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Abstract

Background: The most recent World Health Organization (WHO) antiretroviral treatment guidelines recommend the
inclusion of zidovudine (ZDV) or tenofovir (TDF) in first-line therapy. We conducted a cost-effectiveness analysis with
emphasis on emerging patterns of drug resistance upon treatment failure and their impact on second-line therapy.

Methods: We used a stochastic simulation of a generalized HIV-1 epidemic in sub-Saharan Africa to compare two strategies
for first-line combination antiretroviral treatment including lamivudine, nevirapine and either ZDV or TDF. Model input
parameters were derived from literature and, for the simulation of resistance pathways, estimated from drug resistance data
obtained after first-line treatment failure in settings without virological monitoring. Treatment failure and cost effectiveness
were determined based on WHO definitions. Two scenarios with optimistic (no emergence; base) and pessimistic (extensive
emergence) assumptions regarding occurrence of multidrug resistance patterns were tested.

Results: In the base scenario, cumulative proportions of treatment failure according to WHO criteria were higher among
first-line ZDV users (median after six years 36% [95% simulation interval 32%; 39%]) compared with first-line TDF users (31%
[29%; 33%]). Consequently, a higher proportion initiated second-line therapy (including lamivudine, boosted protease
inhibitors and either ZDV or TDF) in the first-line ZDV user group 34% [31%; 37%] relative to first-line TDF users (30% [27%;
32%]). At the time of second-line initiation, a higher proportion (16%) of first-line ZDV users harboured TDF-resistant HIV
compared with ZDV-resistant viruses among first-line TDF users (0% and 6% in base and pessimistic scenarios, respectively).
In the base scenario, the incremental cost effectiveness ratio with respect to quality adjusted life years (QALY) was US$83
when TDF instead of ZDV was used in first-line therapy (pessimistic scenario: US$ 315), which was below the WHO threshold
for high cost effectiveness (US$ 2154).

Conclusions: Using TDF instead of ZDV in first-line treatment in resource-limited settings is very cost-effective and likely to
better preserve future treatment options in absence of virological monitoring.
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Introduction

The public health approach for combination antiretroviral

therapy (cART) in resource-limited settings includes the use of one

standard first-line and one standard second-line regimen [1].

According to World Health Organization 2010 treatment

guidelines, first-line therapy should consist of a non-nucleoside

reverse transcriptase inhibitor (NNRTI) and two nucleoside

reverse transcriptase inhibitors (NRTI), one of which should be

zidovudine (ZDV) or tenofovir (TDF). Second-line ART should

consist of a ritonavir-boosted protease inhibitor (PI/r) plus two

NRTIs, one of which should be ZDV or TDF, based on what was

used in first-line therapy. Ritonavir-boosted atazanavir (ATV/r) or

lopinavir/ritonavir (LPV/r) are the preferred PIs. The choice of

using TDF or ZDV in first-line treatment is determined at country

level. Randomized clinical trials have demonstrated superiority of

TDF over ZDV [2,3,4,5] and over stavudine (D4T) [6,7] in

combination therapy with regards to virological suppression, as

well as a tendency for less toxicity-related discontinuations and

improved adherence in industrialized [3] and resource-limited
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settings [8]. In contrast, the somewhat lower costs favour the use of

ZDV, although considerable price reductions for TDF have been

achieved more recently so differences are now small [9].

One particular concern regarding the widespread use of TDF in

settings without virological monitoring is the potential for

development of extensive nucleoside and nucleotide analogue

cross-resistance via the emergence of the reverse transcriptase

mutation K65R, and possibly also multidrug resistance patterns

such as Q151M, although the latter has not been detected in well-

controlled clinical trials in resource-rich settings [4,7,10]. More-

over, some in vitro data point to more rapid selection of K65R

emergence in subtype C viruses, owing to a specific nucleotide

motif at reverse transcriptase position 65 that facilitates the amino

acid switch from lysine to arginine [11,12]. Indeed, recent surveys

from resource-limited settings suggest a comparatively high

prevalence of high-level NRTI cross-resistance resistance associ-

ated with K65R (23%) or Q151M (0–19%) amongst patients with

clinical or virological treatment failure [13,14].

Previous cost effectiveness analyses have already pointed

towards better clinical outcomes of TDF use compared with other

NRTIs in industrialized [15] and resource-limited settings

[16,17,18,19]. These studies, however, mainly focused on HIV-1

and treatment related morbidities, and did not investigate the

impact of the emergence of drug resistance mutations on future

therapy options. In the present simulations, we aimed to re-assess

the cost effectiveness of TDF over ZDV for settings using the

public health approach for ART with one standard first-line and

one standard second-line regimen, and without virological

monitoring, which is the reality in most resource-poor settings.

For this purpose, an established individual-based stochastic model

of HIV transmission and treatment in a resource-limited country

was adapted to reflect possible mutation patterns leading to and

after first-line treatment failures and to predict costs of treatment

for HIV-1 and tuberculosis-(TB) and HIV-related morbidity and

mortality [20,21]. We specifically considered the impact of the

different resistance patterns generated by the use of TDF or ZDV

in first-line cART on efficacy of second-line therapy and

subsequent morbidity and mortality.

Methods

Stochastic Simulation
The model presented here corresponds to the version described

extensively in [20,21] and the accompanying web appendix

(http://links.lww.com/QAD/A113), with deviations in how drug

resistance mutations emerge (see below). In brief, the stochastic

model, programmed in SAS 9.1, simulates a generalized

heterosexual HIV epidemic in a resource-limited country by

keeping track of individuals and their health status with regard to

HIV and other co-morbidities. Individual characteristics are

updated in three month time steps.

A typical simulation run, which is influenced by many random

elements, shows the following characteristics: starting in 1989, the

population of approximately 25 000 uninfected persons initially

contains about 5 HIV infected individuals. The epidemic starts to

spread via individuals who acquire HIV through heterosexual

contacts with HIV-1 infected short or long term partners. The

probability of transmission of HIV depends on whether the

partner is undergoing primary infection, on the partner’s HIV-

RNA viral load (obtained by sampling from the distribution of

Table 1. Selected model input parameters.

Rates per 3 months

Value for
sensitivity
analysis Source

Drug related toxicities (*1.5 times higher in first year)

Zidovudine (ZDV)

nausea* 0.1 own estimate

lipodystrophy 0.015 own estimate

anemia* 0.03 [3] and own estimate

Headache* 0.1 own estimate

lactic acidosis 0.001 own estimate

Tenofovir (TDF)

Nephrotoxicity 0.01 [6] and own estimate.

Antiretroviral treatment adherence

Adherence benefit of TDF over ZDV 0.03 0 [3]

worse adherence if drug related toxicities 0.1 [40]

Resistance emergence (also see figure 1)

Emergence of NNRTI mutations in presence of

Detectable HIV RNA,500 copies/mL 0.4 own estimate

Detectable HIV RNA .500 copies/mL 0.95 own estimate

Emergence of M184V mutations in presence of

Detectable HIV RNA,500 copies/mL 0.4 own estimate

Detectable HIV RNA .500 copies/mL 0.9 own estimate

Other

Probability for switch if treatment failure detected 0.8 0.1 [41]

doi:10.1371/journal.pone.0042834.t001
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viral load levels found in partnerships formed by HIV-infected

people, accounting for gender and age), on the subject’s gender

and on the presence of other sexually transmitted infections. Each

HIV-infected individual experiences HIV RNA levels, CD4

declines and mortality rates that correspond to their specific age

and gender, health status with respect to co-morbidities, and to

antiretroviral treatment exposure. We assumed that cART

became available in 2007 (corresponding to the first availability

of TDF in national and regional treatment programs [22,23]),

when the HIV prevalence had reached approximately 14%.

Treatment either consists of fixed dose, twice daily

ZDV+3TC+NVP or once daily TDF+ lamivudine (3TC) and

NVP in two tablets, depending on the first-line treatment strategy.

Selected model input parameters are shown in Table 1. In the

model, the number of active drugs, adherence and HIV RNA

levels affect the probability for suppression of viral replication and

the accumulation of resistance mutations. Each individual is

assigned a fixed underlying adherence level, which can vary from

period to period within certain bounds and can be offset (with an

increment) in some circumstances according to specific rules (e.g.

worse adherence when drug-related toxic side effects present,

table 1). Following these fluctuations in adherence levels to

antiretroviral drugs, HIV RNA can rise to detectable levels in

individuals who receive ART. The risk for emergence of drug

resistance follows an n-shaped relationship with adherence such

that resistance risk is highest when adherence is moderate. Further

details can be found in the Materials S1. When resistance has

emerged, this reduces viral susceptibility to antiretroviral drugs

and hence further reduces the probability for suppression of viral

replication at the next time step.

Main Assumptions on Setting Characteristics
The setting of the main analysis consists of an HIV-infected

population, in which ART has not previously been used. HIV

diagnosis became available in 2003 and is either made by

voluntary testing of a fixed rate of the population (7.5% chance

every three months) or triggered by AIDS defining conditions.

CD4 count determinations are performed every 6 months in

diagnosed individuals, and if measured CD4 levels drop,200 -

cells/mm3 or a WHO stage 4 event has been diagnosed, ART is

initiated.

The definition for treatment failure is based on clinical (new or

recurrent WHO stage 4 condition), specific WHO clinical stage 3

conditions (e.g. pulmonary tuberculosis) and immunological

criteria (fall of CD4 count to baseline or below, or 50% fall from

on-treatment peak value, or persistent CD4 levels below 100 cells/

mm3) and CD4 cell measurements occur on a 6-monthly basis. It

is also assumed that virological testing is not available and that

switching to second-line ART occurs almost immediately after

detection of treatment failure at a rate of 80% per 3 months,

unless an individual is lost to follow-up.

Second-line ART consists of LPV/r, 3TC, and either ZDV or

TDF, whichever has not been used in first-line treatment already.

In this hypothetical setting with only two lines of treatment

available, individuals who fail second-line therapy remain on the

failing regimen.

Treatment Outcomes
Clinical (AIDS-defining conditions, mortality) and treatment

outcomes (CD4 cell gain, rates of viral suppression, and treatment

failure based on WHO criteria) of the simulation are presented as

medians [2.5th–97.5th percentiles] from the distribution of point

estimates from all simulation runs per analysis (n = 100). Unless

stated otherwise, treatment outcomes were estimated on an intent-

to-continue treatment basis by the Kaplan-Meier method,

meaning that study outcomes were still attributed to the respective

first-line strategy in spite of possible switches to second-line

therapy.

Cost Analyses
Main cost-effectiveness outcomes are average costs (per treated

individual) and cumulative costs accrued by year 2022 (15 years

after cART became available) for antiretroviral treatment and

expenses for management of TB or HIV-related morbidity. In

addition, cumulative person-years and quality adjusted life-years

(QALY) lived from ART start to death or until 2022, whichever

came first, are compared between treatment strategies. On the

basis of estimates from [24], we set utilities for estimation of QALY

at 0.75 if drug-related toxicities were present, if the individual

suffered from AIDS-defining conditions (ADC), or if the individual

was infected with TB. Otherwise utility weights were set to 0.8 in

HIV-infected individuals [24].

Costs for cART were derived from the Clinton Foundation

price list of November 2010 [9]. The price per year of first-line

treatment with ZDV/3TC/NVP and TDF/3TC/NVP was set at

US$ 140 and US$ 147, respectively. Second-line therapy

containing LPV/r and ZDV or TDF was priced at US$ 550.

The per 3-month costs for management of TB, ADC, and

Pneumocystis carinii prophylaxis (PCP) were US$ 50, US$ 200, and

US$ 5, respectively. Costs for outpatient visits and laboratory

monitoring (e.g. CD4 cell counts) were omitted, because they are

the same for both treatment arms. As a measure of cost-

effectiveness, incremental cost effectiveness ratios (ICER) were

estimated. Incremental cost-effectiveness was defined as the

difference in the average treatment costs per ART exposed

individual between treatment strategies divided by the difference

in average QALY per cART exposed individual between the two

therapy strategies (ZDV first or TDF first) since cART became

available. Thus, the ICER signifies the magnitude of additional

costs incurred by the new treatment strategy to gain one additional

QALY. Owing to the repetition of simulations, each model

analysis yielded different predictions for QALYs and treatment

costs. These results were summarized by calculating the ICER

from averages of costs and QALYs over all simulations from the

same setting/pathway. We further assessed the uncertainty of our

model estimates. Because the simulation yielded no pairing of

TDF and ZDV (the estimates for treatment arms were generated

in separate simulation runs), we sampled one estimate from the

TDF simulation and one estimate from the ZDV simulation to

calculate the ICER. By repeating this procedure 1000 times we

obtained a distribution of possible ICER outcomes, given the

results from the 100 simulations per setting and scenario. We

defined uncertainty bounds as the range that included 95% of all

sampling repetitions. A health-care cost perspective was applied to

the cost-effectiveness analysis, which had a time horizon of 15

years. Costs and life years lived were discounted at 3% per year.

Cost effectiveness was determined according to WHO guidelines

by comparing ICER estimates with the per capita gross domestic

product (GDP; http://www.who.int/choice/costs/CER_levels/

en/index.html; WHO AFRO E region). According to this definition,

incremental cost effectiveness ratios below 3-fold the GDP (US$
6461) are considered cost effective and ICER below the GDP (US

$2,154) are very cost effective.

Statistical Analyses of Genotypic Drug Resistance Tests to
Derive Input Parameters for Drug Resistance Model

The simulation modelled the emergence of thymidine

analogue mutations (TAM), K65R, and Q151M on failing

Cost-Effectiveness of First-Line Tenofovir
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cART. To obtain estimates of rates and order of mutation

accumulation of K65R and Q151M, descriptive statistical

analyses of six publicly available data sets with genotypic drug

resistance test (GRT) data of non-B subtype viruses from Sub-

Saharan African settings were performed [13,14,25,26,27,28].

Because the number of data points from first-line TDF use in

resource-limited settings was very small (n = 24) in our sample,

we additionally approximated rates of K65R and Q151M

emergence from individuals failing first-line cART with D4T

(along with lamivudine and an NNRTI), since this drug

compound is also known to select for K65R and Q151M

mutations and more data were available. Therefore, two

separate simulations were run: A base scenario (Figure 1B)

with mutation rates obtained from the limited set of sequences

obtained from first-line TDF treated individuals, and a second

scenario (Figure 1C) based on genotypic resistance test data

collected after first-line treatment failure with D4T. Contrary to

the base scenario, the pessimistic scenario allows for extensive

emergence of the multidrug resistance pattern Q151M, hence it

was termed the ‘‘pessimistic scenario’’. Of note, TAM emer-

gence was ignored in these two scenarios, because TDF does

not select TAMs.

We constructed mutagenic trees by grouping the GRTs

according to mutation patterns with respect to TAM, K65R,

and Q151M, and by assuming a specific order for the emergence

of these mutations (in Figures 1A, 1B, and 1C) [29]. This tree

determines the order of mutation emergence (e.g. high emergence

rates suggest early occurrence) as well as the progression of

resistance along the tree in a time-dependent manner. Transition

probabilities between tree nodes were estimated by counting the

number of GRT showing a specific pattern and dividing them by

the number of GRTs in the next higher tree node. These

probabilities were converted into incidence rates per 3 months on

a failing regimen by assuming an average time from virological

treatment failure to stop or switch of the failing regimen of 1 year

[14,26,27]. In addition, a genotypic sensitivity score (GSS) was

Figure 1. This plots hypothetical pathways of resistance emergence against zidovudine (1A) or tenofovir (1B & 1C) used in this
simulation. The transition probabilities given next to arrows are per 3 months spent on a failing treatment with an (unmeasured) HIV RNA
.500 copies/mL. Due to scarcity of resistance data of failing tenofovir regimens from developing settings two separate pathways were tested in the
simulation. The base scenario (1B) was derived from a limited set of sequences from tenofovir failures and does not include the multidrug resistance
pattern Q151M. The pessimistic scenario (1C) is based on estimations from sequences obtained after virological failure with stavudine and allows for
extensive multidrug (i.e. Q151M) resistance emergence. Also note that the multidrug resistance patterns in the zidovudine pathway were not
observed in the data (enframed by dashed lines), but were assumed to occur at low frequency. Abbreviations: ZDV, Zidovudine; TDF, tenofovir; S,
susceptible; I, intermediate resistant; R, fully resistant.
doi:10.1371/journal.pone.0042834.g001
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estimated by applying the Stanford algorithm version 6.0.11 to

each GRT that matched the mutation pattern of a specific tree

node [30]. This procedure led, for each tree node, to a distribution

of GRTs indicating full susceptibility, intermediate resistance, and

full resistance to ZDV and TDF. In the stochastic simulation,

progression in resistance pathways to the next node, as well as the

degree of resistance were determined randomly, but correspond-

ing to the probabilities observed at the respective node of the

mutagenic tree.

The estimated 3-month incidence rates for NNRTI and 3TC

mutations, which were also derived from genotypic data, are

displayed in Table 1.

Sensitivity Analyses
The effect of considering LPV/r worth only 1 drug, of

immediate or delayed switching after detection of first-line

treatment failure or of the assumed adherence benefit of TDF

use on outcomes (and treatment costs in particular), and

combinations of these parameters, were subjected to sensitivity

analyses by re-running the simulation using predefined parameter

values (Table 1). In the base scenario it was assumed that first-line

TDF use led to a 3% point higher adherence compared with ZDV

use due to better tolerability and once daily dosing [3].

Moreover, simulations were repeated in alternative settings,

which included the availability of viral load monitoring, the effect

of substituting drug components due to toxic side effects, and by

Figure 2. Shows different outcomes of first-line therapy by type of initial combination antiretroviral therapy (either including
zidovudine [ZDV] or tenofovir [TDF]). For individuals starting with TDF, resistance emergence was modelled by two different scenarios (also see
Figures 1B and 1C): a base scenario (red symbols) and a pessimistic scenario (blue symbols). Abbreviations: cART, combination antiretroviral therapy;
WHO, World Health Organization.
doi:10.1371/journal.pone.0042834.g002

Table 2. Percent of individuals starting partially inactive second-line treatment due to acquired drug resistance during first-line
treatment.

Setting ZDV first TDF first, base scenario TDF first, pessimistic scenario

Base

,2.75 active drugs 16.2 [12.3; 19.3] 0 [0; 0.2] 5.9 [3.7; 8.3]

,2 active drugs 0.7 [0; 1.3] 0 5.0 [3.3; 7.8]

Transmitted Resistance

,2.75 active drugs 16.3 [13.3; 20.6] 0.2 [0; 0.7] 6.2 [3.6; 8.9]

,2 active drugs 0.8 [0; 1.3] 0 5.4 [3.0; 7.6]

Virological Monitoring

,2.75 active drugs 6.3 [4.8; 8.9] 0 [0; 0.1] 1.7 [1.0; 3.0]

,2 active drugs 0 [0; 0.5] 0 1.6 [1.0; 2.9]

Switches allowed

,2.75 active drugs 14.3 [11.2; 18.8] 1.4 [0.4; 2.7] 6.5 [4.4; 8.9]

,2 active drugs 0.9 [0; 2.3] 0.8 [0.2; 1.7] 5.6 [3.1; 8.5]

doi:10.1371/journal.pone.0042834.t002
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introducing ART into a setting where transmitted drug resistance

from D4T/3TC/nevirapine was present (for details see Materials

S1) [31].

Results

Analysis of Observed and Predicted Drug Resistance Data
A total of 605 genotypic sequences obtained after first line

treatment failure with either 3TC+ZDV+NNRTI (n = 133),

3TC+TDF+NNRTI (n = 24) or 3TC+D4T+NNRTI (n = 472)

were analyzed. Given the small number of individuals who have

received TDF in first-line treatment, rates of K65R and Q151M

mutation emergence were also estimated from the D4T data and

applied to a separate simulation representing an alternate,

‘‘pessimistic’’ scenario. The distribution of viral subtypes was as

follows: C 53% (n = 320); G 16% (n = 97); CRF02_AG 14%

(n = 83); and a variety of other non-B subtypes occurring at ,4%.

Probabilities for the emergence of resistance upon clinical or

immunological treatment failure were calculated as the percentage

of genotypic resistance tests showing a specific mutation pattern and

are displayed in Figure 1. When analyzing the D4T data, the K65R

mutation emerged in 45 of 472 cases, which was considerably lower

than what was seen in a limited sample of viral sequences from

individuals with TDF treatment failure, where K65R was detected

in 75% of 24 available genotypic sequences.

Simulated Study Population at Time of ART Introduction
Out of a population of 4346 [4075; 4618] simulated HIV

infected individuals, 2012 [1065; 2501] and 2045 [1536; 2517]

individuals ever initiated ART with ZDV or TDF between the

years 2007 and 2022 (end of simulation), respectively. The median

age at time of cART initiation was 43 years, and 52% were

women, irrespective of treatment strategy group. The median

follow-up time after initiation of first-line therapy was 6 years. At

time of therapy initiation, median values [interquartile range] of

HIV RNA measurements were 5.09 [5.06; 5.12] log10 copies/

mL, and median [interquartile] CD4 count measurements

reached 140 [133; 147] cells/microliter, irrespective of treatment

group. Around 7% [6;8] had active TB disease, and 9% [8;11] had

experienced AIDS defining conditions.

Differences in first-line therapy outcomes were predicted with

respect to CD4 cell count recovery, with a gain of 102 cells/

microliter [97; 113] within 1 year in the ZDV group and gains of

114 cells/microliter [107; 121] (base scenario) and 107 cells/

microliter [102; 112] (pessimistic scenario) in the TDF group,

respectively. Intent to treat viral suppression rates below

50 copies\mL after 1 year were estimated at 64% [62; 67] among

ZDV starters and at 68% [66; 71] (base scenario) and 66% [63;

68] (pessimistic scenario), respectively, in the TDF group.

As shown in Figure 2, six years after treatment initiation,

corresponding to the median follow-up time after cART initiation,

25.8% [23.5; 28.5] of the ZDV starters had ever experienced a

virological treatment failure, and 35.8% [32.4; 38.9] had

experienced treatment failure according to the WHO definition

based on immunological and clinical criteria. Among individuals

who initiated treatment with TDF the proportions of virological

and immunological/clinical failures were 22.0% [20.1; 24.1] and

31.4% [29.2; 33.3] respectively for the base scenario and 24.6%

[21.3; 27.6] and 34.7% [31.0; 37.1] respectively for the pessimistic

scenario. Six years after cART initiation, drug-resistance was

predicted to have emerged in 27.9% [25.5; 30.4] of individuals in

the ZDV group and in 24.3% [22.7; 26.1] (base scenario) and

26.4% [23.4; 29.8] (pessimistic scenario) of individuals in the TDF

group.

Predicted Patterns of Acquired Drug Resistance and
Impact on Second-line Therapy

A higher proportion of ZDV starters was predicted to have

initiated LPV/r-based second-line therapy within 6 years after

antiretroviral treatment initiation (33.9% [30.7; 36.6], median

n = 602) when compared with the group of TDF starters (base

scenario: 29.9% [27.2; 31.6], median n = 547; pessimistic scenario:

33.0% [29.8; 34.9], median n = 597). Among individuals from the

ZDV group who initiated second-line therapy, TAMs were

predicted to be present in 28.4% [23.2; 32.5], and none in the

two TDF groups. Among individuals who started TDF as first-line

therapy, the predicted proportion of K65R was almost 9-fold

higher in the base scenario (43.4% [38.8; 48.4]) compared with the

pessimistic scenario (4.7% [3.3; 6.7]). In contrast, while there were

no Q151M mutations emerging in the base scenario, the

prevalence of Q151M was estimated at 5.9% [3.7; 8.3] in the

pessimistic scenario. With respect to NNRTI mutations (56–57%)

and M184V (62–63%), the simulation yielded almost identical

estimates across the three groups (not shown).

Next, we analyzed the potential activity of second-line regimens

against a background of different resistance mutations patterns.

Previous studies have demonstrated that ritonavir-boosted PIs

such as LPV/r have a very high potency to inhibit viral replication

and are very robust to the emergence of drug resistance [32,33].

Therefore, we allocated LPV/r a relative activity score of 1.5 in

our analyses of second-line treatment outcomes. As shown in

Table 2, when considering lopinavir/r as 1.5 active drugs and

3TC use in the presence of the mutation M184V as 0.25 active

drugs (owing to the high viral fitness reduction induced by this

mutation), 16.2% [12.3; 19.3] of ZDV starters were receiving

second-line regimens with less than 2.75 active drugs (correspond-

ing to partially active 3TC, a partially active NRTI, and fully

active LPV/r). In contrast, depending on the scenario only 5.9%

[3.7; 8.3] (pessimistic) or 0.6% [0; 1.6] (base) among the TDF

starters received less than 2.75 fully active drugs. This marked

difference was driven by ZDV’s potential to induce mutations, and

in particular TAMs of group 1, with intermediate to full level

cross-resistance to TDF (figure 1A). In contrast, K65R carrying

viral strains are known to retain their susceptibility to ZDV [34].

The proportion of individuals with severely compromised second-

line treatments with ,2 fully active drugs (e.g. fully active LPV/r,

partially active 3TC, and no activity of second NRTI) among

ZDV starters was 0.7% [0.0; 1.3], but reached 5.0% [3.3; 7.8]

when applying the pessimistic TDF scenario, which allows for the

emergence of the multidrug resistance pattern Q151M. When

translated into absolute numbers (per 1000 individuals starting

first-line treatment) and taking into account first-line treatment

failure rates, these predictions suggest that, six years after therapy

start, 55 from the ZDV group and 19 from the TDF group

(pessimistic scenario) will have started partially compromised

second-line regimens with ,2.75 fully active drugs. However, only

2 per 1000 individuals from the ZDV group, but 17 per 1000 from

the TDF group (pessimistic scenario) will have initiated inadequate

second-line therapy with ,2 fully active drugs due to high-level

cross-resistance.

Cost Effectiveness Analysis
For the cost effectiveness analysis, the cumulative treatment costs

accrued after therapy start until death or the year 2022 (whichever

came first) were compared (table 3). The median observation time

was 6 years, over which individuals starting therapy with TDF

incurred slightly higher discounted ART-related costs (base

scenario: US$ 1070; pessimistic scenario: US$ 1102) than individ-

uals starting first-line treatment with ZDV with US$ 1058.

Cost-Effectiveness of First-Line Tenofovir
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Table 3. Cost effectiveness analyses.

Scenario
ZDV first, base
scenario

TDF first, base
scenario

ZDV first, pessimistic
scenario

TDF first, pessimistic
scenario

Base

Treatment costs 1058 [904; 1145] 1070 [994; 1140] 1072 [995; 1148] 1102 [997; 1182]

HIV-morbidity related costs 160 [136; 170] 148 [135; 159] 160 [145; 170] 151 [136; 162]

Total costs 1217 [1040; 1314] 1219 [1137; 1292] 1232 [1143; 1314] 1252 [1138; 1338]

Life years lived 4.811 [4.290; 5.100] 4.936 [4.721; 5.172] 4.856 [4.642; 5.062] 4.910 [4.678; 5.125]

QALYs lived 3.719 [3.317; 3.944] 3.869 [3.701; 4.054] 3.753 [3.588; 3.917] 3.846 [3.663; 4.015]

ICER for Treatment costs and

life years lived 99 540

QALYs lived 83 315

ICER for total costs and

life years lived 11 377

QALYs lived 9 220

Transmitted Resistance

Treatment costs 1076 [980; 1162] 1065 [827; 1135] 1070 [998; 1154] 1103 [950; 1177]

HIV-morbidity related costs 161 [151; 175] 149 [120; 159] 161 [145; 174] 152 [134; 162]

Total costs 1237 [1131; 1327] 1213 [948; 1289] 1231 [1146; 1326] 1255 [1085; 1339]

Life years lived 4.856 [4.519; 5.155] 4.895 [4.139; 5.161] 4.832 [4.551; 5.113] 4.891 [4.411; 5.129]

QALYs lived 3.754 [3.492; 3.986] 3.836 [3.244; 4.046] 3.735 [3.518; 3.955] 3.830 [3.454; 4.016]

ICER for Treatment costs and

life years lived dominanta 551

QALYs lived dominanta 339

ICER for total costs and

life years lived dominanta 405

QALYs lived dominanta 250

Virological Monitoring

Treatment costs 1102 [1011; 1170] 1073 [918; 1152] 1112 [997; 1187] 1134 [1056; 1209]

HIV-morbidity related costs 150 [132; 161] 138 [113; 150] 149 [136; 161] 142 [132; 150]

Total costs 1252 [1151; 1325] 1211 [1031; 1295] 1261 [1135; 1339] 1277 [1188; 1355]

Life years lived 4.910 [4.558; 5.174] 4.977 [4.406; 5.243] 4.929 [4.576; 5.178] 4.995 [4.736; 5.241]

QALYs lived 3.800 [3.530; 4.001] 3.905 [3.456; 4.112] 3.815 [3.544; 4.008] 3.915 [3.712; 4.109]

ICER for Treatment costs and

life years lived dominanta 348

QALYs lived dominanta 229

ICER for total costs and

life years lived dominanta 243

QALYs lived dominanta 160

Switches allowed

Treatment costs 1012 [952; 1080] 1021 [937; 1085] 1027 [962; 1087] 1054 [945; 1122]

HIV-morbidity related costs 164 [148; 175] 154 [139; 167] 163 [156; 172] 155 [144; 165]

Total costs 1176 [1104; 1253] 1175 [1084; 1244] 1190 [1126; 1250] 1209 [1091; 1287]

Life years lived 4.803 [4.543; 5.029] 4.908 [4.605; 5.126] 4.855 [4.662; 5.072] 4.884 [4.445; 5.128]

QALYs lived 3.723 [3.524; 3.899] 3.843 [3.606; 4.016] 3.763 [3.611; 3.935] 3.822 [3.477; 4.012]

ICER for Treatment costs and

life years lived 86 937

QALYs lived 75 453

ICER for total costs and

life years lived dominanta 663

QALYs lived dominanta 321
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However, less expenditures related to treatment of AIDS defining

conditions or tuberculosis were needed in the group of TDF users

(base scenario: US$ 148; pessimistic scenario: US$ 151) compared

with the ZDV group with US$ 160 per individual on therapy.

Regarding morbidity and life-years lived as outcomes, the three

strategies seemed to be comparable: the six year Kaplan-Meier

estimates for mortality were 25.9% [22.1; 28.4] for the ZDV group

and 23.3% [20.8; 25.9] (base scenario) and 23.6% [21.5; 25.4]

(pessimistic scenario) for the TDF groups. The mean number of

discounted life years lived since therapy start until death or 2022

per individual looked similar across the three groups (4.9 years,

Table 3), but QALY gained were somewhat higher among first-

line TDF users compared with the ZDV group (Figure 3A). Costs

and QALY measures were then combined into incremental cost

effectiveness ratios for different outcomes (Table 3, Figure 3B).

When focusing on resistance emergence in the base scenario, our

simulation results suggests that TDF use for first-line therapy was a

very cost-effective treatment strategy, with an additional quality

adjusted life year costing less than US$ 100, and in two scenarios

(transmitted resistance present; availability of virological monitor-

ing) even being a dominant strategy because of lower costs and

more QALYs gained. However, when considering the pessimistic

scenario, which allows for extensive NRTI multidrug resistance,

the price for an additional quality adjusted life year rose to up to

US$ 450 and TDF use was no longer dominant, although still very

cost-effective by WHO standards.

Next, we assessed the robustness of model outcomes in different

settings (presence of transmitted resistance, virological monitoring

available, drug switches due to drug toxicities allowed; see

Materials S1 for further details) and the reliance on the choice

of specific input parameter values, namely the assumed better

adherence to TDF compared with ZDV and the impact of delayed

switching of drugs after detection of treatment failure. When

considering the impact of different settings on model results

(Figure 3), we observed that the availability of virological

monitoring (i.e. 6-monthly HIV RNA determinations) generally

improved cost effectiveness of first-line TDF use relative to the

base setting. The other two changes to settings (i.e. presence of

transmitted drug resistance or the option to switch drugs in case of

toxic side effects) only had a limited effect on cost effectiveness

outcomes.

Furthermore, the sensitivity of results to specific parameter

values was explored (Table S1 and Table 4). In general, QALY

estimates varied notably across the different sensitivity analyses.

But overall cost-effectiveness of the TDF strategy over the ZDV

strategy was maintained, and generally ICER estimates came to lie

below the WHO cost-effectiveness threshold for high cost

effectiveness (i.e. ICER , the per capita GDP) in $95% of cases

(table 4).

Discussion

By using an established stochastic simulation of HIV disease

progression and therapy we have explored the impact of using

different NRTI drugs (namely ZDV versus TDF) on resistance

emergence and its consequences in terms of response to available

Footnotes:
All costs are in US$.
aTDF dominant over ZDV because of lower costs and higher QALYs.
doi:10.1371/journal.pone.0042834.t003

Table 3. Cont.

Figure 3. Figure 3A plots the average cumulative costs incurred by first-line tenofovir or zidovudine against quality adjusted life
years. The connected dots refer to one set of comparisons between first-line tenofovir (TDF; coloured dots) or zidovudine (ZDV; black dots) using
different assumptions regarding scenarios of TDF resistance emergence (red dots: base scenario; blue dots: pessimistic scenario involving the
emergence of the Q151M multidrug-resistance complex; see Figure 1 for further details), as well as for alternative settings, which were the availability
of 6-monthly HIV RNA determinations; .0% prevalence of transmitted drug resistance (TDR) in the study population; or exchange of ZDV with TDF
(and vice versa) due to toxic side effects allowed (see Materials S1 for further details). Figure 3B plots estimates for incremental cost effective ratios
against estimates for cumulative cost differences between first-line TDF and ZDV use.
doi:10.1371/journal.pone.0042834.g003
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second-line regimens and associated costs. Owing to uncertainty

with respect to the influence of prolonged exposure to failing

regimens and the effect of non-B subtype infection on NRTI-cross

resistance we tested two pathways for resistance emergence while

receiving TDF therapy. The base scenario assumed a rapid and

frequent emergence of the TDF signature mutation K65R but

only a very limited degree of NRTI cross-resistance. The second,

pessimistic scenario was derived from analyses of genotypic

resistance tests performed after failure of first-line combination

treatment with D4T and was characterized by a more limited

emergence of K65R, but a considerable risk for NRTI-cross

resistance by the emergence of Q151M.

Our analyses suggest that first-line TDF use is a cost-effective

treatment strategy compared with first-line ZDV use when

considering quality adjusted life years as outcome, although

dominance of the TDF strategy was only observed in 11% to 46%

of comparisons (table 4). The use of TDF instead of ZDV also led

to a reduction in treatment failures on the basis of WHO criteria

by approximately 1% (pessimistic scenario) to 4% (base scenario).

Consequently, fewer individuals in the TDF group had to switch

to more costly second-line therapy compared with ZDV starters,

although the magnitude of this difference was dependent on

assumptions regarding the TDF resistance pathway. Our study

results are line with those from a modelling analysis by Bendavid

et al., who obtained an ICER estimate of US$ 1045 for first-line

regimens consisting of TDF, 3TC and NVP when compared with

first-line ZDV, 3TC and NVP [19]. Other published cost-

effectiveness analyses are not directly comparable to our study,

because their reference scenarios involved receiving no cART [16]

or receiving D4T [18]. Nevertheless, both studies also reached the

conclusion that the TDF first strategy may be cost-effective when

compared with the ZDV first strategy because of better

tolerability. Further support for this conclusion stems from

analyses of antiretroviral treatment programs in southern Africa,

which observed fewer drug related toxicity events among first-line

TDF users when compared with individuals starting therapy with

ZDV [22,23]. In particular, severe TDF-associated renal toxicity

was shown to be rare and often transient, and therefore does not

seem to pose a major obstacle for widespread TDF implementa-

tion in settings without creatinine clearance monitoring

[23,35,36]. In comparison, life-threatening anaemia or lipoatro-

phy occur frequently in association with ZDV-use, especially in

malnourished populations [22,23]. All these are drug side effects,

which are not caused by TDF.

Depending on the actual rate of NRTI multidrug resistance

emergence, first-line TDF use may increase emergence of

extensively NRTI class-resistant HIV by 8.5-fold (17/1000 first-

line TDF users in the pessimistic scenario compared with 2/1000

first-line ZDV users). Observational studies have reported

associations of K65R mutations with Q151M, possibly pointing

towards a co-selection of these mutations [37,38]. However, these

studies were performed among patients with extensive antiretro-

viral drug histories-including exposure to D4T or didanosine, but

not necessarily TDF-, and the drugs responsible for selection of

K65R and Q151M could not be determined with certainty. In

contrast, currently available resistance data from individuals

undergoing long-term therapy with TDF support the more

optimistic scenario [10,14,39]. If true, the limited degree of

cross-resistance even after extended exposure to failing treatment

would make TDF a valid option for second-line therapy, in which

EFV is replaced by LPV/r. A recent observational study suggests

that in salvage settings staying on TDF may be preferable over

switching to ZDV due to better tolerability and similar viral load

reductions [34].

Some limitations should be noted about this study. Like any

model, our simulation involves simplifications of reality and is

based on assumptions regarding input parameters. In particular,

given the lack of real data we had to make assumptions regarding

rates and extent of drug resistance following immunological

failures in resource-limited settings, as shown in Figure 1. Given

these limitations, we subjected several important parameters to

sensitivity analyses and repeated the simulation for different

Table 4. Uncertainty bounds of incremental cost effectiveness (ICER) estimates, % of ICER estimates suggesting dominance of the
tenofovir (TDF) treatment strategy and % of ICER estimates below the WHO threshold for high cost-effectiveness.

Scenario/Sensitivity analysis Base Scenario Pessimistic Scenario

Uncertainty
bounds of
ICER
estimates

% TDF
strategy
dominant

% ICER
estimates
, WHO
threshold

Uncertainty
bounds of ICER
estimates

% TDF
strategy
dominant

% ICER
estimates
, WHO
threshold

Base [22186; 3269] 27% 97% [22439; 2729] 9% 96%

Transmitted Resistance [23327; 3353] 32% 95% [21347; 2874] 10% 97%

Virological Monitoring [25970; 3747] 47% 96% [21576; 2683] 14% 97%

Switches allowed [21512; 3132] 23% 96% [22761; 2676] 6% 97%

LPV worth only 1 drug instead of 1.5 [22222; 1901] 31% 98% [24490; 2133] 19% 98%

Median time to switch 22 months (i.e.
3-month switch probability of 10%)

[25111; 4950] 32% 95% [22981; 3111] 28% 96%

No additional adherence benefit for TDF [2766; 1807] 5% 98% [21240; 2287] 8% 96%

Median time to switch 22 months & no
additional adherence benefit for TDF

[21558; 2406] 13% 97% [25426; 5132] 30% 95%

Results were obtained by repeatedly drawing one simulation with TDF as the initial strategy and one simulation with zidovudine (ZDV) in the initial treatment. From this
pair of simulations the incremental cost effectiveness ratio was calculated. Dominance was defined by lower costs and higher quality adjusted life year estimates for a
specific treatment. By repeating this process 1000 times we obtained an estimate for how frequently the TDF strategy was dominant. Analogous calculations were
performed to check how often the ICER estimates were below the WHO threshold for high cost effectiveness (annual per capita gross domestic product of US$ 2154).
Uncertainty bounds reflect ranges that include 95% of all ICER estimates.
Abbreviations: ICER, incremental cost effectiveness ratio; TDF, tenofovir; WHO, World Health Organization.
doi:10.1371/journal.pone.0042834.t004
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settings. We observed that the pessimistic simulation scenario with

regards to drug resistance emergence reduces TDF cost-effective-

ness, and so did changes to settings or other input parameters of

interest (adherence levels, switch rates, and potency of LPV/r). But

these results did not alter our conclusions, because TDF remained

very cost effective by WHO standards (table 4). These analyses

further revealed that a strategy of first-line TDF use in settings

with virological monitoring would further enhance cost effective-

ness relative to first-line ZDV use (Table 3 and Figure 3). It should

also be noted that measures of treatment outcomes in our analysis

such as the proportion of individuals with undetectable viral loads

or the increase in CD4 cell counts from baseline tend to be

somewhat lower than those observed in clinical trials and

observational studies, although this finding has no direct impact

on the cost-effectiveness analyses.

In summary, taking into account the possibility of more

extensive drug resistance or possible long term renal toxicity by

TDF use we conclude that first-line TDF use is likely to be a very

cost-effective treatment strategy in resource-limited settings even in

the absence of virological monitoring, because of the better

tolerability and the small cost difference.
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