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With the increasing availability and dropping cost of high-throughput technology in
recent years, many-omics datasets have accumulated in the public domain. Combining
multiple transcriptomic studies on related hypothesis via meta-analysis can improve
statistical power and reproducibility over single studies. For differential expression (DE)
analysis, biomarker categorization by DE pattern across studies is a natural but critical
task following biomarker detection to help explain between study heterogeneity and
classify biomarkers into categories with potentially related functionality. In this paper,
we propose a novel meta-analysis method to categorize biomarkers by simultaneously
considering the concordant pattern and the biological and statistical significance across
studies. Biomarkers with the same DE pattern can be analyzed together in downstream
pathway enrichment analysis. In the presence of different types of transcripts (e.g.,
mRNA, miRNA, and lncRNA, etc.), integrative analysis including miRNA/lncRNA target
enrichment analysis and miRNA-mRNA and lncRNA-mRNA causal regulatory network
analysis can be conducted jointly on all the transcripts of the same category. We applied
our method to two Pan-cancer transcriptomic study examples with single or multiple
types of transcripts available. Targeted downstream analysis identified categories of
biomarkers with unique functionality and regulatory relationships that motivate new
hypothesis in Pan-cancer analysis.

Keywords: biomarker categorization, differential expression, meta-analysis, pan-cancer, transcriptomics

INTRODUCTION

The revolutionary advancement of high-throughput technology in recent years has generated
large amounts of omics data of various kinds (e.g., genetics variants, gene expression and
DNA methylation, etc.), which improves our understanding of human disease and enables the
development of more effective therapies in personalized medicine (Richardson et al., 2016). As
more studies are conducted on a related hypothesis, meta-analysis, by combining evidence from
multiple studies, has become a popular choice in genomic research to improve upon the power,
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accuracy, and reproducibility of individual studies (Ramasamy
et al., 2008; Begum et al., 2012; Tseng et al., 2012). One of the main
purposes of transcriptomics studies is to identify genes or RNAs
that express differently between two or more conditions (e.g.,
diseased patients vs. healthy controls), also known as differential
expression (DE) analysis or candidate biomarker detection. Many
meta-analysis methods have been developed or applied to DE
analysis, including combining p-values (Fisher, 1992) or effect
sizes (Choi et al., 2003) and rank-based approaches (Hong et al.,
2006). One may refer to Tseng et al. (2012) for an overview of
the major meta-analysis methods in transcriptomic studies and
Ma et al. (2019) for an overview of available software tools. Yet,
a majority of conventional meta-analysis methods only generate
a list of differentially expressed genes with strong aggregated
evidence without further investigating in what studies are the
genes differentially expressed.

Study or population heterogeneity always exists and has
been critical to biomarker detection (Di Camillo et al., 2012).
For example, The Cancer Genome Atlas (TCGA) consortium
completed a Pan-Cancer Atlas of multi-platform molecular
profiles spanning 33 cancer types in an effort to provide insights
into the commonalities and differences across tumor lineages
(Weinstein et al., 2013; Hoadley et al., 2018). When meta-
analysis is performed on Pan-cancer transcriptomic studies,
we expect to see both DE genes common in all tumor
types as well as genes differentially expressed in some tumor
types but not others. Biomarker categorization according to
their DE patterns across studies is demanding in genomic
studies for three reasons. First, biomarkers that share unique
cross-study DE patterns are potentially involved in related
functions (Berger et al., 2018). Such unique categories of genes
with similar function can be used to generate new biological
hypotheses. Second, biomarker categorization can make high
dimensional genomic data more tractable. For example, in
cancer transcriptomic studies, which frequently detect thousands
of DE genes, downstream analysis methods such as pathway
enrichment analysis or network analysis cannot be applied
directly. By partitioning the original large set of DE genes
into smaller subsets, biomarker categorization facilitates more
focused downstream analysis. Third, RNA sequencing (RNA-
seq) technology has led to an explosion of transcriptomic studies
profiling both coding (i.e., mRNA) and noncoding RNAs (i.e.,
miRNA, rRNA, lncRNA, etc.) (Di Bella et al., 2020). Joint analysis
of different RNA types with the same cross-study DE patterns can
improve understanding of their regulatory relationships, which
may lead to inferences about the underlying mechanisms of
complex human diseases like cancer.

Li and Tseng (2011) first proposed an adaptively weighted
Fisher (AW-Fisher) method for biomarker categorization that
assigns a binary weight of 0 or 1 to each study and searches
for the pattern of weights that minimizes the aggregate statistics
for each gene. Though the method incorporates statistical
significance by combining two-sided p-values across studies, it
does not take into account the direction of regulation (e.g.,
up-regulated or down-regulated). Other methods incorporate
biomarker categorization within the Bayesian framework and
combine one-sided p-values or Bayesian posterior probabilities

(Ma et al., 2017; Huo et al., 2019) but not the magnitudes of effect
sizes. In practice, biological significance (i.e., large effect size) and
statistical significance (i.e., small p-value) do not always occur
in tandem (depending on sample size and variance) though they
are equally important in interpreting study results (Sullivan and
Feinn, 2012; Solla et al., 2018).

In this paper, we propose a novel meta-analysis method to
detect and categorize biomarkers by simultaneously considering
concordant pattern (i.e., direction of regulation), biological
and statistical significance across studies. In addition, we
develop a permutation test to assess the uncertainty of the
proposed statistics and to control the false discovery rate (FDR).
When only coding genes are included, after categorization
we perform downstream pathway enrichment analysis with
topological information on each category of genes for more
biological insights (Figure 1A). In the presence of diverse
RNAs, we jointly analyze all RNA species in the same category
using miRNA/lncRNA target enrichment analysis and lncRNA-
mRNA and miRNA-mRNA causal regulatory network analysis
(Figure 1B). We show by simulation that our method detects
both concordant and discordant biomarkers and assigns the
correct weights. We apply our method to two Pan-cancer
transcriptomic data examples: (1) Pan Gynecologic cancer (Pan-
Gyn) data with coding genes only; (2) Pan Kidney cancer (Pan-
Kidney) data that include mRNA, miRNA as well as lncRNA.
The identified biomarker categories show unique functionality
and informative regulatory relationships and could suggest new
hypotheses about mechanisms underlying exclusive and shared
features of different cancer types.

MATERIALS AND METHODS

Popular Meta-Analysis Methods
Tseng et al. (2012) reviewed the major types of meta-analysis
methods for DE gene detection in microarrays and classified the
methods into four main classes: combining p-values, combining
effect sizes, combining ranks, and direct merging. We will discuss
selected meta-analysis methods from the first two classes that are
relevant to our proposed method.

Combining P-Values
Fisher’s method (Fisher, 1992)
The conventional Fisher’s method combines log transformed
p-value from each study with the statistic TFisher =

−2
K∑

k=1
log

(
pk
)
, which follows a χ2 distribution with 2K

degrees of freedom under the null hypothesis (i.e., genes not
differentially expressed in all studies), where K is the number of
studies and pk is the p-value of study k, 1 ≤ k ≤ K.

Stouffer’s method (Stouffer, 1949)
The Stouffer’s method proposes inverse normal transformation of
p-value with the statistic TStouffer

∑K
k=18

−1(1− pk)/
√
K, which

follows a standard normal distribution under the null, where
8−1(x) is the inverse cumulative distribution function of the
standard normal distribution.
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FIGURE 1 | Conceptual framework of our method. (A) The scenario with mRNA (or coding genes) only. The heatmap shows the gene expression of all samples from
three studies. Rows refer to genes sorted by the specified weight category, columns refer to samples, and solid white lines are used to separate different conditions
(control vs. case). Colors of the cells correspond to scaled expression level. The green/red indicates lower/higher expression. Pathway enrichment analysis is applied
to genes belonging to the same weight category with topological information to visualize the cross-study DE patterns at the molecular level. (B) The scenario with
diverse RNA species (e.g., mRNA, miRNA, and lncRNA). The three heatmaps show the expression of different types of transcripts of all samples from three studies,
sorted by weight category. In the presence of multiple types of RNA species, we will perform integrative analysis on all the transcripts belonging to the same weight
category together. Possible downstream analysis includes miRNA/lncRNA target enrichment analysis and lncRNA-mRNA and miRNA-mRNA causal regulatory
network analysis.

Adaptively weighted fisher’s method (AW-Fisher) (Li and
Tseng, 2011)
Fisher’s method does not differentiate DE in a single study or
multiple studies as long as their aggregate contribution to the final
statistics remains the same. To overcome this and better explain
the between study heterogeneity, Li and Tseng (2011) introduced
an AW-Fisher’s method as a modification of the original
Fisher’s method. The AW-Fisher method considers U(−→w ) =
−2

∑K
k=1 wklog(pk) for each gene, where−→w = (w1, . . . ,wK) and

each wk is a binary weight of 0 or 1 assigned to each study k.
Denote by p

(
U(−→w )

)
the p-value when the weight−→w is given, the

AW-Fisher statistic is defined as:TAW = min−→w p
(
U(−→w )

)
, where

the optimal weight (ŵ1, . . . , ŵK) that minimizes the p-value
indicates the subset of studies that contribute to the aggregate
statistics and naturally categorizes the biomarkers. There is no
closed-form distribution for AW-Fisher statistics under the null,
so permutation tests and importance sampling is used to obtain
the p-value and control the FDR.

Combining Effect Size
Fixed effect model (FEM) and random effect model (REM)
(Choi et al., 2003)
Fixed effect model (FEM) combines effect sizes across all studies
for each gene using a simple liner model: Tk = µ+ εk, εk ∼

N(0, s2k), where µ is the overall mean and the within-study
variance s2k represents the sampling error conditioned on study k.
The combined point estimate of µ is a weighted average of study-
specific effect sizes, where weights are equal to the inverse of s2k.
FEM will prioritize concordant genes with the same directionality
across all studies.

When strong between studies heterogeneity exists and the
underlying population effect size is assumed to be unequal across
studies, an REM is given hierarchically as Tk = θk + εk, εk ∼

N
(
0, s2k

)
; θk = µ+ δk, δk ∼ N(0, τ2), where between-study

variance τ2 represents the additional source of variability between
studies. A homogeneity test can be performed to test whether
τ2 is zero or not, and determine the appropriateness of FEM
or REM. Like FEM, REM also prioritizes concordant genes but
with more flexibility across studies. Neither of FEM nor REM
produces biomarker categorization results.

Remarks
P-value combination methods are powerful for detecting genes
that have non-zero effects in at least one study (HSB alternative
hypothesis setting as in Chang et al. (2013) without considering
the magnitudes and directionality of effects across studies.
Thus, p-value methods cannot distinguish concordant genes (i.e.,
upregulated or downregulated in all studies) from discordant
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genes (i.e., upregulated in some studies but downregulated
in others). In contrast, effect size combination methods
take directionality into account but favor only concordant
genes. Even so, discordant genes can still be of interest
in, for example Pan-cancer analysis, to understand between
tumor heterogeneity. We, therefore, propose a new meta-
analysis method that incorporates both p-value and effect size
combination methods, and considers concordant pattern as well
as biological and statistical significance simultaneously to assist
biomarker detection and categorization. Here we will introduce
our method namely BCMC (Biomarker Categorization in Meta-
analysis by Concordance).

New Meta-Analysis Method for
Biomarker Detection and Categorization
Suppose there are K transcriptomic studies, each study k (1 ≤
k ≤ K) measures the gene expression of nk samples and G genes.
We use gene expression as example to introduce our method
though the method is ready to analyze other types of transcripts
such as miRNA and lncRNA. Our objective in meta-analysis is to
detect candidate genes differentially expressed between the case
(e.g., patients diagnosed with disease) and control (e.g., healthy
subjects) group in multiple studies and categorize the detected
genes by their DE patterns across studies. We first perform DE
analysis using popular methods such as limma (Ritchie et al.,
2015) for microarray or DESeq2 (Love et al., 2014) for RNA-seq
in each study and obtain the summary statistics including effect
size estimates (log2 fold change or LFCgk) and p-values (pgk) for
each gene g (1 ≤ g ≤ G) in each study k. Effect sizes and p-values
represent biological and statistical significance, respectively, and
can be treated as DE evidence for single studies. The smaller
the p-value and the larger the magnitude of effect size, the more
likely a gene will be a DE gene in the study. In meta-analysis,
concordance (i.e., a gene having the same sign of effect size in
different studies) is regarded as additional piece of DE evidence.
We define gth gene as being up-regulated in kth study when
LFCgk > 0 (i.e., having higher expression in case group) and being
down-regulated when LFCgk < 0 (i.e., having higher expression
in control group).

When integrating multiple transcriptomic studies, DE genes
may be altered in study-specific patterns. For example, some
genes are differentially expressed in all studies while others
are only differentially expressed in specific subset of studies.
Meta-analysis methods also have different groups of targeted
biomarkers as reflected by different statistical hypothesis settings.
The null hypothesis for each gene in meta-analysis is commonly
defined as: H0 : θg1 = · · · = θgK = 0, where θgk represents the
true effect of gene g in study k. Depending on the types of targeted
biomarkers, three alternative hypotheses have been proposed in
the meta-analysis literature (Birnbaum, 1954; Tseng et al., 2012;
Song and Tseng, 2014). The first setting (HSA) aims to detect DE
genes that have non-zero effect in all studies, i.e., θgk 6= 0 for all
k. The second setting (HSB) aims to detect DE genes that have
non-zero effect in at least one study, i.e., θgk 6= 0 for some k. The
third setting (HSr) aims to detect DE genes that have non-zero
effect in at least r studies, i.e.,

∑K
k=1 I

{
θgk 6= 0

}
≥ r. As we show

next, our method generally follows HSr setting with specifically
r = 2 (i.e., we detect DE genes that have non-zero effect in at
least two studies).

To detect DE genes and categorize them by cross-study DE
patterns, we propose the following two aggregate statistics for
each gene that combines DE evidence across up-regulated studies
or down-regulated studies, respectively:

T+
g(−→w +g )

=

∑
LFCgk>0; LFCgk′>0; k6=k′(w

+

gkw
+

gk′LFCgkLFCgk′

|log10pgk + log10pgk′ |)∑
k w
+

gk

T−
g(−→w −g )

=

∑
LFCgk<0; LFCgk′<0; k6=k′

(w−gkw
−

gk′LFCgkLFCgk′ |log10pgk + log10pgk′ |)∑
kw−gk

,

where w+gk and w−gk are binary weights of 0 or 1 assigned
to the kth study for gth gene, indicating whether a study is
selected for inclusion in aggregate statistics or not, +/− indicate
upregulation or downregulation part, −→w +g =

(
w+g1, . . . ,w

+

gK

)
and −→w −g =

(
w−g1, . . . ,w

−

gK

)
. LFCgk is the log2 fold change and

pgk the corresponding p-value for gene g in study k obtained from
single study DE analysis.

For gth gene, T+
g(−→w +g )

aggregates the information of single

study summary statistics (including both p-value and effect size)
over up-regulated studies (i.e., those studies with LFCgk > 0),
while T−

g(−→w −g )
aggregates that over down-regulated studies (i.e.,

those studies with LFCgk < 0). The binary weights are used to
indicate what studies to include to the aggregate statistics and the
optimal weights that maximize the statistics will be searched for
each gene. In the proposed aggregate statistics, we simultaneously
account for concordant patterns (where LFCgk and LFCgk′ have
the same sign), biological significance (estimated as the product
of LFCgk) and statistical significance [estimated as the sum of
log10(pgk)]. This will encourage combining studies with the same
directionality to find the best evidence for DE, which is consistent
with the purpose of meta-analysis to identify more reproducible
genes in multiple studies. Similar statistics have been proposed
for concordant and discordant analysis of orthologous genes
between a pair of species (Domaszewska et al., 2017). From the
formula, we can see that the proposed statistic is essentially a
weighted average of all study pairs with effect sizes in the same
direction. A weighted average of all studies instead of study
pairs is an alternative approach but it tends to exclude studies
with moderate effect sizes or p-values (see a toy example in
Supplementary Table 1).

By default, we assume w+gk = 0 for studies with LFCgk < 0
and w−gk = 0 for LFCgk > 0 to avoid conflict between the two
statistics. When no studies are up-regulated or down-regulated
for a particular gene, we suppress the corresponding T+

g(−→w +g )
or

T−
g(−→w −g )

to zero and assign zero weights. The statistics aggregates

over study pairs so we need to choose at least two studies to
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make it meaningful. When only one study is up-regulated or
down-regulated, we also suppress the corresponding T+

g(−→w +g )
or

T−
g(−→w −g )

to zero.

We then search for the optimal weights to identify the subset
of studies that maximize each of the two aggregate statistics.
Such optimal weights describe the DE patterns of each gene
across studies and provide natural categorization of all genes with
potential biological interpretation. The corresponding maximum
statistics are defined as:

R+g = max
−→w +g ∈W

T+
g(−→w +g )

;R−g = max
−→w −g ∈W

T−
g(−→w −g )

,

where W is the pre-defined searching space of weights with
aforementioned restrictions. The resulting optimal weights
are denoted as −→w +∗g and −→w −∗g . The biomarkers are then
categorized according to the distribution of optimal weights
among studies by merging the information of w+∗g and

w−∗g , i.e., the final weights −→w ∗g =
−→
1 ◦ −→w +∗g +

−→
−1 ◦ −→w −∗g

For example, concordantly up-regulated genes with −→w +∗g =
(0, 0, 1, 1, 1) and −→w −∗g = (0,0,0,0,0) will be in one category
[−→w ∗g = (0, 0, 1, 1, 1)], while concordantly down-regulated genes
with −→w +∗g = (0, 0, 0, 0, 0) and −→w −∗g = (0,0,1,1,1) will be in
the other category [−→w ∗g = (0, 0,−1,−1,−1)]. Note that the
proposed statistics can describe both up-regulated and down-
regulated patterns in the same gene, thus also allowing the
detection of discordant genes. In cases both patterns exist and
we want to find a dominant pattern in the discordant gene, we
can further define Rg = max (R+g , R

−
g ) and use the corresponding

−→w +∗g or−→w −∗g for biomarker categorization.
To assess the uncertainty of R+g and R−g and determine DE in

meta-analysis, we develop a permutation-based test to calculate
the p-value and FDR adjusted p-value (also known as q-value)
of the statistics. We permute group labels (i.e., case or control
group) in each study B times and calculate the maximum statistics
in each permuted dataset. For each gene, we obtain two p-values
corresponding to R+g and R−g , respectively:

p+g
(R+g )
=

∑B
b=1

∑G
g′=1 I

{
R+(b)g′ ≥ R+g

}
+ 1

B ∗ G+ 1
;

p−g
(R−g )
=

∑B
b=1

∑G
g′=1 I

{
R−(b)g′ ≥ R−g

}
+ 1

B ∗ G+ 1
,

where R+(b)g′ and R−(b)g′ are the maximum statistics for gth gene
in bth (1 ≤ b ≤ B) permutation. The value of one is added to
both numerator and denominator to avoid zero p-values. After
p-values are generated, we further estimate the proportion of null
genes π0 as:

π̂+0 =

∑G
g=1 I{p

+
g
(R+g )

εA}

G ∗ `(A)
; π̂−0 =

∑G
g=1 I{p

−
g
(R−g )

εA}

G ∗ `(A)
,

normally we choose A = [0.5, 1] and ` (A) = 0.5 to estimate the
null proportion, following the guidance in the previous methods
and the literature of FDR (Storey, 2002; Storey and Tibshirani,
2003; Li and Tseng, 2011). In most cases, the density of p-values
beyond 0.5 is fairly flat, implying most null p-values are located
in this region. In practice, depending on the problem, other
common choices of A = [0.05,1] or A = [0.025,1] can also
be applied. The optimal A can be empirically determined by
minimizing some loss function, we do not discuss further here
and refer readers to Storey (2002), Storey and Tibshirani (2003)
for more details.

Then, q-values can be calculated as

q+g
(R+g )
=

π̂+0
∑B

b=1
∑G

g′=1 I
{
R+(b)g′ ≥ R+g

}
+ 1

B ∗
∑G

g′=1 I
{
R+g′ ≥ R+g

}
+ 1

,

q−g
(R−g )
=

π̂−0
∑B

b=1
∑G

g′=1 I
{
R−(b)g′ ≥ R−g

}
+ 1

B ∗
∑G

g′=1 I
{
R−g′ ≥ R−g

}
+ 1

Likewise, p-value and q-value of the dominant pattern
statistics Rg (i.e., pg(Rg) and qg(Rg)) can be obtained in the
same way. In real data application, we determine DE in meta-
analysis using the permuted p-value or q-value for the dominant
pattern. Note that p-values and q-values of a zero R+g or R−g
are equal to one.

Downstream Analysis on Each Identified
Categories of Biomarkers
Each transcriptomic study was carefully assessed for inclusion
to meta-analysis using objective criteria or systematic quality
control methods (Kang et al., 2012). When only expression of
mRNA data is available for the K selected transcriptomic studies,
we applied our meta-analysis and identified multiple categories
of mRNAs at certain BCMC p-value or q-value cutoffs, each with
a unique DE pattern across the studies. DE analysis is useful
to narrow down targets but focusing on single gene change
across datasets is not sufficient. We still need to conduct further
investigation on whether mRNAs belonging to the same category
contain unifying biological theme. For each unique category of
mRNAs, we then performed pathway enrichment analysis to
gain more insights into their unique functions (section “Pathway
Enrichment Analysis of mRNA Expression”). When expression
data of mRNA, miRNA and lncRNA are all available, we applied
our meta-analysis method to each type of transcripts separately
and then analyzed each unique category of differentially
expressed mRNA, miRNA, and lncRNA (those with the same
weight or same cross-study DE pattern) together. Specifically,
we performed miRNAs/lncRNAs target gene enrichment analysis
(section “miRNAs/lncRNAs Target Gene Enrichment Analysis”)
and LncRNA-mRNA and miRNA-mRNA causal regulatory
network analysis (section “LncRNA-mRNA and miRNA-mRNA
Causal Regulatory Network Analysis”).
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Pathway Enrichment Analysis of mRNA Expression
For each category of mRNAs with unique DE pattern across
the studies, we looked for biological pathways that are enriched
in each category of genes more than would be expected by
chance. The enriched pathways for each category can infer the
unique biological functions only associated with specific study
subsets and help generate new hypotheses. The p-value for the
enrichment of a pathway was calculated using Fisher’s exact test
(Upton, 1992) and multiple testing was corrected by Benjamini-
Hochberg (BH) procedure (Benjamini and Hochberg, 1995).
Multiple popular pathway databases were used including Gene
Ontology (GO) (Ashburner et al., 2000), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2017), Oncogenic
signaling Pathways (Sanchez-Vega et al., 2018) and Reactome
(Fabregat et al., 2016). Pathways in each pathway database was
carefully selected for their relatedness to the problem of interest
and small pathways (e.g., pathway size <10) were filtered out for
the lack of power. For pathways with topological information
available (e.g., pathways in KEGG), we apply the R package
“Pathview” (Luo and Brouwer, 2013), to display the study-specific
information (e.g., weights, effect sizes, etc.) on relevant pathway
topology graphs.

miRNAs/lncRNAs Target Gene Enrichment Analysis
Going beyond the traditional central dogma, non-coding RNAs
such as micro-RNA (or miRNA) and long non-coding RNAs
(lncRNA) play important regulatory roles in mRNAs expression
(Bartel, 2004; Hubé and Francastel, 2018). To understand
whether miRNA/lncRNA target at mRNAs in the same category
with unique cross-study DE pattern, we analyzed each unique
category of mRNA, miRNA and lncRNA of the same cross-
study DE pattern together and performed miRNA/lncRNAs
target gene enrichment analysis on each category. Specifically,
for each unique category, we first used the miRTarBase database
(Chou et al., 2018) and LncRNA2Target v2.0 database (Cheng
et al., 2019) to obtain common target genes of each miRNA and
lncRNA in this category. We then looked for miRNA/lncRNA
with target genes enriched in the gene list falling in the same
category more than would be expected by chance. The p-value for
the enrichment of miRNA/lncRNA was calculated using Fisher’s
exact test (Upton, 1992) and multiple testing was corrected by BH
procedure (Benjamini and Hochberg, 1995).

LncRNA-mRNA and miRNA-mRNA Causal
Regulatory Network Analysis
In addition to target gene enrichment analysis, we are also
interested in investigating the causal regulatory relationship
among the various types of transcripts in the same category
using network analysis. For each unique category of mRNA and
lncRNA with the same cross-study DE pattern, we followed the
MSLCRN pipeline to perform module-specific lncRNA-mRNA
regulatory network analysis (Zhang et al., 2019). The MSLCRN
pipeline starts by using WGCNA (Langfelder and Horvath,
2008) to construct lncRNA-mRNA co-expression networks and
identify modules that contain both lncRNA and mRNA. For
each lncRNA-mRNA module, parallel IDA (Le et al., 2016) is
then applied to learn the causal structure and estimate the causal
effect of lncRNA on mRNA. IDA consists of two main steps. It

first uses a parallel version of the PC algorithm (Spirtes et al.,
2000; Kalisch and Bühlman, 2007; Le et al., 2016), commonly
used approach for learning the causal structure of a Bayesian
network, to obtain the directed acyclic graphs (DAGs) for each
module. Then, the causal effect of lncRNAs on mRNAs (i.e., the
lncRNA ≥ mRNA directed edges in the DAG) are estimated
by applying do-calculus (Pearl, 2000), causal calculus that uses
Bayesian conditioning to generate probabilistic formulas for
the causal effect. Lastly, the module-specific causal regulatory
networks are integrated to form the global lncRNA-mRNA causal
regulatory network and visualized using Cytoscape (Shannon
et al., 2003). In constructing the regulatory network, we use
absolute values of the causal effects cutoffs to assess the regulatory
strengths and confirm the regulatory relationships. More details
on the use of MSLCRN to infer causal regulatory network can
be found in Zhang et al. (2019). Module-specific miRNA-mRNA
causal regulatory networks can be obtained in a similar way
using the same tool.

SIMULATION

We conduct simulation studies to evaluate the performance of
our method in biomarker detection and categorization when
compared to AW-Fisher (Li and Tseng, 2011), FEM and REM
methods (Choi et al., 2003). Only power is assessed for FEM
and REM methods since they do not categorize biomarkers. We
assume a total of G = 2000 genes expressed in K = 5 studies, each
study has a total sample size of n = 100, evenly split into control
and case groups

(
ncase = ncontrol =

n
2 = 50

)
. The details on how

data are simulated are described below:

1. We generate 800 genes with 40 gene clusters (20 genes
in each cluster) and another 1,200 genes that do not
belong to any cluster. The cluster indexes for each gene g(
1 ≤ g ≤ 2000

)
is randomly sampled.

2. For genes in cluster c (1 ≤ c ≤ 40) and study k (1 ≤
k ≤ 5), we first generate a covariance matrix according
to inverse Wishart distribution 6

′

ck ∼W−1(9, 60), where
9 = 0.5I20×20 + 0.5J20×20, I is the identity matrix and J
is the matrix with all elements equal to one. Then, we
standardized 6

′

ck into 6ck to make sure all the diagonal
elements are one.

3. We sample baseline gene expression levels of the
20 genes in cluster c for sample i in study k by(
X
′

gc1ik, . . . ,X
′

gc20ik

)T
∼ MVN(0, 6ck), where 1 ≤ i ≤ n

and 1 ≤ k ≤ K. For those 1200 genes that are not in
any cluster, we sample the baseline gene expression level
independently from N

(
0, σ2

k
)
, where 1 ≤ k ≤ 5 and σk ∼

Unif (σ− 0.2, σ+ 0.2) with σ = 2.
4. Denote by δgk ∈ {0, 1,−1} that gene g is non-DE, up-

regulated or down-regulated in study k. We assume the
first 800 genes to be DE genes divided into four mutually
exclusive parts:

(1) Concordantly up-regulated genes (N = 225): randomly
sample δgk ∈ {0, 1,−1} such that

∑
k
I{δgk=1} ≥ 2 and∑

k
I{δgk=−1} ≤ 1.
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FIGURE 2 | Plot of the number of true DE genes vs. top ranked genes by p-value of each method.

(2) Concordantly down-regulated genes (N = 225):
randomly sample δgk ∈ {0, 1,−1} such that∑
k
I{δgk=−1} ≥ 2 and

∑
k
I{δgk=1} ≤ 1.

(3) Discordant genes with both up-regulated and down-
regulated patterns (N = 150): randomly sample
δgk ∈ {0, 1,−1} such that

∑
k
I{δgk=1} ≥ 2 and∑

k
I{δgk=−1} ≥ 2.

(4) Other genes that are DE in only one study without any
concordant patterns (N = 200): we randomly sample
δgk ∈ {0, 1,−1} such that

∑
k
|δgk | = 1.

5. To simulate effect size for DE genes in each study (when
δgk 6= 0), we sample from a uniform distribution µgk ∼

Unif (1, 3). The gene expression level Xgik are assumed to
be X

′

gik for control samples and Xgik = X
′

g(i+n/2)k + µgk ·

δgk for case samples, where 1 ≤ g ≤ 2000, 1 ≤ i ≤ n/2, and
1 ≤ k ≤ 5.

To assess power and biomarker categorization performance,
we focus on DE genes in the first three categories of genes
with concordant patterns in at least two studies (N = 600). We
also simulate additional scenario with smaller sample size and
variance: n = 20 & σ = 1, results are included in the Supplement
(Supplementary Figure 1 and Supplementary Table 2).

Figure 2 shows the number of true DE genes detected among
the top genes ranked by p-value for each method. BCMC is more
powerful than AW-Fisher and FEM/REM by detecting more true
DE genes among the top ranked genes. Table 1 summarizes
the number of true DE genes detected as well as with correct
weight pattern in each of the three categories of DE genes
identified by each method. BCMC and FEM detect more true DE
genes than AW-Fisher for concordant genes. Due to the model

restriction, FEM and REM fail to detect most discordant genes.
AW-Fisher is equally powerful as BCMC in detecting discordant
genes, however, it ignores the directionality of effects, and thus
assigns the incorrect weights to genes with both up-regulated
and down-regulated patterns (basically they fail to distinguish
w = −1 from w = 1). Our method detects these discordant
DE genes while at the same time assigns the correct weights
categorizing these genes.

REAL DATA APPLICATION

Gene Expression Analysis in
Pan-Gynecologic (Pan-Gyn) Studies
We applied our method to the gene expression data of
TCGA Pan-Gyn studies including high-grade serous ovarian
cystadenocarcinoma (OV), uterine corpus endometrial
carcinoma (UCEC), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), uterine carcinosarcoma
(UCS), and invasive breast carcinoma (BRCA) (Berger et al.,
2018). Berger et al. (2018) identified 23 genes (e.g., BRCA1,
PTEN, TP53, etc.) that were mutated at higher frequency
across all Pan-Gyn cancers than non-Gyn cancers, highlighting
the similarities across Pan-Gyn cohort. We focused on 19 of
these genes and split samples in each study into a mutation
“carrier” group and a mutation “non-carrier” group depending
on whether subjects gained mutations in at least one of the genes
(Supplementary Figure 2). Since no or very few samples were
assigned to the mutation carrier group for UCS (Nmutation = 0)
and UCEC (Nmutation = 8), we excluded those two studies and
restricted our meta-analysis to only three gynecologic cancer
types (i.e., number of studies K = 3) including OV (mutation
carrier vs. non-carrier: 217/90), BRCA (692/408) and CESC
(109/197). The purpose is to detect differentially expressed genes
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TABLE 1 | Summary of number of true DE genes detected and with correct weight patterns by the four methods in each of the three categories of DE genes described
in the simulation setting.

Methods BCMC AW-Fisher FEM REM

DE Gene categories Number of
true DE genes

Number of true DE genes
with correct weight

Number of
true DE genes

Number of true DE genes
with correct weight

Concordant up (N = 225) 206 116 195 106 203 151

Concordant down (N = 225) 210 119 195 108 201 144

Discordant (N = 150) 148 135 148 0 47 2

Total (N = 600) 564 370 538 214 451 297

between mutation carrier and non-carrier groups and categorize
them according to their cross-study DE patterns. We found the
overall survival differed significantly between the two groups for
each cancer type (Supplementary Figures 3–5). This implied the
differentially expressed biomarkers between these two groups can
have potential prognostic values related to mutational processes
and serve as optimal therapeutic intervention targets (Helleday
et al., 2014; Lawrence et al., 2014).

The RNA-seq data in Transcripts Per Million (TPM) values of
each cancer type were downloaded from LinkedOmics (Vasaikar
et al., 2018). We first merged the three datasets by matching
the gene symbols and removed genes with mean TPM < 5.
A total of 9,900 mRNAs remained and were log2 transformed
for analysis. We performed DE analysis by limma (Ritchie et al.,
2015) and obtained the p-value and LFC from each of the three
studies. We then performed meta-analysis using BCMC and
the other methods.

All methods detected thousands of DE genes at both q-value
cutoffs (for BCMC, q-value for dominant pattern was used so
we focused on concordant genes only), which is common in
Pan-cancer studies (Table 2). It becomes imperative task to
partition these DE genes into smaller subsets by cross-study
DE patterns before performing downstream analysis. BCMC
categorized these DE biomarkers (q < 0.05) into eight groups
according to the optimal weight assignments, each displaying a
unique expression pattern across the different studies (Figure 3
and Supplementary Table 3). We then merged genes with equal
|Ew∗g | into the same group (i.e., genes with Ew∗g = (0, 1, 1) and
those with Ew∗g = (0,−1,−1) are merged into the same group,
allowing both up-regulated and down-regulated genes in the
same pathway) and performed pathway enrichment analysis on
each of the four merged groups using four pathway databases:
GO (Ashburner et al., 2000), KEGG (Kanehisa et al., 2017),
Oncogenic (Sanchez-Vega et al., 2018) and Reactome (Fabregat
et al., 2016). The top 100 pathways enriched by each category

TABLE 2 | Summary of numbers of DE genes detected by each method at
different cutoffs for the Pan-Gyn study example. For BCMC, q-values for the
dominant pattern are used.

Methods

q-value BCMC AW-Fisher FEM REM

q < 0.05 1,345 3,113 2,866 983

q < 0.15 3,931 4,743 4,342 1,641

have little overlap partly validating our speculation in motivation
that the different categories of biomarkers may play different
functional roles (Figure 4). For example, top pathways for | Ew∗g | =
(1, 0, 1) (i.e., DE in OV and CESC but not in BRCA) are
mainly involved in cell junction and adhesion related functions
(Supplementary Table 4 in Supplemental File 1). Top pathways
for | Ew∗g | = (1, 1, 0) (i.e., DE in OV and BRCA but not in CESC)
are mainly involved in immune and defense response. Figure 5
shows the topology of one example KEGG pathway “Antigen
processing and presentation” enriched by the genes with | Ew∗g | =
(1, 1, 0). The highlighted DE genes showed strong DE signals
(signed LFC) in OV and BRAC but not in CESC. These genes
colocalized and interacted with each other as a functional unit
inside the pathway.

These unique gene sets of different cross-cancer DE patterns
and the associated pathways enriched help gain more insights
into the homogeneous and heterogenous molecular mechanism
of different Gynecologic cancer and assist the development of
useful diagnostic and therapeutic strategies common or specific
to cancer types. Understanding commonality and difference in
drug targets can also guide the drug repurposing strategy in
cancer drug development (Li et al., 2021).

Integrative Analysis of mRNA, lncRNA,
and miRNA in Pan-Kidney Studies
We also used BCMC to perform integrative analysis of three
different types of transcripts (mRNA, lncRNA, and miRNA) in
the TCGA Pan-Kidney cohort including kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), and kidney
renal papillary cell carcinoma (KIRP). LncRNA and miRNA
have been found playing important regulatory roles on gene
expression in kidney cancers (Linehan et al., 2010; Linehan, 2012;
Ricketts et al., 2018). The integrative analysis of these multi-omics
data provides additional insights into the biological mechanism
underlying the multiple histologic subtypes of kidney cancers. We
aimed to detect the differentially expressed biomarkers (mRNA,
miRNA, or lncRNA) that drive the progression of kidney cancer
by comparing samples from early pathologic stage (stage I and II)
to late stage (stage III and stage IV) for three kidney cancer types
(i.e., number of studies K = 3) and investigating the regulatory
relationships among these biomarkers. Number of subjects in
the two pathologic stages of each kidney cancer available in
mRNA, miRNA and lncRNA expression data were summarized
in Supplementary Table 5.
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FIGURE 3 | Heatmap of standardized expression values of differentially expressed genes (BCMC q < 0.05) sorted by weight patterns for the Pan-Gyn cancer
example.

We downloaded mRNA (in Reads Per Kilobase of transcript
per Million mapped reads or RPKM) and miRNA (in Reads
Per Million mapped reads or RPM) sequencing data from
LinkedOmics (Vasaikar et al., 2018) and lncRNA sequencing
data (in RPM) from The Atlas of Noncoding RNAs in Cancer
(TANRIC) (Li et al., 2015) for all the three kidney cancer
subtypes. We first merged the three subtypes by matching
RNA symbols/IDs. We then separately filtered each of the
three types of biomarkers by removing mRNAs with mean
RPKM < 5, lncRNAs with mean RPM < 0.1, and miRNAs
with mean RPM = 0, followed by log2 transformation. A total
of 15,332 mRNAs, 2,415 lncRNAs and 719 miRNAs remained
for analysis. We performed DE analysis by limma (Ritchie
et al., 2015) in each study and then meta-analysis to categorize
biomarkers according to cross-study DE patterns for each RNA
species. For different types of RNA belonging to the same
category, we further performed miRNA target gene enrichment
analysis and lncRNA-mRNA causal regulatory network analysis
to understand their complex interacting relationships in
kidney cancer.

Both BCMC and AW-Fisher methods detected thousands of
differentially expressed biomarkers (including mRNA, lncRNA,
and miRNA) at both q-value cutoffs with high proportion
of overlap (Table 3). Biomarkers detected by BCMC tend
to have both significant p-values and large effect sizes in
the studies indicated by optimal weights (Supplementary
Figure 6). These biomarkers (q < 0.05) were partitioned into
eight categories by different weight patterns (Supplementary
Table 6). We merged biomarkers with the same | Ew∗g | into
the same group. We focused on the group with | Ew∗g | =
(1, 1, 1) to understand the common multi-omics regulatory
among all histologic subtypes of kidney cancer and performed
downstream analysis. In miRNA target gene enrichment analysis,
we found the target gene sets of two DE miRNAs “miR-
655” and “miR-326” were enriched in the DE gene list

FIGURE 4 | Venn diagram of top 100 pathways enriched by each of the four
categories [|w∗g| = (0,1,1) , (1,0,1) , (1,1,0) , and (1,1,1) ; corresponding
to OV, BRCA and CESC, respectively] for the Pan-Gyn study example.

in the same group (p < 0.05; Supplementary Table 7 in
the Supplementary File 1), implying the potential regulatory
relationship between different biomarker types consistent in all
kidney cancer subtypes. The gene ATAD2 targeted by miR-
655 was reported as a prognostic marker for kidney disease
(Chen et al., 2017). In causal network analysis, we identified two
lncRNA-mRNA regulatory networks (Supplementary Figure 8
and Supplementary Table 8). Figure 6 shows the network
with two hub lnRNAs, the hub lncRNA ENSG00000267449 and
several mRNAs belonging to the ribosomal protein family in the
same network were found consistently differentially expressed
in all three subtypes, implying their potentially joint role in
promoting the development of kidney cancers (Zhou et al., 2015;
Dolezal et al., 2018).
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FIGURE 5 | Visualization of the topology plot of a KEGG pathway “Antigen processing and presentation” enriched by the genes with |w∗g| = (1,1,0) (corresponding
to OV, BRCA and CESC, respectively) for the Pan-Gyn example. Each box that represents a gene is split into three parts to represent the three studies. Colors
indicate the signed LFC of the mapped DE genes in the three studies.

These results demonstrate the power of our method to
detect biomarkers of different types in Pan-cancer meta-
analysis and to categorize them into functionally relevant
biomarkers by DE patterns, which could suggest commonalities
and differences in underlying mechanisms of multiple
cancer types.

DISCUSSION

In this paper, we proposed a novel meta-analysis method for
candidate biomarker detection in multiple transcriptomic studies
that further categorizes biomarkers by concordant patterns as
well as by biological and statistical significance across studies.

TABLE 3 | Summary of number of differentially expressed biomarkers among each of the three RNA species detected by each method at different cutoffs for the
Pan-Kidney study example. For BCMC, q-values for the dominant pattern are used.

Type of biomarkers mRNA lncRNA miRNA

q-value BCMC AW-Fisher BCMC AW-Fisher BCMC AW-Fisher

q < 0.05 7,317 9,472 764 1,281 239 283

Intersection 6,391 622 206

q < 0.15 11,810 11,440 1,468 1,464 358 358

Intersection 10,057 1,244 292
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FIGURE 6 | One example lncRNA-mRNA regulatory network identified from
biomarkers with | w∗g| = (1,1,1) (corresponding to KICH, KIRC, and KIRP,
respectively) for the Pan-Kidney example. The circle shapes represent
lncRNAs highlighted in green and diamond shapes represent mRNAs
highlighted in purple. The arrows indicate the network relationships between
lncRNAs and mRNAs.

Numerous downstream analysis tools including pathway analysis
and causal network analysis are applied to each category
of biomarkers with either single or multiple types of RNA
species. Simulations and real data application to two Pan-cancer
multi-omics studies showed the advantage of our method in
classifying differentially expressed biomarkers into classes with
unique biological functions and relationships that can be further
investigated in future studies.

Meta-analysis is a set of statistical analytical methods and
tools that combine multiple related studies to improve power
and reproducibility over a single study. In recent years, we
have witnessed the development of many useful meta-analysis
methods applied to genomic studies for different biological
purposes (Choi et al., 2003; Shen and Tseng, 2010; Li and Tseng,
2011; Huo et al., 2016, 2020; Kim et al., 2016, 2018; Zhu et al.,
2017; Ma et al., 2019; Zeng et al., 2020). Genomic data is usually
of high dimension and the between study heterogeneity is large
due to both technological and cohort effects. In addition to
improving power, post-hoc categorization of biomarkers into
smaller subsets by cross-study patterns for subsequent analysis is

important in genomic meta-analysis. Our meta-analysis method
that aggregates over both p-value and effect size is a fast and
intuitive solution for this purpose. Compared to other popular
meta-analysis methods that include biomarker categorization,
our method considers concordant pattern, and biological and
statistical significance simultaneously. By calculating statistics
separately for up-regulated and down-regulated parts, we can
detect both concordant genes that have consistent patterns across
all studies and discordant genes that are up/down regulated
in some studies while down/up regulated in others. Both of
these kinds of genes can be of interest in Pan-cancer analysis.
For example, high expression of some genes might worsen the
prognosis of all cancer types, while high expression of other genes
might worsen prognosis for some cancers but be beneficial to
other cancer types.

Our method also applies to the scenario when there is more
than one RNA species present and proposes to jointly analyze
different types of biomarkers under the same category for more
biological insights. As more omics data are accumulated in the
public domain, similar strategies can be applied for integrative
analysis, for example with epigenomic (e.g., DNA methylation,
histone modification), proteomic and metabolomic data. Unique
features of each omics data type need to be addressed and will be
considered as a future direction to extend our method.

Like most other two-stage meta-analysis methods, our method
is based on summary measures such as p-values and log2
fold changes from each study. In addition, the method assigns
a single optimal weight to each gene without quantifying
the uncertainty in weight assignment. A more comprehensive
Bayesian hierarchical model can be applied to raw data and
summary measures to better capture the stochasticity and
provide soft weight assignment. Our method requires the DE
genes to be concordant in at least two studies to be detected,
consistent with the purpose of meta-analysis in prioritizing more
reproducible biomarkers. As the number of studies becomes
large, the likelihood of being differentially expressed in only
one study decreases. Thus, we expect the method to perform
well as the number of studies increases. Since the method relies
on summary measures, increasing the number of studies will
not materially increase the computational burden. Additionally,
use of more sophisticated parallel computing techniques will
improve the speed of permutation tests. An R package called
“BCMC” is available at https://github.com/kehongjie/BCMC to
implement our method.
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