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Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in
the brain, but may also arise from neural stem cells, encompassing low-grade glioma and
high-grade glioblastoma. Whereas better diagnosis and new treatments have improved
patient survival for many cancers, glioblastomas remain challenging with a highly
unfavorable prognosis. This review discusses a super-family of enzymes, the 2-
oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous
processes including epigenetic modifications and oxygen sensing, and considers their
many roles in the pathology of gliomas. We specifically describe in more detail the DNA
and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of
glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes.
Better understanding of how these enzymes contribute to gliomas could lead to the
development of new treatment strategies.
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INTRODUCTION

Gliomas and glioblastomas are brain cancers with significant morbidity and mortality, and limited
treatment options. Our review will briefly describe these neoplasms, then concentrate on a super-
family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD), with dozens of
members currently known (Figure 1). 2-OGDDs participate in numerous processes including
collagen and hormone synthesis, fatty acid metabolism, stress signaling, epigenetic modifications
and oxygen sensing (2–7). We will discuss specific members of the 2-OGDD family that have
attracted recent interest, including the DNA demethylases [ten-eleven translocases (TET)], the
histone demethylases [Jumonji-C domain-containing demethylases (JmjC)], and the hypoxia-
inducible factor (HIF) hydroxylases. These enzymes require molecular oxygen and 2-oxoglutarate
[2-OG, produced by isocitrate dehydrogenase (IDH)] as substrates, and non-ferrous iron (Fe2+) and
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vitamin C (ascorbate) as cofactors. Decreased availability of
either substrate or co-factors reduces 2-OGDD enzyme
activity, resulting in these enzymes acting as cellular sensors of
energy metabolism, oxygen availability, and iron homeostasis (2–
4, 8–14). Finally, we consider the potential means of modifying
the activity of the 2-OGDDs, specifically by modulating
ascorbate availability.
GLIOMA AND GLIOBLASTOMA AND
TREATMENT OPTIONS

Gliomas are a heterogeneous group of neoplasms that arise from
glial cells in the brain (15, 16), or neural stem cells (17). Low-grade
gliomas, grades II and III, include astrocytomas and
oligodendrogliomas which predominantly develop from astrocytes
or oligodendrocytes, respectively. Glioblastomas (GBM) are grade
IV and can develop either as a high-grade lesion (primary GBM), or
from astrocytoma progression (secondary GBM) (15, 16).

Gliomas accounted for 1.6% of cancer diagnoses and 2.5% of
cancer related deaths worldwide in 2018 (18). Astrocytomas,
oligodendrogliomas and secondary GBM tend to develop in
younger individuals (median age 35, 45, and 38 years,
respectively), compared to primary GBM (median age of 55
years) (17, 19). Gliomas are identified by magnetic resonance
imaging (MRI) or computed tomography (CT/CAT). Although
treatment options are available as detailed below, high grade
gliomas are incurable (20–23). Some low grade gliomas can be
cured, although these are rare (17). Following diagnosis, the
median survival for patients with oligodendroglioma can be up
to 16 years, for astrocytoma 5–8 years, and for GBM only 15–31
months (17, 24).
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The current standard treatment for gliomas focuses on
extending patient survival and includes maximal safe
debulking surgery followed by radiotherapy and concomitant
or adjuvant chemotherapy (20), usually with the alkylating agent
temozolomide (20, 21, 25, 26). Debulking surgery is performed to
reduce intracranial pressure and neurological symptoms, while
resected tissue is utilized for tumor classification (17, 22, 23).
Post-treatment recurrence is common with approximately 80%
of gliomas recurring in close proximity to the primary site (27).
Gliomas treated with temozolomide often hypermutate at
recurrence leading to treatment resistance, as evidenced by the
mere 20% of recurring gliomas showing response to the same
agent (17, 28). Dissemination beyond the brain is uncommon,
but some high grade gliomas may spread into the meninges or
opposing brain hemisphere (17).

Besides traditional oncogenic drivers, gliomas are
characterized by deregulated epigenetics and high levels of
hypoxia (low oxygen), processes which are largely regulated by
2-OGDDs.
2-OGDD’S AND EPIGENETIC
REPROGRAMMING

A significant proportion of 2-OGDDs in mammals are
demethylases involved in epigenetic reprogramming (6, 29).
Methylation and demethylation of DNA and histones are the
fundamental processes guiding epigenetic inheritance and
regulating transcriptional activation and repression (30, 31).
Consequently, aberrant modifications to these epigenetic
processes, causing hyper- and hypo-methylating events, have
emerged as hallmarks of cancer progression (32, 33).
FIGURE 1 | The human 2-oxoglutarate dependent dioxygenases implicated in initiation and progression of gliomas. 2-oxoglutarate dependent dioxygenases
(2-OGDDs) include the DNA demethylases Ten-eleven translocases (TETs), the Jumonji-C domain containing histone demethylases (JMJD and JAR1Ds), the prolyl
hydroxylases (PHDs) and hydroxylases that control hypoxic response (factor inhibiting HIF, FIH), and the collagen prolyl hydroxylases (P4H). Colors are used to
indicate close phylogenetic relationships [adapted from Johansson (1)].
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Demethylases regulate the epigenome through either the conversion
of methylated cytosine (5-mC) to hydroxymethylcytosine (5-hmC)
on DNA (Figure 2), or the removal of methyl groups from lysine
residues on histones (Figure 3).

Global Methylcytosine Status in Glioma
Epigenetic modifications are considered key mechanisms
regulating occurrence and prognosis of glioma (34), and are used
as classifiers of glioma subtypes (15, 16). Early genome-wide 5-mC
analyses revealed that many low-grade gliomas and secondary
GBMs contained large numbers of hypermethylated loci referred
to as the glioma CpG islandmethylator phenotype (G-CIMP), and
this was closely associated with the presence of somatic IDH1
mutations, and improved prognosis (35–37). IDH1 mutations are
considered to occur early during the genesis of glioma, persisting
during progression to secondary GBM, but they rarely appear in
primary GBM (24, 38). Although initial reports suggested that G-
CIMP remains stable during disease progression (35, 37), more
recent analyses have shown their loss upon recurrence of IDH1-
mutant gliomas (39–42). Loss of G-CIMP at recurrence resembled
genome-wide5-mCpatterns seen in IDH1wild-typeprimaryGBM,
and was associated with poorer outcomes (41). A novel 7-CpG
signature has been identified in non-G-CIMP primary GBMs,
where high-risk signatures correlated with poorer overall survival
in patients treated with temozolomide and radiation (43),
suggesting that even in the absence of G-CIMP and IDH1
mutations, 5-mC marks may be prognostic.

Interestingly however, earlier approaches for quantifying
methylation, such as those used in the identification of
G-CIMP (35, 36), relied on bisulfite conversion techniques,
which cannot differentiate between 5-mC and 5-hmC. It was
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the introduction of oxidative bisulfide chemistry that made the
distinction between 5-mC and 5-hmC possible (44), and
consequently, led to the discovery of 5-hmC-specific binding
proteins that are not only involved in DNA repair, but also
transcriptional regulation (45, 46). These findings suggest
that 5-hmC, in addition to being an intermediate in DNA
demethylation, may have its own unique epigenetic role.

Many studies report a loss of global 5-hmC content in glioma
compared to healthy brain tissues (47–52). Clinically, lower
levels of 5-hmC have been associated with high tumor grade
and poorer prognosis in glioma (48, 50, 53). More recent
investigations moved beyond measuring global 5-hmC levels,
to delineate, with base resolution, specific genomic locations to
show 5-hmC patterns; all reporting higher than expected levels of
5-hmC at intronic CpG dinucleotides of high-grade gliomas and
GBMs (50, 51, 54). Higher intronic 5-hmC levels correlated with
elevated expression of the corresponding gene (54), with 5-hmC
levels enriched within enhancer elements (50, 54), and 5-hmC
levels associated with histone marks for open chromatin (50, 51).
Thus, despite global loss of 5-hmC, genomic locations associated
with transcriptional regulation and expression were commonly
enriched for 5-hmC in glioma.

Ten-Eleven Translocases (TETs)
The TET family consists of three members (TET1/2/3). TET
enzymes are involved in both passive and active DNA
demethylation (55). During active DNA demethylation,
oxidized cytosine intermediates (5-hmC) are excised by
thymine DNA glycosylase and repaired with base-excision
repair (BER) to generate an unmethylated cytosine (56, 57)
(Figure 2). Passive DNA demethylation on the other hand occurs
FIGURE 2 | Activity of DNA demethylases. The ten-eleven translocases (TET1-3) hydroxylate methyl cytosine (5-mC). Hydroxy-methyl cytosine (5-hmC) are further
converted to several intermediates, which are excised and repaired by thymine DNA glycosylase and base-excision repair (Repair) to generate an unmethylated
cytosine. Methylation at CpG islands tends to repress gene expression, but some evidence suggests that gene expression is increased when 5-mC is converted to
5-hmC in gene promoters and enhancers (locality-specific); however, the exact biological role of 5-hmC is not yet known.
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during cell replication, when 5-mC at CpG sites are not recognized
and replaced with unmethylated cytosine (58). In humans, TET1 is
located on chromosome 10q21.3, TET2 on chromosome 4q24, and
TET3 on chromosome 2p13.1. It is noteworthy that 10q21.3 is
commonly deleted in gliomas (59–61).

TET2 is the most studied isoform in glioma. In comparison to
normal human brain tissue, TET2 gene and protein expression is
reduced in GBM and other gliomas (62, 63). TET2 expression is
significantly decreased with increased grade, and lower TET2
was associated with poorer overall survival (62). Similar
observations have been reported for the other two isoforms
(53). In glioma, reduction in TET3 expression was associated
with a genome-wide reduction in 5-hmC levels compared to
normal brain, and decreased TET3 expression correlated with
poorer prognosis (64). Together, these findings imply a tumor
suppressive role for TET enzymes in glioma.

Numerous studies highlight the potential mechanisms by
which TET expression and activity are dysregulated in gliomas.
A likely mechanism for reduced TET activity is the indirect
inhibition via mutated IDH1/2 (65). Mutant IDH1 enzymes
often exhibit neomorphic activity, converting isocitrate into 2-
hydroxyglutarate (2-HG), instead of 2-OG, which is required for
TET activity (66, 67). In IDH1-mutant gliomas it has been
suggested that 2-HG generation is responsible for the presence
of G-CIMP, likely due to reduced TET demethylase activity (35,
36). Independent of IDH status, a complete absence of 5-hmC
immunoreactivity was associated with nuclear exclusion of TET1
in 61% of gliomas (52). Transcription of TET2 may be repressed
by zinc finger E-box-binding homeobox 1 (ZEB1) in gliomas.
ZEB1 levels were inversely correlated with TET2 levels in tumors,
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and physical binding of ZEB1 to the TET2 promoter in glioma
cells was observed in vitro (62). However, reductions in TET2
expression and activity are unlikely to be due to TET2 mutations,
as direct sequencing of TET2 revealed very few mutations and
minimal association of mutations with levels of 5-hmC in
gliomas (68, 69). In humans, intragenic CpG sites within TET2
showed higher levels of 5-mC and lower levels of 5-hmC in GBM
compared to normal brain, although within the TET2 promoter
low levels of both 5-mC and 5-hmC were detected at CpG sites of
normal brain and GBM (63). Therefore, it is unlikely that lower
TET2 expression in glioma is transpiring as a result of promoter
methylation-mediated transcriptional suppression, but may be
an effect of transcription prevention due to intragenic DNA
methylation. Interestingly though, in a cohort of low-grade
gliomas that had promoter hypermethylation, all were wild-
type IDH1/2 (68). From this we hypothesize that in the
absence of IDH1/2 mutations, a small portion of IDH wildtype
tumors may instead remodel TET2 promoter methylation in an
attempt to disrupt TET2 activity. Taken together, these studies
demonstrate the tumor suppressive role of TET enzymes in
glioma, and highlight the potential mechanisms by which TET
expression and activity may be dysregulated. Restoration of TET
function to resemble healthy brain tissue may aid in regulating
epigenetic processors that can counteract glioma progression and
improve treatment outcomes.

Jumonji-C Domain Containing Histone
Demethylases
Many 2-OGDDs are from the large family of evolutionary
conserved jumonji-C (JmjC) domain-containing proteins that
FIGURE 3 | Activity of histone demethylases. Jumonji-C domain-containing demethylases (JMJ) act on lysine residues of the histone tails. Methylated lysine (m-Lys,
mK) are hydroxylated (hm-Lys, hmK), which via several intermediates, leads to demethylated lysine residues. The effect of m-Lys and hm-Lys on histone structure
and subsequent gene expression is very complex. Global gene expression tends to be increased in the more open methylated histone structure, compared to
compact, demethylated histones.
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are responsible for catalysing the removal of methyl groups from
lysine residues on histones (29, 70) (Figure 3). There are several
subfamilies of JmjC domain-containing histone lysine
demethylases with substrate specificity to different methylated
lysine residues, and this specificity is mediated by the functional
domains unique to each subfamily (2, 29). The dynamic interplay
between histone methylation and demethylation can result in
either gene activation [via histone 3 lysine 4 (H3K4), H3K36 and
H3K79] or inactivation (H3K9 and H3K27) (71, 72).

JmjC-domain containing demethylase isoforms are
heterogeneously expressed in different brain locations and
adult brain cell types (73, 74). Under hypoxic conditions,
JMJD3 expression increased in neurons (75), but the
modulation of specific histone methylation marks in response
to varying oxygen tensions, and ranges of iron and 2-OG levels in
brain cells, has yet to be determined.

In gliomas, changes in JmjC-dependent demethylase
expression have been associated with differences in genome-
wide histone methylation patterns (76, 77), and lower global
histone methylation was associated with poorer patient survival
(78). Conflicting reports on expression patterns of JmjC-
dependent demethylases in glioma and GBM tissues have been
published (77, 79–83). Overall, whether JmjC-dependent
demethylases promote or suppress gliomagenesis is likely
enzyme-dependent, although the majority of studies show
these enzymes to promote tumor progression.

Introduction of the IDH1R132H mutation in astrocytoma cells
has been associated with both global histone hypermethylation
(84), and enrichment of specific histone methylation marks (85).
Mutant IDH1 enzymes generate the oncometabolite 2-HG
instead of 2-OG, and 2-HG has been shown to competitively
inhibit histone demethylase activity (65, 86). Despite the fact that
reduced histone demethylase activity has been linked with higher
histone methylation in astrocytoma cells, most clinical gliomas
show increased levels of JmjC-dependent demethylases and
lower histone methylation (76–81). Thus, further investigations
of the biological mechanisms causing increased expression of
JmjC-dependent demethylases in glioma is needed.
2-OGDDs AND THE HYPOXIC PATHWAY

Gliomas are highly hypoxic tumors and this is associated with poor
patient prognosis (23, 87–89). Hypoxia induces adverse tumor
characteristics including genomic instability, decreased apoptotic
potential, increased expression of oncogenes and increased
angiogenesis, which have all been described in gliomas (90).
These characteristics are driven by the hypoxia inducible factors
(HIFs) which are regulated by microenvironmental oxygen
levels and the 2-OGDD enzymes, prolyl hydroxylases (PHD)
and factor inhibiting HIF (FIH) (Figure 4) (91). As these HIF
hydroxylases are dependent on oxygen for optimal function their
activity is likely impaired in gliomas (92–95).

Hypoxia-Inducible Factors
Hypoxic conditions typical of most solid tumors result in
accumulation of the HIF transcription factors (11, 96). The
Frontiers in Oncology | www.frontiersin.org 5
HIFs (HIF-1,2,3) are heterodimeric transcription factors,
consisting of one of three oxygen-sensitive a-subunits and a
constitutive b-subunit (also known as aryl hydrocarbon receptor
nuclear translocator (ARNT)) (97–99). HIF-1a is located on
chromosome 14q23 (100); HIF-2a, also known as endothelial
PAS domain protein 1 (EPAS1), is on 2p21, and HIF-3a is on
19q13 (101). Active HIF complexes accumulate in the nucleus and
bind to specific hypoxic response elements (HREs) in promoter
regions of HIF target genes, inducing their expression (102, 103).
HREs contain the consensus sequence 5’CGTG3’, targets of CpG
methylation, and CpG methylation blocks HIF-1 binding and
transactivation (104). Even though HIF-1 and HIF-2 have
identical HREs, their response to hypoxia, tissue distribution,
target genes and their pro- or anti-tumor effects are distinct (105).
Binding of HIF-1 and HIF-2 to their canonical HREs vary
according to histone modifications, with HIF-1 preferentially
associating with H3K4me3 modifications and HIF-2 with
H3K4me1 (106). These binding patterns were interpreted as
HIF-1 binding predominantly at regulatory regions within
promoters, and HIF-2 binding to enhancer regions (106).

HIF’s modulate expression of hundreds of genes, and as a
result, promote tumor growth and spread, adaptation to the
tumor microenvironment, and resistance to chemo- and radio-
therapy (107, 108). HIF activity also affects DNA methylation,
histone acetylation and regulates noncoding RNAs (109),
demonstrating the complexities of the hypoxic pathway.

HIF-1a has been proposed to drive glioma progression from
low-grade astrocytoma to high-grade GBM (23, 110). Higher
HIF-1a expression in human astrocytoma and GBM has been
correlated with worse prognosis (111–114). Moreover,
expression of HIF-1a, and its downstream target genes
vascular endothelial growth factor (VEGF), glucose transporter
(GLUT1), and carbonic anhydrase (CA9), show increased
expression in higher grade gliomas compared to lower grade
(115). In addition, increases in VEGF expression were shown to
localize to hypercellular and necrotic regions that form as result
of decreased oxygen and nutrient delivery (113, 116).

In comparison to HIF-1a, HIF-2a may be a specifically
attractive target in GBMs, as it is expressed in glioma stem
cells but not normal neuronal progenitors and it is activated by
long-term hypoxia, in addition to its association with poor
patient survival (117).

HIF Hydroxylases
HIF activity is regulated at the post-translational level by two
families of HIF hydroxylases, the prolyl hydroxylase domain
(PHD) and factor inhibiting HIF (FIH) 2-OGDDs (Figure 4).
PHDs hydroxylate specific proline residues on the HIF-a subunit
targeting the subunit for proteasomal degradation (9, 92, 118). FIH
hydroxylates an asparagine residue and prevents binding of the co-
activators CBP/p300 and nuclear translocation (93, 119). The
instability of HIF-a and the inhibition of transcriptional
activators binding results in a reduction in both HIF-a protein
and expression of target genes. Protein hydroxylation was
considered irreversible, but a recent study showed evidence that
FIH-mediated asparagine hydroxylation may be reversible by as
yet unknown cellular enzymes (120).
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The PHDs and the FIH enzymes have specific roles in oxygen
and metabolic sensing due to their exquisite requirements for
molecular oxygen and 2-OG, respectively (11). PHDs have higher
affinity for oxygen (9, 13), bind unusually tightly to Fe2+ (121), and
have a lower affinity for ascorbate compared to FIH (3), possibly
due to the narrower opening to the enzyme active site of PHDs
(122). PHD2 and FIH bind 2-OG with distinct residues, with FIH
sharing more homology with JmjC-domain containing protein
family of enzymes (94), suggesting evolutionary divergence (122).
The HIF hydroxylases therefore have different sensitivities to loss
of enzyme substrates and/or co-factors.

PHD2 (encoded by EGLN1) is generally acknowledged as the
primary mediator of HIF-1a protein degradation, with PHD1 and
3 more likely to be involved in fine-tuning of the hypoxic response
(123). This may be reflected in the subcellular localisation of each
isoform, with PHD1 detected exclusively in the nucleus, PHD2
(and FIH) in the cytoplasm, and PHD3 in both compartments
(124). Interestingly, PHD2 is activated, rather than inhibited, by
the R-enantiomer of 2-HG as it mimics 2-OG, suggesting that
IDH mutations may lead to HIF-a degradation (125–127). It has
been shown, using immunohistochemistry, that HIF-1a and
Frontiers in Oncology | www.frontiersin.org 6
IDHR132H expression are not related, supporting the ability of 2-
HG to activate PHD2 (128).

FIH (also known as HIF1AN) is mapped to chromosome
10q24 (93). Full or partial deletions of chromosome 10q often
occur in gliomas, and the frequency of these deletions increases
with tumor grade (59–61). Thus, FIH mRNA expression often
decreases with increasing tumor grade (129, 130). Investigation of
FIH in GBMs has shown that FIH reduces the interaction between
p300 and HIF-1a which is essential for transcriptional activity
(131), and correspondingly higher FIH expression was associated
with reduced GLUT1 and VEGF expression in GBM cells (131).
Loss of FIH through deletion of chromosome 10q24 may increase
the hypoxic response, and thus contribute to an aggressive and
treatment resistant glioma phenotype associated with hypoxia (23,
87, 88). While PHD2 is activated by the mutant IDH metabolite,
2-HG, FIH is inhibited, resulting in p300 interacting with HIF-a
and inducing target gene expression (125). However, FIH has
been shown to interact with a glioma tumor suppressor
gene (ANKDD1A), which increased FIH activity, thereby
reducing HIF-a activation and preventing HIF target gene
expression (132).
FIGURE 4 | Activity of HIF-hydroxylases. Response to low oxygen (hypoxia) is regulated via the prolyl (PHD) and asparaginyl hydroxylases (factor inhibiting HIF, FIH).
Specific proline (P) and asparagine (N) residues on the alpha subunit of the hypoxia inducible factor (HIFa) are hydroxylated by PHD and FIH, respectively. Proline
hydroxylation enables recognition by von Hippel Lindau (VHL) as part of the proteasome and HIFa degradation. Asparagine hydroxylation prevent binding of the
cofactor P300, thereby inactivating the HIF transcription factor. In the absence of one or more of the OGDD substrates or cofactors, PHD and FIH enzymes become
inactive, enabling the accumulation of HIFa and formation of an active HIF transcription factor via binding to HIFb. Genes under HIF control regulate cancer pathways
such as angiogenesis, metastasis, glycolysis, etc.
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SUBSTRATE AND COFACTOR
REQUIREMENTS OF 2-OGDDs

2-OGDDs contain a non-heme iron (Fe2+) in the active site, and
utilize 2-OG (also known as a-ketoglutarate) and molecular
oxygen as substrates (Figure 5). Ascorbate is an essential
cofactor, and is thought to be required to maintain the active
site Fe2+ in the reduced state (11–14, 133, 134).

Molecular Oxygen as 2-OGDD Substrate
and its Availability in Gliomas
Oxygen is an absolute requirement for all 2-OGDDs, but not all
2-OGDDs function as oxygen sensors. The PHDs have a Km for
Frontiers in Oncology | www.frontiersin.org 7
oxygen of 230-250 mM, slightly above dissolved oxygen
concentrations in air (20.9% O2 in gas phase ~ 200 mM
dissolved O2) (135), and this property makes these proteins the
predominant cellular oxygen sensors. These Km values are
significantly greater than for FIH at 90 mM, and the collagen
prolyl 4-hydroxylases (C-P4H) at 40 mM (13, 135, 136).

Tissue partial pressure of oxygen (PO2) in the human body
range from 104–108 mmHg in the alveola of the lung, to arterial
PO2 of 90 mmHg and venous PO2 of 40 mmHg, to most tissues
that have between tissue PO2 of 20–70 mmHg (137). Oxygen
levels in the brain are heterogeneous and difficult to measure,
with levels of 30–48 mmHg in normal brain recorded. Hypoxia is
defined as <5 mmHg, and levels below 2.5 mmHg are known to
FIGURE 5 | Substrate and cofactor requirements of the 2-oxoglutarate dependent dioxygenases. These enzymes hydroxylate nucleotides or amino acids (R), forming
a hydroxylated product (R-OH). 2-OGDDs require 2-oxoglutarate (2-OG) and molecular oxygen (O2) as substrates, and ferrous iron (Fe2+) and ascorbate as cofactors.
Isocitrate from the Krebs cycle is converted to 2-OG by isocitrate dehydrogenase (IDH), but mutant IDH (IDHR132H) produces the competitive inhibitor
2-hydroxyglutarate (2-HG). Low oxygen (hypoxia) is a characteristic of most solid tumors, thus reducing activity of 2-OGDDs. Iron obtained from the diet is transported
via transferrin and taken up across the BBB via transferrin receptors; the content in tumors is unknown. Ascorbate is obtained via a healthy diet or infusions, and
cannot cross the BBB but will travel via the choroid plexus. Cellular ascorbate uptake is via sodium vitamin C transporters; tumors may be low in the vitamin.
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induce clinical radioresistance (138–145). Theoretical modelling
suggests the minimum oxygen level requirement for brain tissue
is 17 mmHg and that a critical range for hypoxic injury is 4–11
mmHg (140).

Hypoxia is a prominent feature of gliomas. Oxygen levels in
tumors have been measured using a range of techniques,
including injection of hypoxia markers (146–149), direct
measurements using polarographic O2 microelectrodes (145,
150) and MRI/CT scans (151). Using these techniques, oxygen
levels were observed to be lower in gliomas and peritumoral
regions compared to normal brain tissues, and readings below
2.5 mmHg were more common in tumors of increasing grade
(145, 150, 152), with the most severe hypoxia detected in GBMs
(23, 88, 89). A review of six studies reported a median PO2 of 13
mmHg in gliomas (144). This suggests that in high grade
gliomas, the activity of 2-OGDD enzymes is likely to be
reduced, but hypoxia is not routinely measured.

As ionizing radiation remains the mainstay of glioma
treatment, and since hypoxia governs radioresistance,
considerable clinical effort has been focused on reducing tumor
hypoxia. With regards to 2-OGDD activity, these strategies may
also improve enzyme activity, and are thus briefly discussed here.
In an attempt to improve tumor oxygenation, patients have been
given pure oxygen in a pressurized environment (hyperbaric
oxygen) to breath (153). Alternatively, patients breathed 95% O2

with 5% CO2 (carbogen), which, together with hypercapnic-
induced vasodilation, increases the amount of dissolved plasma
O2 at the capillary level (154). Carbogen was tested in
combination with nicotinamide, which is believed to prevent
transient cessations in blood flow, thus inhibiting the
development of acute hypoxia (154). Drugs have been
developed to improve oxygen delivery (eg trans sodium
crocetinate, TSC) (155), to normalize the tumor vasculature
(e.g., anti-VEGF bevacizumab) (156), or to reduce oxygen
consumption rate via mitochondrial poisons (e.g., anti-
parasitic drugs atovaquone, ivermectin, proguanil, mefloquine,
and quinacrine) and tested in patients with GBM (157). Overall,
the results of these clinical trials have been disappointing and
none of the approaches have been adopted into clinical practice,
and actual oxygen measurements were largely lacking.

2-Oxoglutarate and Oncometabolites as
2-OGDD Substrates in Gliomas
The substrate 2-oxoglutarate (2-OG) is a product of the reaction
in which isocitrate dehydrogenase enzymes (IDH) convert
isocitrate to 2-OG (Figure 5). This reaction occurs in the TCA
cycle via IDH3 and in the cytosol via IDH1 and IDH2. A number
of IDH1 and IDH2mutations have been reported in glioma, with
the most common a base substitution in codon 132 of IDH1
resulting in an arginine to histidine replacement (IDH1R132H)
(24, 67). IDH1R132H has been identified in more than 70% of
grade II/III astrocytic and oligodendroglial diffuse gliomas, and
in more than 80% of secondary GBM, but rarely in primary GBM
(24, 158, 159). IDH1R132H enzymes generate 2-HG, instead of 2-
OG (66, 67), which binds competitively to 2-OGDD enzymes
and inhibits their function (Figure 5). Studies have, however,
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also reported that accumulation of 2-HG does not universally
occur in all IDH1R132H and, conversely, that some wild type IDH
cells accumulate 2-HG (160, 161). Further research is required to
understand the impact of IDH mutations on patients with
glioma, and how 2-HG accumulation interacts with other 2-
OGDD substrates and co-factors to influence their activity in
these tumors.

In gliomas with IDH1R132H mutations, drugs that inhibit the
mutant IDH1 enzymes may improve 2-OGDD activity by
reducing 2-HG production. A number of mutant IDH1
inhibitors are currently being evaluated in clinical trials with
glioma patients, including AG-120 (Ivosidenib), AG-881
(Vorasidenib), BAY1436032 (Bayer), and DS-1001b
(NCT02746081) (162–166). Pre-clinical investigations have
reported anti-proliferative effects, reductions in tumor growth
rates, and lower levels of 2-HG in both glioma cells and tumors
from animal models (167–170). To date, 2-HG levels have only
been measured in the plasma of human glioma patients following
intervention with Ivosidenib, reporting no difference compared
to those without treatment (163). Despite this, interest remains
high and data from a Phase I study of Ivosidenib and
Vorasidenib in patients with recurrent, non-enhancing, IDH1-
mutant, low-grade glioma is currently pending (162). In addition
to inhibitors, vaccines against mutant IDH1 have been tested in
mice (171, 172). Mice with mutant IDH1R132H gliomas treated
with the vaccine showed longer survival than non-immunized
mice, and had higher levels of peripheral anti- IDH1R132H

antibodies, IFN-g, and CD8+ T cells (172). However, 2-HG
levels in tumors were not measured, and thus the vaccine effect
on 2-OGDDs remains to be tested.

Iron as Cofactor for 2-OGDDs and
Availability in the Brain
Iron is the most abundant transition metal in the brain (173) and
is more concentrated in some regions than in others (range;
13.5–1.75 µmol/g dry weight) (174), including the iron-rich
substantia nigra, caudate nucleus and globus pallidus (175).
Most gliomas arise in the frontal/temporal lobe, areas rich in
glial cells and, potentially, relatively lower in iron. Astrocytes
secrete hepcidin, which modulates the expression of ferroportin
and other iron regulatory proteins, and thereby function as iron
sensors to regulate and communicate the iron requirement of the
brain through paracrine signaling (176–178).

Iron uptake into the brain is tightly regulated through the
endothelial cells and neighboring astrocytes in the blood brain
barrier (BBB) (176, 179, 180), primarily through the transferrin
bound iron (TBI) pathway (174, 181, 182) however, when this
pathway becomes saturated, non-TBI pathways are used (183).
Through the canonical TBI uptake pathway, ferric iron (Fe3+)
forms halotransferrin (174), which is able to pass through the
BBB by binding to transferrin receptors on the apical surface of
brain microvascular endothelial cells (BMVECs). Within the
BMVEC, excess iron is stored in the cytosolic labile iron pool,
which is the principle source of metals for metabolism (184).
Efflux of iron through the abluminal membrane into the brain
interstitium occurs through ferroportin (185, 186), expressed on
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the basolateral side of the BMVEC cells (186, 187). Once iron has
crossed the BBB barrier, it is taken up by neurons, astrocytes,
oligodendrocytes and microglia through TBI and nonTBI uptake
pathways (183).

Iron plays a role in carcinogenesis, with proteins that
modulate and regulate iron metabolism often dysregulated in
gliomas (188–191). GBM cancer-stem-like cells were shown to
upregulate transferrin expression, and to extract iron more
effectively from the tumor microenviroment than non-stem-
like tumor cells in an ex vivo explant model (192). The Fe2+

content in gliomas has not been reported but reduced levels may
impede 2-OGDD function in tumors and cancer stem cells.

Ascorbate as Cofactor for 2-OGDDs and
its Availability in the Brain
As a cofactor for 2-OGDDs, ascorbate acts to reduce Fe3+ back to
active Fe2+ (Figure 5). This activity appears to be specific to
ascorbate as alternative reducing agents such as glutathione or
N-Acetylcysteine are unable to substitute for ascorbate in 2-
OGDD activity (12, 193, 194). Ascorbate is also involved in
stabilizing cysteine residues in PHD enzymes, preventing
intramolecular oxidation and supporting catalytic activity (126).

Normal brain tissue has one of the highest ascorbate levels of
all tissues in the body, reaching intracellular concentrations of 2–
10 mM depending on the cell type (195–197). In times of
ascorbate insufficiency, the brain is one of the last tissues to
lose ascorbate, supporting its importance to brain function (195,
198). The specific vitamin C transporters (sodium-dependent
vitamin C transporters) are not expressed on the endothelial cells
lining the BBB (198), and ascorbate enters the central nervous
system through the choroid plexus where it can diffuse through
the cerebrospinal fluid to the brain (195, 198). Cells within the
brain express ascorbate transporters allowing intracellular
ascorbate accumulation (198).

Data on ascorbate content in gliomas is limited to a single
study that reported ascorbate levels in astrocytomas from eleven
patients (199). While ascorbate levels were not different between
astrocytoma tissue and non-neoplastic tissue, DNA content was
significantly higher in astrocytoma (tumor) tissues indicating
increased cell density (or cellularity) of the tissues. This suggests
that intracellular ascorbate per cell may be reduced in
astrocytoma tissue compared to normal, non-necrotic tissue
(199). These intriguing findings need to be confirmed.

Ascorbate and Epigenetic Reprogramming
Evidence for the effects of ascorbateonepigenetic reprogramming is
largely from embryonic cells (200, 201), but data in gliomas is
missing. In patients with myeloid malignancies, oral ascorbate
supplementation resulted in an increase in the ratio of 5-hmC
compared to5-mC inmononuclearmyeloid cells (202).Here,DNA
demethylation was not associated with changes in TET expression
(202, 203), but instead appear to result from ascorbate-mediated
restoration of endogenous TET activity, which was supported by
studies with Tet2-deficient mice (204). Gliomas show lower TET
expression independent of TET mutations (63, 68, 69), and we
hypothesize that ascorbate may compensate for lower TET
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expression by upregulating residual TET2 function as was
observed in a case study of acute myeloid leukemia (205).

Low-grade primary gliomas commonly harbor IDH
mutations that persist during progression to secondary GBM
(24). In vitro, ascorbate was able to circumventing competitive
inhibition by 2-HG in colon cancer and HOXA9-immortalized
mouse bone marrow cells with IDH1R132H mutations (206, 207).
One in vitro study reported the effects of ascorbate on epigenetic
marks in LN229 glioma cells, showing increased TET3 mRNA
expression, as well as increased 5-hmC, but these cells did not
harbor an IDH mutation (64). Yet, these findings, together with
reported associations between higher 5-hmC levels and better
prognosis in patients with GBM (50), support the notion that
sufficient ascorbate levels in glioma tumors may induce
demethylation activity and promote more favorable outcomes,
although whether sufficient ascorbate can overcome high levels
of 2-HG remains to be determined.

In addition to TET-mediated effects, ascorbate induced
H3K9me2/3 and H3K36me2/3 demethylation via JmjC-
dependent demethylases in embryonic stem, embryonic fibroblast
and Th17 cells from mice (208–210). Ascorbate caused reductions
in H3K9 methylation and increased expression of the JmjC-
dependent demethylases, JHDM2A-C and JHDM3B, as well as
widespread DNA demethylation at CpG island boundaries in
human embryonic stem cells (211). However, investigations in
gliomas are lacking, despite the well-established link between
glioma formation and global 5-hmC deficiency.

Ascorbate and the Hypoxic Pathway
The relationship between intracellular ascorbate levels and HIF
pathway activity has been investigated in numerous cancers, but
not yet in gliomas. In vitro investigations of intracellular
ascorbate levels and HIF pathway activity have been performed
in varying cancer types, findings from which have guided further
in vivo studies (212–215). In relevant mouse models (using
ascorbate-dependent Gulo-/- mice), increased ascorbate intake
or administration was associated with increased tumor ascorbate
levels, reduced HIF pathway activity and reduced tumor growth
(216). In clinical samples of endometrial (217), colorectal (218),
thyroid (214), papillary cell renal cell carcinomas (215, 219), and
breast cancer (220), high tumor ascorbate levels were associated
with low HIF-1a protein levels and low HIF target gene
expression. This relationship was not evident in clear cell renal
cell carcinoma (215, 219), that have a mutated von Hippel-
Lindau factor which prevents proteasomal degradation of
hydroxylated HIF-a (219). Higher levels of tumor ascorbate
were associated with improved disease-free survival in patients
with colorectal cancer (218) and improved disease-specific
survival in patients with breast cancer (220).
HIGH DOSE ASCORBATE AS CANCER
TREATMENT

Infusion with high dose ascorbate as an alternative or
complementary therapy for cancer is widespread (221), but
March 2021 | Volume 11 | Article 619300

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Crake et al. 2-Oxoglutarate Dependent Dioxygenases in Gliomas
lacks evidence of efficacy (222, 223), despite early promising data
(224, 225). Since then, pharmacokinetic data have demonstrated
that infusion results in supra-physiological plasma ascorbate
levels that are not achievable by oral administration (226–229).
Case studies and small clinical trials continue to surface that
suggest there may be circumstances under which high dose
ascorbate infusion can provide a clinical benefit (230–239).

Preclinical Models of High Dose Ascorbate
Treatment in Gliomas
In a mouse xenograft glioma model, analysis of ascorbate levels
in plasma, tumor, and cerebrospinal fluid samples showed that
ascorbate increased 1 h post intraperitoneal injection with 4 g/kg
of ascorbate (240). One study, using an intracranial GL261
glioma mouse model, reported that radiation treatment slowed
tumor growth, whereas ascorbate treatment made no difference,
and the combination of ascorbate and radiotherapy induced
faster progression (241), in conflict to in vitro findings of radio-
sensitisation by ascorbate in numerous glioma cell lines,
including GL261 cells (242–244). However, ascorbate levels in
the intracranial model were not measured, and thus the impact
of ascorbate on glioma response to radiation remain uncertain.

Clinical Trials in Patients With Gliomas
and GBMs
Preclinical data led to phase I clinical trials administering
intravenous ascorbate to glioma patients, with and without
standard radiotherapy and temozolomide (245). High dose
vitamin C (HDVC) was found to be safe and well tolerated,
reaching target 20 mM plasma levels (240, 245), but tumor
ascorbate levels were not measured. A trend of improved overall
survival was reported, but participant numbers were too small to
determine statistical significance (240). Two case reports for the
use of HDVC infusions in patients with glioma have also been
reporting (237, 246).

Previous research has shown an association between a lower
proportion of methylation at the O-6-methylguanine-DNA
methyltransferase (MGMT) promoter in glioma tumors and
poorer patient prognosis (247). MGMT is a DNA repair
enzyme responsible for resistance to temozolomide, and
hypermethylation of the MGMT promoter is evident in 40–
45% of gliomas (248, 249), with higher methylation levels in low-
grade gliomas compared to GBMs (53). Interestingly, in glioma
patients with low methylation levels at the MGMT promoters,
HDVC infusions resulted in improved overall survival (240), but
unfortunately, ascorbate levels in the glioma tissue were not
measured. Plasma ascorbate levels do not necessarily reflect
tumor ascorbate levels due reduced functioning vasculature
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and BBB in gliomas. Overall, the clinical worth of HDVC in
cancer remains unproven.
CONCLUSION

The superfamily of 2-OGDD enzymes play a vital role in glioma
progression and patient prognosis, being involved in epigenetic
modifications and oxygen sensing. Limiting supplies of one or
more of their substrates or cofactors in gliomas is likely although
reported measurements are rare. Restoration of epigenetic
modifications offers a promising target in the treatment of
cancer, as these alterations are reversible, as opposed to genetic
mutations. Attempts at increasing tumor oxygenation to
improve effectiveness of radiation and chemotherapy in glioma
are not (yet) in clinical practice (250), and new strategies are
sought. Ascorbate infusion is a safe and cheap option that may be
able to normalize 2-OGDD function in a subset of glioma tumor
subtypes. However, this will likely depend on mutation status
and on the ability to increase intracellular ascorbate levels in
these tumors. Future research will need to confirm ascorbate
status of clinical glioma tumors, on measuring 5-hmC levels and
HIF activity in clinical samples, and on determining an optimal
ascorbate dose for patients, before embarking on phase III trials
to determine clinical efficiency.
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