalar, and a finite set of random vari-

ables, such as a digital image or a set of image features, is a finite-dimensional random vector.

For any random process {f(r, t)}, one may derive a host of finite-dimensional statistical
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quantities of interest. For example, observing the average value of f(r, t) over a spatial region of

interest V and time interval [t0, t1] gives rise to a scalar random variable.

In this paper, we will derive a particular scalar random variable Y related to cancer treat-

ment efficacy. The variable Y is expressed as a function of several physiological processes

related to drug delivery and effect. By modeling the input processes as random, the variable Y
is made random, permitting the definition of a probability of some desired effect, in this case

spatially averaged, short-term tumor control; refer to Fig 2 for a block-level illustration. We

will demonstrate how the probability distribution of Y is related to the statistics of the input

random processes, then show how imaging data can be used to construct a patient-specific

probability distribution for Y. This will lead to an explicit expression for a patient-specific

probability of tumor control which can be computed using clinically available data and the sta-

tistical techniques outlined in this paper.

Characteristic functionals

While the statistical properties of random variables and random vectors are easily specified by

probability density functions (PDFs), describing the statistical properties of a random process

requires the application of more sophisticated tools. A random process consists of a set of

functions {f(r, t)}, each of which can be regarded as an element of an infinite-dimensional vec-

tor space, so it is not usually convenient to define conventional PDFs for them (see S1 Appen-

dix for a discussion of this issue). Nevertheless, all the statistical properties of a random

process can be derived from its characteristic functional, a powerful mathematical tool which

to our knowledge has not previously been applied to oncology or precision medicine. A func-

tional accepts a function as its input and returns a single scalar value, and we define the charac-

teristic functional for a physiological random process consisting of functions {f(r, t)} by

Cf ½�ðrÞ; t� � exp � 2pi
Z

V
d3r �ðrÞf ðr; tÞ

� �� �

; ð1Þ

where ϕ(r) is an arbitrary real-valued test function and the integral is over the volume V of a

tumor or some other region of interest. The angle brackets denote an average over all possible

realizations of the random process for some ensemble of patients or subjects. The functional

Fig 1. Information flow in precision medicine. The information pipeline for precision medicine involves collecting patient-

specific data, using this data to personalize validated mathematical and computational models, then using the output of such

models to perform treatment selection, optimization, and assess efficacy.

https://doi.org/10.1371/journal.pone.0199823.g001
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(1) contains a complete description of the spatial statistics of the process at any given time; the

time variable t in Eq (1) allows these spatial statistics to evolve as the disease progresses or ther-

apeutic interventions take effect, but it is not intended to capture joint statistical variations

across multiple times, so the test function ϕ(r) is not a function of time. An analogous charac-

teristic functional can be defined when temporal correlations are of interest; see S1 Appendix.

For a survey of the mathematical properties of random processes and characteristic func-

tionals, see [10, 11] and S1 Appendix. One of the key advantages of the characteristic func-

tional is that there are many general classes of random processes for which Cf is known

analytically, which makes it possible to compute any of the conventional statistical properties,

such as moments or marginal probability density functions. This includes many classes of

non-Gaussian processes which are typically challenging to manipulate—see [10, 11], and also

S2 Appendix. Moreover, the characteristic functional can be applied to personalized medicine

by collecting molecular images or other data from a particular patient and using them to esti-

mate any parameters that appear in a patient-specific characteristic functional [12].

Emission computed tomography

A general method for measuring physiological random processes is Emission Computed

Tomography (ECT), defined broadly as three-dimensional (3D) imaging of molecules or cells

that have been labeled so that they emit light, high-energy photons or charged particles with-

out significant alteration of their biological function. The labeling can use radionuclides or

light-emitting molecules, so the emissions can be nuclear decay products, including electrons,

positrons and high-energy photons, or visible or near-infrared photons.

Fig 2. Modeling uncertainty in-silico. The paradigm of using in-silico modeling to make predictions about treatment

effect under uncertainty about the physiological processes involved. Relevant physiological processes f1, . . ., fn are

identified, and a model M predicting response is selected. Because of uncertainty in the processes, they are modeled as

random; hence the response Y is random, having PDF pr(y). A desired effect is identified, for instance response less than a

threshold Yc. Its probability is the area under pr(y) left of Yc.

https://doi.org/10.1371/journal.pone.0199823.g002
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The most familiar forms of ECT are SPECT (Single-Photon Emission Computed Tomogra-

phy) and PET (Positron Emission Tomography), in which molecules labeled with radionu-

clides are imaged. SPECT and PET are widely used in clinical medicine and in preclinical

studies with small animals. There is considerable interest in pushing the spatial resolution of

radionuclide imaging ever finer, especially in SPECT where intrinsic detector resolutions

around 50 μm have been reported from several labs, and reconstructed resolutions for small-

animal SPECT are approaching 100 μm [13].

Much finer resolution in radionuclide imaging can be obtained with autoradiography,

which uses the charged particles emitted by a radionuclide (alpha particles, beta particles or

positrons) rather than the high-energy photons. Classical autoradiography is carried out by

placing a thin slab of excised tissue on film or an electronic detector and taking a long expo-

sure. More modern approaches use particle detectors operating at video rates [14]. Images

with spatial resolution around 5 μm and sub-nanoCurie sensitivity can be obtained ex vivo

with excised slices, and 3D images can be synthesized by stacking the slice images in a

computer.

In-vivo charged-particle autoradiography can be performed at high resolution with endo-

scopic devices, in mouse window chambers or for superficial lesions clinically, but to date only

without tomography. Recent work has shown the possibility of true ECT with charged particles

in vivo [15]. We refer to the general method as CPET (Charged-Particle Emission Tomogra-

phy), with the special cases of BET (Beta-particle Emission Tomography) and αET (Alpha-par-

ticle Emission Tomography).

Finally, there is great interest in OpET (Optical Emission Tomography), where the radionu-

clide label is replaced by a fluorescent or bioluminescent molecule. Fluorescence imaging of

cells in culture has been the mainstay of molecular biology, and immunohistochemistry (IHC)

with fluorescent antibodies is the foundation of modern pathology.

There are numerous ways to produce 3D images with optical emitters. At the clinical scale,

fluorescence-enhanced optical imaging of the breast or lymphatic vessels [16, 17] yields 3D

reconstructed images with a resolution around a millimeter. Several commercial preclinical

imaging systems collect light emerging at different angles from a mouse or other small animal

and reconstruct OpET images. There is also a burgeoning interest in various forms of 3D fluo-

rescence imaging at the microscopic scale; these include deconvolution methods, scanning

confocal microscopes, optical projection tomography [18] and 3D superresolution methods

derived from the Nobel-prize-winning work of Betzig, Hell and Moerner [19, 20].

For all of these ECT modalities and for almost any chosen physiological random process,

many different labeling agents (tracers) have been developed [21, 22].

A physiological random process f = f(r, t) imaged via molecular imaging will give rise to a

random data set g, usually taken to be a finite-dimensional random vector. In the population

ensemble picture, we view the pair {f, g} as statistical covariates. As patient j gives rise to a reali-

zation fj(r, t), the conditional random vector g|fj represents the random data vector for patient

j. The statistics of g|fj are related to the physics of imaging, which we will not discuss here; see

e.g. [10]. A major goal of this paper is to show how ECT data and characteristic functionals

can be used to study the physiological random processes that influence outcomes in cancer

chemotherapy.

We first discuss how classical models of tumor growth, drug delivery and response to ther-

apy can be modified into spatiotemporal models involving Physiological Random Processes

(PRPs). The goal of this exercise is to demonstrate that under the PRP hypothesis, it is possible

to derive clinically relevant parameters that are related to the prediction of treatment response

for individual patients. Later, we discuss how ECT data can be used to perform statistical
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estimation of unknown parameters in these models and demonstrate how the theory of maxi-

mum likelihood estimation allows for the quantification of uncertainties in these estimates.

Tumor growth and response to therapy

Classical models

There is an extensive literature on mathematical models for tumor growth; common mathe-

matical forms are exponential, logistic, Gompertz and von Bertalanffy [23–30]. There is

another extensive literature on the response of cancer cells to chemotherapy drugs, radiation

or other interventions [31–37]. For simplicity we will consider only avascular and premeta-

static growth; incorporating both angiogenesis and metastasis requires more complex mathe-

matical models.

Many of the papers cited present ordinary differential equations for the time dependence of

the total number of clonogenic cells in a tumor, denoted N(t). It is common to regard N(t) as a

deterministic quantity that can be found by solving the differential equations, with no spatial

inhomogeneity, uncertainty or stochastic effects considered. The differential equations always

involve a small number of free parameters, which can be fixed by fitting the predicted behavior

of N(t) to measurements on tumors in humans or animals.

These investigations often result in equations having the generic form

dNðtÞ
dt
¼
dNðtÞ
dt

�
�
�
�

growth

þ
dNðtÞ
dt

�
�
�
�

drug

; ð2Þ

where the first term describes the growth of the tumor in the absence of a therapeutic interven-

tion and the second accounts for a chemotherapy drug.

The simplest form for the growth term is dN(t)/dt|growth = βN(t) (where β is a positive con-

stant), which leads to exponential growth, N(t)/ exp(βt). It is widely observed, however, that

the growth rates of solid tumors decrease as the tumors get larger, and hence several common

models take the form dN(t)/dt|growth = N(t)F[N(t)], where F(�) is a monotonically decreasing

function. The resulting differential growth rates for several common models are shown in

Fig 3. For example, the commonly used Gompertzian model assumes that the tumor size

reaches a “carrying capacity” Nmax limited by blood supply and nutrients. The Gompertz

model enforces this condition by taking F[N(t)]/ −ln(N(t)/Nmax). Mechanistic explanations

for Gompertzian tumor growth have been given by Gyllenberg [38, 39], Hahnfeldt [40] and

Norton [24].

A common form for the drug effect in (2), derived from the classical law of mass action,

assumes that dN(t)/dt|drug = −αC(t)N(t), where C(t) is the drug concentration and α is positive.

Equivalently,

1

NðtÞ
dNðtÞ
dt

�
�
�
�

drug

¼
d
dt

lnNðtÞ ¼ � aCðtÞ : ð3Þ

This form, often called linear log-kill, says that the fractional rate of cell killing is a linear func-

tion of the drug concentration and is usually attributed to Skipper [41]. Linear log-kill is a rea-

sonable model for certain cell-cycle-independent drugs such as doxorubicin, at least in vitro
[42]. More generally, cytotoxic drugs can affect cell populations nonlinearly with respect to C
(t), for instance due to saturation effects and cell cycle inhomogeneities. We discuss several

nonlinear response models later; refer to Eqs (32) and (37).
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With the general growth model dN(t)/dt|growth = N(t)F[N(t)] and the mass-action assump-

tion for the drug effect, the overall model (2) becomes

d
dt

lnNðtÞ ¼ F½NðtÞ� � aCðtÞ : ð4Þ

With the choice of Gompertzian growth kinetics,

d
dt

lnNðtÞ ¼ � m ln
NðtÞ
Nmax

� �

� aCðtÞ : ð5Þ

Eq (5), paired with an initial condition of N(0) = N0� 0 total cells, describes the deterministic

evolution of N(t). Again, neither spatial effects nor uncertainty are addressed in such a model.

We will address both by replacing N(t) with a corresponding physiological random process n
(r, t).

Tumor growth and response as random processes

We can define a continuum density of cells, denoted n(r, t), which has units of number of cells

per unit volume. In the viewpoint of this paper, n(r, t) is a spatial random process that evolves

in time, and N(t) is now viewed as a time-dependent random variable. The two random enti-

ties are related by

NðtÞ ¼
Z

VðtÞ
d3r nðr; tÞ ; ð6Þ

where V(t) is the evolving tumor volume. If we are interested in the means of these random

quantities (statistical expectations with respect to some ensemble of tumors), we can indicate

Fig 3. Tumor growth curves. A comparison of several differential growth curves of the formNF(N). Note that in each case except unbounded exponential growth, the

differential growth rate goes to zero as the tumor approaches its maximum size.

https://doi.org/10.1371/journal.pone.0199823.g003

Physiological random processes in precision cancer therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0199823 June 29, 2018 7 / 25

https://doi.org/10.1371/journal.pone.0199823.g003
https://doi.org/10.1371/journal.pone.0199823


the means by overbars and write

�NðtÞ ¼
Z

VðtÞ
d3r �nðr; tÞ : ð7Þ

This result depends only on the linearity of statistical expectations, not on any particular statis-

tical properties of n(r, t) or N(t).
We should not necessarily expect �nðr; tÞ to be spatially uniform to any reasonable approxi-

mation: malignant cells may be fairly widely separated in a tumor, spaced by the extracellular

matrix and interspersed with fibroblasts, lymphocytes and other cells in the tumor microenvi-

ronment. Moreover, tumor cells often tend to grow in clusters called nests or islets, sur-

rounded by a collagenous shell.

We postulate that a reasonable random-process counterpart of Eq (4) is

@

@t
lnnðr; tÞ ¼ F½nðr; tÞ� � aðrÞcðr; tÞ ; ð8Þ

where now n(r, t), α(r, t) and c(r, t) are treated as random processes. The growth nonlinearity

F may also depend on some auxiliary random process parameters; for example, with a Gom-

pertzian model, we would have

@

@t
lnnðr; tÞ ¼ � mðrÞ ln

nðr; tÞ
nmaxðrÞ

� �

� aðrÞcðr; tÞ : ð9Þ

where the growth rate μ(r), carrying capacity nmax(r) and drug sensitivity α(r) are all allowed

to be spatial random processes. We assume further that the initial condition n(r, 0) is strictly

positive at all points within the potential tumor volume: in mechanistic terms, we assume

tumor growth proceeds from pre-existing clonogenic cells rather than spontaneous mutations,

so it cannot begin in a region where there is zero density of malignant cells at t = 0.

Similarly, to be consistent with the idea of linear log-kill, we assume for the remainder of

this section that the drug sensitivity α(r) is independent of time and statistically independent

of the drug distribution c(r, t). More general response models can also be considered [43].

Another class of spatial growth models, which we will not discuss here, allows for diffusive

and chemotactic migration of tumor cells; see e.g. [44–47].

Because each function in (9) is treated as a random quantity, we must specify the sense in

which the equality holds. We will assume throughout that a differential equation such as (9)

holds in the classical (or weak, in the sense of generalized functions) sense for each fixed reali-

zation of the random parameters. This assumption allows us to solve (9) using standard differ-

ential equation techniques, then derive statistical distributions for the resulting solution and

any quantities of interest related to it. Such an equation is frequently called a random differen-

tial equation, to distinguish from stochastic differential equations which require more sophisti-

cated solution strategies such as the Itô formalism (see discussion in [48], section 4.7). See

Fig 4 for an illustration.

In S3 Appendix, we derive an expression for the evolution of the characteristic functional

for ln n(r, t) under the hypothesis that the density of tumor cells is a lognormal random pro-

cess (see S2 Appendix).

Tumor response. Chemotherapy drugs remain in a patient’s circulation for a few hours

or days at most, and it is reasonable to assume that the tumor growth rate is negligible over

this period. From (9) without the Gompertzian term, we can write

@

@t
nðr; tÞ ¼ � aðrÞcðr; tÞnðr; tÞ : ð10Þ
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This equation can also be related to the fundamental processes of cell division (mitosis) and

cell death. Cell death can be by necrosis, autophagy or apoptosis (programmed cell death).

There is also the process of cell-cycle arrest, which is mathematically equivalent to apoptosis.

If we consider only drug-induced apoptosis, we can write

@

@t
nðr; tÞ ¼ umitðr; tÞ � uapðr; tÞ ¼ � aðrÞcðr; tÞnðr; tÞ ; ð11Þ

where the random processes umit(r, t) and uap(r, t) are rates per unit volume for mitosis and

apoptosis, respectively. The difference of these two random processes can be interpreted as the

overall proliferation rate per unit volume. In normal tissues the mitosis and apoptosis terms

are in close balance (homeostasis), but in tumors there is a net growth in the absence of ther-

apy. Chemotherapy drugs can decrease mitosis or increase apoptosis, either of which will

cause a decrease in the overall proliferation rate @n(r, t)/@t.
Integration of (10) or (11) over time yields a random process y(r), which can be interpreted

as a pointwise log-kill:

yðrÞ � ln
nðr; t0 þ TÞ
nðr; t0Þ

� �

¼ �

Z t0þT

t0

dt aðrÞ cðr; tÞ ; ð12Þ

where T is the time between drug administration and observation of the random process.

Now integrate both sides of (12) over a volume V that is large enough to encompass the

tumor before and after the therapy. The result is a random variable Y, referred to as the

Fig 4. Tumor growth under uncertainty. A simulation of Gompertzian growth of the spatial random field n(r, t), as modeled in Eq (9) with c(r, t)�0, is displayed

on the left. In this simulation, both the local growth constant μ(r) and the local carrying capacity nmax(r) are spatially constant but random; the initial condition n
(r, 0) is taken as a so-called lumpy background random process (see S2 Appendix). Three realizations (rows) are shown at three times. The total cell numberN(t) as

defined in (6) is shown on the right for 16 realizations of the process.

https://doi.org/10.1371/journal.pone.0199823.g004
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integrated log-kill and given by

Y �
Z

V
d3r ln

nðr; t0 þ TÞ
nðr; t0Þ

� �

¼ �

Z

V
d3r aðrÞ

Z t0þT

t0

dt cðr; tÞ : ð13Þ

Because we are assuming for now that the drug sensitivity is independent of time, (13)

becomes

Y ¼ �
Z

V
d3r aðrÞAUCðrÞ ð14Þ

where AUC(r) is the area under the curve of the drug concentration at point r vs. time:

AUCðrÞ �
Z t0þT

t0

dt cðr; tÞ : ð15Þ

Note that AUC(r) is still a spatial random process. If T is large enough for complete drug clear-

ance from the tumor, AUC(r) is independent of T and can be interpreted as the total exposure

of tumor tissue at point r to the drug.

The statistics of the random variable Y for a specified drug distribution c can be derived

from the conditional characteristic function (not functional in this case because Y is a scalar),

which is given in terms of the characteristic functional of α by

cYjcðxÞ ¼ hexpð� 2pixYÞiYjc ¼ exp 2pix
Z

V
d3r aðrÞAUCðrÞ

� �� �

a

¼ Ca½� xAUCðrÞ� :
ð16Þ

We can then write the conditional probability density function for Y as

prðYjcÞ ¼
Z 1

� 1

dx cYjcðxÞexpð2pixYÞ ¼
Z 1

� 1

dx Ca½� xAUCðrÞ�expð2pixYÞ ; ð17Þ

This is a fundamental equation in chemotherapy, relating the time-integrated drug distribu-

tion to the random logarithmic cell kill via the spatially varying statistics of the cellular sensitiv-

ity to the drug. Because pr(Y|c) is conditional on c, (17) is directly applicable only when the

drug distribution is known exactly, but its extension to the practical clinical case where the

drug distribution is either unknown and random or estimated from noisy molecular imaging

data is discussed later. The expression (17) also requires a characteristic functional Cα[ϕ] for

the drug sensitivity, which can either be estimated from population statistics by fitting one of

the models discussed in S2 Appendix to a population database [12], or derived from statistical

analysis of patient-specific imaging data, as we discuss later.

Tumor control. One application of (17) is in specifying the efficacy of a drug treatment in

terms of degree of short-term tumor control. If there is successful death of tumor cells immedi-

ately following therapy, Y is a negative number, so we define tumor control as achieving a Y
that is less than some chosen threshold Yc (e.g., Yc = −3 for tumor reduction by a factor of e3�

20). The conditional probability of tumor control for a specified drug concentration is then

given by

PrðTCjcÞ ¼ PrðY < YcjcÞ ¼
Z Yc

� 1

dY prðYjcÞ

¼

Z Yc

� 1

dY
Z 1

� 1

dx Ca½� xAUCðrÞ� expð2pixYÞ ;
ð18Þ
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Both of these integrals are one-dimensional, so they are readily performed numerically if both

c(r, t) and an analytic form for Cα[ϕ] are known.

To put this result into the context of chemotherapy, we assume that mass M of the drug has

been administered to a patient. Within the confines of the linear model for the drug distribu-

tion used thus far, c(r, t) and hence AUC(r) are proportional to M, so we can define AUC(r) =

M � auc(r), where auc(r) is AUC(r) for M = 1. Then we can write

PrðTCjc;MÞ ¼
Z Yc

� 1

dY
Z 1

� 1

dx Ca½� xM � aucðrÞ� expð2pixYÞ : ð19Þ

To extend any of the Eqs (17)–(19) formally to an ensemble of patients with different drug

distributions, one can simply perform an average over c; for example, (18) becomes

PrðTCÞ ¼ hPrðTCjcÞic ¼
Z Yc

� 1

dY
Z 1

� 1

dx hCa½� xAUCðrÞ�ic expð2pixYÞ : ð20Þ

Other response models

The formulas for tumor response developed above are all linear, in the sense that the log-kill is

a linear function of the drug concentration, and local, in the sense that the response of the

tumor at some point r depends on the drug concentration only at that point. There are situa-

tions in clinical oncology, however, where the response can be nonlinear, nonlocal or both. In

this subsection we look at how these effects can be incorporated into a general theory of physi-

ological random processes in oncology. The models presented can be used in combination

with patient-specific imaging data to extract detailed spatiotemporal physiological informa-

tion, which can subsequently be used to better predict treatment response.

Nonlocal processes with negligible time delay. As an example of nonlocal drug action,

consider targeted radionuclide therapy, which uses radioactive drugs that bind to a specific

receptor on tumor cells. While bound, the radioisotope in the drug undergoes radioactive

decay, emitting gamma rays and charged particles. Depending on the isotope, the charged par-

ticles might include beta particles (high-energy electrons), positrons, conversion electrons or

alpha particles. The energetic radiations kill cancer (and other) cells by damaging DNA, but

for present purposes all we need to know is that the damage can be at some distance from the

cell to which the drug molecule is bound; the range is tens of microns for alpha particles in tis-

sue, millimeters for beta particles and positrons, and centimeters for gamma rays.

Because of the speed of the nuclear decay products, there is negligible time delay between

the decay and the DNA damage. In that case the general linear but nonlocal model is obtained

by the replacement

Z

V
d3r aðr; tÞ cðr; tÞ !

Z

V
d3r aðr; tÞ

Z

V
d3r0 Lðr; r0Þcðr0; tÞ

In scalar-product form, the righthand side is ða;LcÞ, where L is a linear integral operator with

kernel L(r, r0) (see [11], Eq (59)).

If we again assume that the drug sensitivity is independent of time during the therapy, we

can retrace the steps to (16) and write

cYjcðxÞ ¼ Cajcf� x½L AUC�ðr; t0Þg : ð21Þ

where ½L AUC�ðr; t0Þ ¼
R

Vd
3r0 Lðr; r0ÞAUCðr0; t0Þ.
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Drug distribution at the microscale. So far we have considered the drug distribution c(r,

t) within a tumor to be a general spatial random process that evolves in time. A more detailed

treatment considers that the drug molecules may be in the capillaries, diffusing in the intersti-

tial space, bound to surface receptors or internalized into the cytoplasm of malignant cells, so

that the drug distribution can be decomposed as [49–52]

cðr; tÞ ¼ ccapðr; tÞ þ cdiff ðr; tÞ þ cboundðr; tÞ þ cintðr; tÞ : ð22Þ

Each term in this expansion is a spatial random process that evolves in time, and there are

causal relations among them; e.g., the internalization process cannot happen before the bind-

ing, and the diffusion process begins with extravasation from the capillaries. There is also a

process of intravasation where the drug can be returned to the circulation, but if this happens

before binding and internalization it can be modeled as a simple reduction in extravasation

rate. Most drugs are only effective when bound or internalized, so extracting estimates of these

component concentrations will lead to better prediction of efficacy. The models presented

below, which assume dynamic equilibrium, relate the four components to each other in such a

way that an estimate of one can be used to extract estimates of the subsequent processes.

While not explicitly modeled here, there is also the process of catabolism by which a drug

molecule is broken down into smaller molecules, thereby losing its potency and disappearing

from the effective drug distribution. Catabolism can occur during diffusion; within a tumor

cell after internalization (where it is called intracellular catabolism), or along the excretion

route for the drug, often in the kidney or liver. The time scale for catabolism ranges from a few

hours to a few days.

Nonlocal processes with time delay: Diffusion. The first two terms in (22) are linked by

the time-dependent diffusion equation for an inhomogeneous medium, given by [52]

@

@t
cdiff ðr; tÞ � r � ½DðrÞrcdiff ðr; tÞ� ¼ sðr; tÞ ; ð23Þ

where D(r) is the diffusion coefficient and s(r, t) is the source of the diffusing species (e.g. drug

molecules). For our purposes we will treat both D(r) and s(r, t) as random processes, and the

initial condition cdiff(r, 0) is taken to be zero.

In many cases drug molecules escape from tumor capillaries through small pores called fen-

estrations, typically 60-80 nm diameter. Most drug molecules are a few nm across, so they can

easily escape from the capillaries, as can antibodies, which are 10-15 nm. For comparison, a

water molecule is about 0.2 nm and a red blood cell is 8,000 nm (8 μm).

Because the pores are small compared to other relevant dimensions in a tumor, they can be

modeled as Dirac delta distributions, and one sample of the random process s(r, t) is given by

sðr; tÞ ¼
XJ

j¼1

dðr � rjÞ dðt � tjÞ ; ð24Þ

where the jth drug molecule (j = 1, . . ., J) escapes into the extravascular space at point r = rj and

time t = tj, There are 2J + 1 random quantities in this expression: J 3D position vectors rj, J
times tj, and J itself. The units of s(r, t) are drug molecules per unit volume per unit time.

If there is no randomness other than these 2J + 1 variables and the molecules are secreted

independently, then s(r, t) is a Poisson point process (see [10] (Chapter 11), [11, 53] and

S2 Appendix). The characteristic functional of a spatiotemporal Poisson point process is fully
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determined by its mean function �sðr; tÞ:

Csj�s ½�� ¼ exp
Z

V
d3r
Z T

0

dt�sðr; tÞðe� 2pi�ðr;tÞ � 1Þ

� �

; ð25Þ

where T is the time interval over which the delta functions can occur. The notation Csj�s ½��

indicates that �sðr; tÞ is held constant in the average over the sets {rj} and {tj}. Note that (25) is

now a spatiotemporal characteristic functional, as opposed to (1). This illustrates the fact that

the individual molecular emission events in (24) occur at random times; this fine-scale behav-

ior is effectively unobservable in vivo, but we will use (25) to derive a spatial random process,

whose characteristic functional is of the form (1), that is observable.

Physiologically, �sðr; tÞ depends on the concentration of the drug in the capillaries ccap(r, t)
and the vascular permeability v(r). If there are no nonlinearities in the secretion process, this

dependence is a simple product, �sðr; tÞ ¼ ccapðr; tÞvðrÞ, and we can write

Csjccap;v½�� ¼ exp
Z

V
d3r
Z T

0

dt ccapðr; tÞvðrÞðe� 2pi�ðr;tÞ � 1Þ

� �

: ð26Þ

If ccap and v are also treated as random processes, we must average over them to obtain the

overall characteristic functional for the source term:

Cs½�� ¼ exp
Z

V
d3r
Z T

0

dt ccapðr; tÞvðrÞðe� 2pi�ðr;tÞ � 1Þ

� �� �

ccap

� �

v

: ð27Þ

These two averages can be approximated with sample averages if one has a constructive model

for the tumor capillaries (e.g., the fractal model of Baish and Jain [54] or the Anderson-Chap-

lain model [55]).

We can write the diffusion equation above in vector-space form as

@cdiff ðtÞ
@t

þDcdiff ðtÞ ¼ sðtÞ ; ð28Þ

where

D � � r �Dr : ð29Þ

It is shown in S4 Appendix that the characteristic functional for the diffusing component of

the drug is related to the characteristic functional of the source term by

Ccdiff ½�; t� ¼ Cs

Z t

0

dt0exp½ðt0 � tÞDy��

� �� �

D

: ð30Þ

Explicit forms for the diffusion operator D and its adjoint Dy are also given in S4 Appendix. It

is shown there that the diffusion process functions as a low-pass filter, rapidly suppressing fine

details in cdiff(r, t) as the drug diffuses farther from its source.

Binding to receptors in targeted therapy. Binding of a ligand to a receptor is convention-

ally parameterized by the receptor concentration Bmax, the dissociation constant Kd and the

binding potential BP = Bmax/Kd [56]. At tracer levels BP is the ratio of specifically bound ligand

concentration to free concentration. In the usual approach where the concentrations are not

considered to vary with position and are not treated as random, the equilibrium concentration
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of bound ligands is given by the Michaelis-Menten equation, a nonlinear relation given by

Cbound ¼ Bmax
Cfree

Kd þ Cfree
: ð31Þ

To adapt this result to the formalism of this paper, we interpret the receptor density Bmax as

the random density of tumor cells n(r, t) times the random number of receptors per cell, Nrec,
and we can identify Cfree as the random process cdiff(r, t). If we assume that cdiff(r, t) varies suffi-

ciently slowly that dynamic equilibrium is maintained at each point, we can write:

cboundðr; tÞ ¼ nðr; tÞNrec
cdiff ðr; tÞ

Kd þ cdiff ðr; tÞ
: ð32Þ

Because tumor cells are genetically very similar (probably all clones of a single parent cell), a

reasonable statistical model for the number of receptors per cell is that it is a Poisson random

variable with mean �Nrec, which is independent of r. It may also be valid to assume that Kd is the

same for all cancer cells with receptors for a particular targeted drug. In that case Kd can be

taken as nonrandom and independent of r.

In clinical practice it is useful to maintain cdiff(r, t)� Kd so that the binding potential is

small; otherwise the drug molecules may all be bound on a thin layer of cells at the periphery

of a large tumor, leaving few to treat malignant cells in the interior; Weinstein at al. refer to

this effect as the binding-site barrier [57]. It is avoided in the weak-binding limit, where we lin-

earize (32) about zero to write

cboundðr; tÞ �
nðr; tÞNrec

Kd
cdiff ðr; tÞ : ð33Þ

With this approximation, cbound is proportional to cdiff, which in turn is a linear transform of

the source s in the diffusion equation. The corresponding characteristic functional is

Ccbound ½�� ¼ Ccdiff
Nrec

Kd
n�

� �� �

Nrec;n
ð34Þ

If the individual fenestrations in the capillaries secrete drug molecules independently into

the tumor, it follows from the central-limit theorem that cdiff is a Gaussian random process.

Because a linear transformation of a Gaussian random process is also Gaussian, it then follows

in this linearized model that Ccbound(ϕ) is the characteristic functional for a Gaussian random

process, with a known analytical form (see S2 Appendix), but in general with unknown mean

function and covariance operator.

Internalization. A general term for internalization is endocytosis. Specific mechanisms

include phagocytosis, pinocytosis, receptor-mediated endocytosis and clathrin-mediated

endocytosis. For a review, see [58].

A simple model of endocytosis presented by Wiley in 1982 [59] defines an endocytotic rate

constant Ke through the equation (in our notation),

dCint

dt
¼ KeC

bound : ð35Þ

If we replace the overall concentrations with the corresponding random processes and inte-

grate over time, assuming a chemotherapy administration at t = 0, we obtain

cintðr; tÞ ¼ Ke

Z t

0

dt0cboundðr; t0Þ : ð36Þ
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With (32), we have

cintðr; tÞ ¼ KeNrec

Z t

0

dt0nðr; t0Þ
cdiff ðr; t0Þ

Kd þ cdiff ðr; t0Þ
: ð37Þ

The events that occur after internalization of a cytotoxic drug are complex, and mathemati-

cal models are largely lacking. For a qualitative review, see [60].

Application to precision cancer therapy

Approach

To this point we have derived characteristic functionals for a number of physiological random

processes related to cancer therapy, and we have used the results to obtain finite-dimensional

characteristic functions and probability density functions for clinically relevant random vari-

ables such as the integrated log kill, which then permits us to compute probability of tumor

control as in Eqs (18)–(20). All of these quantities are defined in terms of hypothetical infinite

ensembles of patients, so their use for individuals is so far somewhat limited. In precision med-

icine, the objective is to make use of patient-specific data and mathematical models to enhance

decision making; refer again to Fig 1. This process begins with identifying clinically relevant

treatment efficacy biomarkers such as the integrated log-kill Y; because Y may not be directly

observable, we must also identify relevant clinically observable physiological processes; we

have discussed several spatiotemporal processes which are accessible via molecular imaging.

Then, by combining imaging data and the mathematical models presented here, we can com-

pute an estimate of Y which is specific to a particular patient. Even with patient-specific imag-

ing, uncertainties remain, and thus the patient-specific Y is still a random variable, but these

uncertainties are almost certainly lower than if no imaging were performed. We discuss the

statistical properties of patient-specific estimates of Y in a later section (Eqs (39)–(43) and

Discussion).

In several previous papers [9, 52, 61–63], we have considered the problem of optimizing a

diagnostic imaging study or therapeutic regimen in order to get the best outcome for an indi-

vidual patient. This would seem to be fundamentally impossible since both diagnostic and

therapeutic efficacy are typically defined in terms of large groups of patients and evaluated by

clinical trials, but we have developed rigorous mathematical methods for patient-specific opti-

mization of SPECT imaging [9], radiation therapy [61, 62] and chemotherapy [52, 63]. None

of these papers, however, makes use of random processes and characteristic functionals as in

this paper.

In the paradigm of personalized medicine it is reasonable to expect most cancer patients to

undergo genomic analysis and in many cases to have sensitivity-resistance assays to aid in

selection of therapeutic drugs. In addition, there are attempts to use databases to correlate

genomic mutations with drug efficacy in the hope that genomically similar patients will have

similar drug responses. However this effort is problematic because there is no consensus on

how to define genomic similarity and because a genomic mutation leads to an abnormal pro-

tein only after transcription and translation. For this reason there is considerable interest in

the transcriptome and the proteome, but the databases are not as extensive at these levels.

The paradigm we consider for personalized cancer therapy is thus [52, 64]:

1. Obtain images, genomic data and other data for a specific patient;

2. Optimize the therapy regimen using this information and supporting mathematical

models;
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3. Evaluate the resulting patient-specific protocol with multiple patients as in conventional

clinical trials.

The first step requires reconstruction of molecular images for each patient, which requires

the application of statistical image science methodologies [10]; the spatial statistics of recon-

structed images are discussed in [10, 65] and elsewhere.

The second step requires the application of mathematical or heuristic models for estimating

the probability of tumor control and probability of normal tissue complication for each

patient, and all of the expressions for Pr(TC) given in this paper are potentially applicable. To

optimize a treatment, we advocate using a curve-based analysis such as the Therapy Operating

Characteristic (TOC) curve discussed below and elsewhere [52], which models the trade-off

between tumor control and undesired side effects.

The third step requires recruiting multiple patients and applying the joint data collection

and adaptive therapy protocol independently to each subject in the trial.

This paradigm provides a logical structure for clinical trials of personalized therapy, yield-

ing a joint evaluation of the quality of the patient-specific data; the strategy for adapting the

therapy regimen to the patient, and the models that connect the data and the strategy. As we

stressed in [52], the only thing one can ever evaluate in a clinical trial for personalized medi-

cine is the combination of the patient-specific data, the model of tumor response and the

personalization strategy (see Fig 5).

Therapeutic efficacy

Any optimization procedure requires the selection of a scalar figure of merit to maximize or

minimize, so an important question in the second step of the precision medicine paradigm

proposed above is the selection of an appropriate figure of merit. One could imagine maximiz-

ing probability of tumor control, Pr(TC), over an admissible set of therapy parameters such as

administered mass, but tumor control by itself does not constitute therapeutic success; we

must also be concerned with adverse side effects. Both the tumor-control probability (TCP)

and the probability of some specified normal-tissue complication (NTCP) generally increase

with drug dosage. If the total mass of the drug administered to patient j is denoted M, then

with suitable models such as those given in Eqs (18)–(20), we can calculate TCPj(M) and

NTCPj(M) for patient j and plot both as a function of M as shown in Fig 6(a). By plotting

TCPj(M) vs. NTCPj(M) as the drug mass is varied, we thus construct the patient-specific Ther-

apy Operating Characteristic (TOC) curve, as shown in Fig 6(b), which is the therapeutic ana-

log of the familiar Receiver Operating Characteristic (ROC) curve, used routinely in

evaluating diagnostic imaging methods and laboratory tests. The TOC curve was originally

Fig 5. Precision medicine trials. Our proposed clinical trial framework for precision medicine consists of selecting a data collection,

processing and model-based decision-making protocol, then testing the entire joint protocol in a classical trial setting.

https://doi.org/10.1371/journal.pone.0199823.g005
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developed in the context of radiation therapy [61, 62] and recently extended to chemotherapy

[52]. Ultimately, we expect the TOC curve to be a useful, simplified graphical decision-making

tool in clinical practice; the clinician and patient can together select treatment parameters that

balance the chance of success and chance of side effects according to the patient’s level of risk

aversion.

As with ROC curves, we can use the area under the TOC curve, denoted AUTOC, as a met-

ric of therapeutic efficacy and hence as a measure of both treatment quality and image quality

for situations where the images are used for therapy planning. This approach is particularly

attractive for radiation therapy where established radiobiological models can be used to com-

pute TCP and NTCP, and the theory developed in this paper facilitates the estimation of TCP

in chemotherapy. Estimation of NTCP in chemotherapy is more problematic, in large part

because there is very little literature on the whole-body distributions of common drugs and

their patient-to-patient variability. One can find publications on maximum tolerated dose

(MTD) and the corresponding dose-limiting side effect, but very little on the variation of

NTCP with injected mass of the drug. Moreover, the injected mass is always reported as milli-

grams per square meter of body surface area (possibly also per week).

Estimation tasks in precision medicine

Estimation of patient-specific parameters. Information about the drug distribution for a

particular patient can be obtained by using radiolabelled drug molecules that can be imaged

with PET or SPECT. The sensitivity of these imaging modalities is high, so the drug can proba-

bly be administered at subtherapeutic levels, but if this is a worry, then a surrogate molecule

with approximately the same molecular weight as the drug but with no therapeutic effect can

be used to study the extravasation of the drug from the capillaries (the source term in the diffu-

sion Eq (23)) and its diffusion through the extracellular space. For a bolus injection the

Fig 6. TOC curves. An illustration of a Therapy Operating Characteristic (TOC) curve. (a) Schematic plot of Tumor-Control Probability (TCP) and Normal-Tissue-

Complication Probability (NTCP) vs. injected mass of drug, M (arbitrary units); (b) The TOC curve: Plot of TCP vs. NTCP as M is varied.

https://doi.org/10.1371/journal.pone.0199823.g006
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extravasation and diffusion processes have very different time dependences (the former being

more rapid), so in principle we can separate ccap(r, t) from cdiff(r, t) on the basis of dynamic

PET or SPECT images, for either the actual drug or the surrogate.

Assume we have used a radiolabeled drug with long half life to observe the overall drug con-

centration cj(r, t) for patient j over a long time period T. As mentioned in the introduction,

imaging data g and the radiolabeled drug c form a pair of statistical covariates {c,g}. For patient

j, the raw imaging data gj = g|cj is a statistical quantity whose distribution is indirectly related to

cj via a linear operator Hc : L2ðVÞ ! RM , which maps the function cj to a finite list of M aver-

age pixel counts. Specifically, many molecular imaging systems result in data that are accu-

rately modeled as an M-dimensional Poisson random vector with mean given by Hccj, i.e. if

gm denotes the mth pixel data, we have [10]

PrðgjcjÞ ¼
YM

m¼1

½ðHccjÞm�
gm

gm!
expð� ðHccjÞmÞ ð38Þ

The raw image data for patient j are then a random sample from Pr(g|cj), from which one can

perform statistical estimation to reconstruct cj; such an estimate is denoted generically by a hat.

In molecular imaging, the most common reconstruction methods are variants on classical

Maximum Likelihood (ML) estimation, that is we choose ĉ j to be (at least approximately) a

maximizer of Pr(g|cj) [10].

Suppose further that we have used some tracer to measure drug sensitivity α(r). The data

for this study are denoted g|αj, and the linear operator for this step is denoted Ha. We can use

the data sets g|cj and g|αj to perform ML reconstructions of the drug distribution and sensitiv-

ity, denoting the results as results as ĉ j and α̂ j, respectively. Note that both ĉ j and α̂ j can now

be considered as patient-specific physiological random processes; the randomness now is a

result of the noise in the imaging system (which is well characterized for emission imaging).

The statistical properties of ĉ j and α̂ j are related to the estimation procedure used to construct

them. In particular, if Maximum Likelihood estimation with the iterative EM algorithm is

employed [66, 67], we can use a combination of asymptotic statistics and Monte Carlo simula-

tion to compute the properties of these estimates [65]. In particular, in the appropriate asymp-

totic regime, ĉ j and α̂ j can both be accurately modeled as Gaussian random processes. Note

that Gaussianity in this context is a result of asymptotic statistical properties and does not

depend on any linearity properties of the imaging system or the EM reconstruction algorithm

(which is itself a nonlinear iterative algorithm). Systematic errors, due usually to the presence

of a nontrivial null space or rapidly decaying singular spectrum of the imaging operators Hc

and Hα, or the presence of nuisance parameters such as a nonzero attenuation field, may also

be present and must be accounted for in the statistical model for ĉ j and α̂ j, which in these

instance will most likely be non-Gaussian. Such errors typically manifest as reconstruction

artifacts or degraded resolution in the reconstructed image. In this case, the exact statistical

properties of ĉ j and α̂ j may be difficult to derive analytically, and it may be necessary to apply

Bayesian techniques to compute probabilities with ĉ j and α̂ j.

Referring again to Fig 2, we will now employ the proposed treatment response model

(Eq (13)) and the patient-specific PRPs ĉ j and α̂ j in place of the generic PRPs c and α in order

to personalize the parameter Y and hence the probability of tumor control Pr(TC). Plugging â j

and ĉ j into (13), we obtain

Ŷ j ¼ �
R

Vd
3r â jðrÞ dAUCjðrÞ ð39Þ
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where dAUCjðrÞ is the area under the curve of the estimated drug concentration at point r vs.

time:

dAUCjðrÞ �
R t0þT
t0

dt ĉjðr; tÞ : ð40Þ

Note that as (39) is a functional of an approximate maximum likelihood estimate, it is guaran-

teed to be asymptotically normal by an application of the (functional) delta method; see

[68, 69] for a technical discussion. One can also interpret (39) as an application of the maxi-

mum likelihood invariance theorem [10], but the pair of functions {c,α} must be considered

infinite-dimensional nuisance parameters in this context, and so the definition of the likeli-

hood for the parameter Y requires care [68].

To estimate patient-specific Pr(TC) using the definition Pr(TC) = Pr(Y< Yc), we require

the PDF of the scalar random variable Ŷ j; as just discussed, this PDF is approximately Gauss-

ian. If we can assume that α̂ j and ĉ j are unbiased estimates of αj and cj, the mean of Ŷ j is the

true value Yj, that is,

hŶ jiŶ jjfcj;ajg ¼ Yj ¼ �

Z

V
d3r ajðrÞAUCjðrÞ ð41Þ

In current practice, α̂ j and ĉ j will usually be obtained by an iterative algorithm called

MLEM (Maximum-Likelihood Expectation Maximization), which returns voxelized approxi-

mations to the estimates of the functions αj(r) and cj(r, t), respectively. The image data will also

be sampled in time with a resolution Δt.
With these interpretations and the properties of ML estimators (including the statistical

independence of the two ECT data sets), we can show that the variance of Ŷ j is approximately

given by

VarðŶ jÞ � �
3Dt
P

n;n0

X

m;m0
Kâ jjaj
ðrn; rn0 ÞKĉ jjcj

ðrn; tm; rn0 ; tm0 Þ; ð42Þ

where �3 is the volume of a voxel, Δt is the time between images in a dynamic sequence, and

Kâ jjaj
and Kĉ jjcj

ðrn; tm; rn0 ; tm0 Þ are elements of the covariance matrices for the estimates of the

drug sensitivity and drug concentration, respectively. An efficient algorithm for computing

these covariance matrices is given in [65].

We can thus assume that Ŷ j is approximately normal with mean (41) and variance (42),

meaning that an estimate of the tumor control probability for patient j is given by

dTCPj ¼
Z Yc

� 1

dŶ j prðŶ jÞ ; ð43Þ

Note that the mean and variance of Ŷ j are unknown; their values may be replaced by their

sample equivalents, then confidence intervals constructed by standard means.

With (42) and (43), the estimated TCP for patient j is an error function as in [52].

Estimation of ensemble statistics. Now suppose we have ECT data for cj, and hence a

maximum-likelihood reconstruction ĉ j, but no patient-specific ECT data for αj are available.

In this case we can still use (39) with c replaced by ĉ j, but we must now treat α as a nuisance

parameter, i.e. one that influences the task but is not estimated. As discussed in [10], Sec.

13.3.8, the best approach is to marginalize the expression for TCP over α, which requires a ran-

dom process model for α. When possible, it is preferable to choose a model based on appropri-

ate training data, i.e. we estimate a characteristic functional Cα by employing data collected
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from some other non-patient-specific means. A methodology for estimating characteristic

functionals from training data is given by Kupinski et al. [12]; another class of methods for

generating random field models from training image data is based on the maximum entropy

principle and was first discussed in Zhu, Wu and Mumford [70]. Note that without patient-

specific imaging data for a process such as α, the uncertainty in the prediction of treatment

response will certainly be greater.

Discussion

The basic tools of physiological random processes, characteristic functionals, emission com-

puted tomography and TOC curves, in combination, could lead to a wide variety of new appli-

cations in basic research and clinical medicine, especially in oncology.

One way to explore possible new applications is to return to the hallmarks of cancer, as enu-

merated in the Introduction, and to realize that each hallmark is driven by multiple interacting

physiological random processes (PRPs). Each PRP in turn is associated with the expression of

multiple genes and production of multiple proteins. With the recent advances in biomolecular

engineering, it is reasonable to expect that ECT probes that bind to virtually any of these pro-

teins can be developed. There should also be considerable freedom regarding which ECT

modality to use (PET, SPECT, CPET or OpET; see Introduction). Often we will be able to use

two or more ECT modalities simultaneously and to use the energy or wavelength variable to

distinguish multiple probes in each modality. Then, the theory of interacting random pro-

cesses can be used to provide a comprehensive statistical characterization of multiple proteins

associated with a given hallmark or pathway.

It is this ability to characterize multiple PRPs quantitatively and simultaneously and to use

models to predict treatment efficacy that sets the approach in this paper apart from quantita-

tive imaging biomarkers (QIBs). In broad general terms, a QIB is any numerical value derived

from an image that is intended to be indicative of physiology or pathology in the patient being

imaged. More specifically, the goal of current research in this area, as stated in [71], is to pro-

duce “standardized, unbiased, and precise imaging data in support of the larger medical

research and clinical enterprise.” In a sense, we are proposing to expand the reach of QIBs to

include biomarkers which are not directly measurable from imaging data (such as tumor vol-

ume or standardized uptake values), but which may require an auxiliary biomathematical

model to compute.

While we have considered explicitly the case of monotherapy in this work, the PRP frame-

work presented here naturally extends to combination therapies, with each drug comprising a

separate PRP. When multiple drugs are to be employed, a mathematical efficacy model such as

the integrated log-kill can be developed to predict response for the proposed combination

therapy. Multiple ECT images—one corresponding to each PRP in the model—can then be

collected to predict patient-specific response. Alternately, random process models can be

employed if imaging data is unavailable for some of the PRPs involved. Furthermore, an exten-

sion of the TOC curve for multiple treatment parameters (such as dosage and timing for each

drug) can be developed and the subsequent figure of merit maximized over the set of admissi-

ble treatment parameters. Theoretically, treatment optimization could take place in real-time

as the actual treatment is administered, so long as longitudinal imaging data is available and

the necessary efficacy models and corresponding figures of merit are rapidly computable.

Complicated efficacy models may require, for example, the solution of a four-dimensional Par-

tial Differential Equation (PDE), which may be computationally demanding, and the usage of

expensive Monte Carlo simulation, which may prevent real-time adaptation. In contrast, the

integrated log-kill model presented here only requires computing a dot product, and the
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explicit probability densities we have derived bypass the need for computationally demanding

Monte Carlo simulation.

Crucial to demonstable success with either PRPs or QIBs is validation. Validation of the

PRP formalism in this paper may in fact be easier than validation of QIBs because we have

specified the task we want to perform with PRPs. That task is to optimize a cancer treatment

for an individual patient, with optimality defined by the area under a single-patient TOC

curve. In that same section we outlined a methodology for performing clinical trials with such

personalized therapy, and we noted that all one can ever evaluate in this scenario is the combi-

nation of the patient-specific data, the model of tumor response (and how it varies with

administered mass of the drug) and the personalization strategy. The final metric for success

in this scenario of then some measure of therapeutic efficacy for a cohort of patients; ulti-

mately, conventional survival curves can be used.

With this viewpoint, optimization of the strategy reduces to getting better patient data,

developing better models of therapeutic efficacy and developing correspondingly better

personalization strategies. Each of these goals is an area for future research, and each fits within

the theory introduced in this paper.

Conclusion

This paper has presented an approach to modeling physiological processes using random func-

tions, or equivalently as random infinite-dimensional vectors. The statistical properties of

these random functions are described fully by the key tool used in this paper, the characteristic

functional. Moreover, conditional and joint characteristic functionals provide rigorous new

methods for describing the linear and nonlinear interactions among random processes. We

have illustrated the power of these approaches by developing analytic formulas for various situ-

ations of interest in oncology.

Many of the explicit results in this paper are based on the linear-log-kill expression (14),

which has the advantage of immediately reducing two key infinite-dimensional random pro-

cesses to a single scalar, the integrated log kill. Tumor response to a drug is more complicated

than implied by this equation, so we have also considered nonlinear and nonlocal effects in

tumor response. In all cases it was possible to derive analytic forms for the statistics of the inte-

grated log kill Y. Nevertheless, there is still a need for auxiliary studies in order to select which

additional effects should be incorporated into the theory, how they should be integrated and

how any relevant patient-specific parameters can be estimated.

We have also shown that results relevant to personalized cancer therapy can be derived if

we have patient-specific molecular imaging data on the particular physiological processes that

affect the growth of that patient’s tumor and its response to therapy. The key mathematical

tools in this endeavor were the properties of maximum-likelihood estimates and the Therapy

Operating Characteristic (TOC) curve.

Supporting information

S1 Appendix. Mathematical properties of characteristic functionals.

(PDF)

S2 Appendix. Example random process models.

(PDF)

Physiological random processes in precision cancer therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0199823 June 29, 2018 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199823.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0199823.s002
https://doi.org/10.1371/journal.pone.0199823


S3 Appendix. Gompertzian tumor growth as a random process.

(PDF)

S4 Appendix. Characteristic functionals for diffusion.

(PDF)

Acknowledgments

This work was partially supported by the National Institute of Biomedical Imaging and Bioen-

gineering of the National Institutes of Health under award numbers R01EB000803 and

P41EB002035. The content is solely the responsibility of the authors and does not necessarily

represent the official views of the National Institutes of Health. The first author was partially

supported by the ARCS foundation for a portion of this work. The authors would also like to

acknowledge useful comments from Brandon Gallas, Ardith El-Kareh and an anonymous

reviewer.

Author Contributions

Conceptualization: Nick Henscheid, Kyle J. Myers, Harrison H. Barrett.

Formal analysis: Nick Henscheid, Eric Clarkson, Harrison H. Barrett.

Funding acquisition: Harrison H. Barrett.

Methodology: Nick Henscheid.

Project administration: Harrison H. Barrett.

Software: Nick Henscheid.

Supervision: Harrison H. Barrett.

Validation: Kyle J. Myers.

Visualization: Nick Henscheid.

Writing – original draft: Harrison H. Barrett.

Writing – review & editing: Nick Henscheid.

References
1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57–70. https://doi.org/10.1016/

S0092-8674(00)81683-9 PMID: 10647931

2. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646–674.

https://doi.org/10.1016/j.cell.2011.02.013 PMID: 21376230

3. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004; 10(8):789.

https://doi.org/10.1038/nm1087 PMID: 15286780

4. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heteroge-

neity in cancer evolution. Nature. 2013; 501(7467):338–345. https://doi.org/10.1038/nature12625

PMID: 24048066

5. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev

Cancer. 2012; 12(5):323–334. https://doi.org/10.1038/nrc3261 PMID: 22513401

6. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194(4260):23–28. https://doi.

org/10.1126/science.959840 PMID: 959840
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62. Barrett HH, Kupinski MA, Müeller S, Halpern HJ, Morris JC III, Dwyer R. Objective assessment of

image quality VI: Imaging in radiation therapy. Phys Med Biol. 2013; 58(22):8197. https://doi.org/10.

1088/0031-9155/58/22/8197 PMID: 24200954

63. Barrett HH, Alberts DS, Woolfenden JM, Liu Z, Caucci L, Hoppin JW. Quantifying and reducing uncer-

tainties in cancer therapy. In: Proc SPIE Int Soc Opt Eng. vol. 9412. NIH Public Access; 2015.

64. Klauschen F, Andreeff M, Keilholz U, Dietel M, Stenzinger A. The combinatorial complexity of cancer

precision medicine. Oncoscience. 2014; 1(7):504. https://doi.org/10.18632/oncoscience.66 PMID:

25594052

65. Barrett HH, Wilson DW, Tsui BM. Noise properties of the EM algorithm. I. Theory. Phys Med Biol. 1994;

39(5):833. https://doi.org/10.1088/0031-9155/39/5/004 PMID: 15552088

66. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R

Stat Soc Series B Stat Methodol. 1977; p. 1–38.

67. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med

Imaging. 1982; 1(2):113–122. https://doi.org/10.1109/TMI.1982.4307558 PMID: 18238264

68. van der Vaart AW. Asymptotic statistics. New York: Cambridge University Press; 1998.

69. Wong WH, Severini TA. On maximum likelihood estimation in infinite dimensional parameter spaces.

Ann Stat. 1991; p. 603–632.

70. Zhu SC, Wu Y, Mumford D. Filters, random fields and maximum entropy (FRAME): Towards a unified

theory for texture modeling. Int J Comput Vision. 1998; 27(2):107–126. https://doi.org/10.1023/

A:1007925832420

71. Abramson RG, Burton KR, John-Paul JY, Scalzetti EM, Yankeelov TE, Rosenkrantz AB, et al. Methods

and challenges in quantitative imaging biomarker development. Acad Radiol. 2015; 22(1):25–32.

https://doi.org/10.1016/j.acra.2014.09.001 PMID: 25481515

Physiological random processes in precision cancer therapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0199823 June 29, 2018 25 / 25

https://doi.org/10.1002/ana.410150302
http://www.ncbi.nlm.nih.gov/pubmed/6609679
http://www.ncbi.nlm.nih.gov/pubmed/1563006
https://doi.org/10.1146/annurev.biochem.78.081307.110540
http://www.ncbi.nlm.nih.gov/pubmed/19317650
http://www.ncbi.nlm.nih.gov/pubmed/6279628
https://doi.org/10.1101/cshperspect.a016949
https://doi.org/10.1088/0031-9155/58/22/8197
https://doi.org/10.1088/0031-9155/58/22/8197
http://www.ncbi.nlm.nih.gov/pubmed/24200954
https://doi.org/10.18632/oncoscience.66
http://www.ncbi.nlm.nih.gov/pubmed/25594052
https://doi.org/10.1088/0031-9155/39/5/004
http://www.ncbi.nlm.nih.gov/pubmed/15552088
https://doi.org/10.1109/TMI.1982.4307558
http://www.ncbi.nlm.nih.gov/pubmed/18238264
https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1023/A:1007925832420
https://doi.org/10.1016/j.acra.2014.09.001
http://www.ncbi.nlm.nih.gov/pubmed/25481515
https://doi.org/10.1371/journal.pone.0199823

