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Abstract

EndoG, a member of the DNA/RNA non-specific bba-metal family of nucleases, has been demonstrated to be present in
many organisms, including Trypanosomatids. This nuclease participates in the apoptotic program in these parasites by
migrating from the mitochondrion to the nucleus, where it takes part in the degradation of genomic DNA that characterizes
this process. We now demonstrate that Leishmania infantum EndoG (LiEndoG) is an endo-exonuclease that has a
preferential 59 exonuclease activity on linear DNA. Regardless of its role during apoptotic cell death, this enzyme seems to
be necessary during normal development of the parasites as indicated by the reduced growth rates observed in LiEndoG
hemi-knockouts and their poor infectivity in differentiated THP-1 cells. The pro-life role of this protein is also corroborated
by the higher survival rates of parasites that over-express this protein after treatment with the LiEndoG inhibitor Lei49.
Taken together, our results demonstrate that this enzyme plays essential roles in both survival and death of Leishmania
parasites.
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Introduction

Members of the Endonuclease G (EndoG) family have been

found in all organisms whose genomes have been fully sequenced.

One of the most important roles described for these enzymes is

their participation in the apoptotic process whereby EndoGs

translocate to the nucleus and contribute to the degradation of

genomic DNA into oligonucleosomal fragments [1]. All of these

proteins belong to the superfamily of non-specific bba-metallonu-

cleases [2] and their nuclease activity depends on the presence of

divalent cations such as Mg2+, Mn2+ or Co2+ whereas it is

inhibited by moderate concentrations of monovalent cations such

as K+ or Na+ [2,3,4]. EndoGs are encoded by a nuclear gene and

imported into the mitochondrion as a consequence of the presence

of an N-terminal signal peptide [5]. Mitochondrial localization is

essential because its ectopic expression in the cytosol induces cell

death [2].

Despite the similarities among EndoG family members, their

nuclease activities are not identical: yeast and Neurospora enzymes

contain an intrinsic 59 exonuclease activity that is absent in their

mammalian counterparts [6]. In fact, mammalian mitochondria

also contain EXOG, an endo-exonuclease that is considered to

have originated from the duplication of an ancestral nuclease gene

that generated the paralogous EndoG- and EXOG-protein

subfamilies in higher eukaryotes. This way, the full endo/

exonuclease activities found in mitochondria of lower eukaryotes

were maintained [7].

Mammalian members of this family of nucleases attack the

nucleotide sequence in duplex DNA in a highly nonrandom

fashion and show a particularly strong, but not exclusive,

preference for nicking at positions adjacent to guanines [8]. This

striking preference to attack guanine tracts is the hallmark of the

endonuclease activity of the mammalian members of this family

and the reason why these enzymes were named Endonucleases G.

In contrast, the yeast endo-exonuclease has no preference to nick

specific sequences in double-stranded DNA (dsDNA) [6].

Apart from their involvement in the death process, a pro-life

role for these nucleases has also been suggested in several

organisms. Thus, reduction in the levels of the C. elegans EndoG

ortholog cps-6 by RNA interference (RNAi) delays cellular growth

during development of this worm [1]. Similarly, deletion of the

yeast EndoG ortholog Nuc1p sensitized cells to cell death using

standard culture conditions but, on the contrary, diminished

apoptotic death when mitochondrial respiration was increased.

These findings point to a dual (pro-life and pro-death) role [9].
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In this work we show that Leishmania infantum EndoG (LiEndoG)

not only displays endonuclease activity but, similarly to its

counterparts from yeast and Neurospora, also functions as a 59-

exonuclease. In an attempt to evaluate its possible pro-life role, we

used a gene replacement strategy to diminish endogenous

LiEndoG levels. This decrease reduced the growth rate of the

parasites and limited their capacity to infect and survive inside

differentiated THP-1 cells. Moreover, results from assays on

control and LiEndoG-transfected parasites using a recently

described LiEndoG inhibitor support the vital function of this

protein.

Materials and Methods

Cells and culture conditions
L. infantum promastigotes (M/CAN/ES/96/BCN150 MON-1),

kindly provided by Dr. Alonso (CBMSO- Universidad Autónoma

Madrid, Spain), were grown in RPMI-1640 medium (Gibco,

Paisley, UK) supplemented with 10% heat-inactivated fetal calf

serum (FCS), antibiotics, and 25 mM HEPES at 26uC. Parasite

death was induced by addition of edelfosine (Calbiochem) or

Lei49 (2-[(S)-2-Amino-3-methylbutanoyl-oxy]ethyl [(2R,3S,5R)-

5-(thymin-1-yl)-2-(trityloximethyl)tetrahydrofuran-3-yl] succinate)

to the culture medium [10]. Growth curves were plotted as the

product of cell concentration versus time. The graph shows the

log2 values of the parasite concentration. Parasites were kept at the

log phase by daily dilution to 1.16106–1.56106 parasites/mL and

successive dilutions were considered to calculate the number of

parasites.

Sequence cloning and construct design
DNA fragments containing the LiEndoG 59UTR were obtained

after amplification of genomic DNA with 59GGGGAATTCT-

GAACATCACAGTGTGGAG39 and 59CTCATGGGTACCT-

GATGAATCGTTTCGCGCA39 primers (underlined sequences

highlight the EcoRI and the KpnI restriction sites respectively).

DNA fragments containing the LiEndoG 39UTR were obtained

after amplification of genomic DNA with 59GGGCTGCAGCT-

TGTCGCGGTTTTGG39 and 59GGGGGATCCTTGGGGT-

TGCCCTCGTTGC39 primers (underlined sequences highlight

the PstI and the BamHI restriction sites respectively). Gene

replacement was achieved by transfection of the parasites with

DNA constructions containing the LiEndoG 59 UTR and 39UTR

ends (cloned using the EcoRI/KpnI and BamHI/PstI restriction

sites, respectively) within the pUC19 vector containing either the

Puromycin N-acetyl-transferase (PAC) (pUC1959UTRLiendoG:pur-

o:39UTRLiendoG) or the neomycin resistance gene (neo) (pU-

C1959UTRLiendoG:neo:39UTRLiendoG). Both pac and neo genes

had been previously inserted into the pUC19 vector using the

KpnI and BamHI restriction sites.

EndoG expression and purification
E. coli BL21(DE3) pLys bacterial cells were transformed with

pRSET-LiendoG. Recombinant LiEndoG (rLiEndoG) expression

was then induced during 30 minutes with 1 mM IPTG at 37uC.

Because most of the expressed protein was found in the non-

soluble fraction, E. coli cells were lysed in 6 M GuHCl and the

cleared lysate was loaded onto a Ni-NTA resin under denaturing

conditions according to the manufacturer’s instructions (Qiagen).

On-column refolding of the protein was achieved by progressive

reduction of the urea concentration from 6 M to 1 M. The protein

was used for monoclonal antibody production according to

standard protocols [11].

Nuclease activity assay
1 mg of plasmid DNA (pRSETa) was digested in a final volume

of 20 mL with increasing amounts of rLiEndoG (20–150 ng) for

1 h at 37uC. Digested DNA samples were denatured using 0.1

volumes of NaOH 1 M, heated 2 minutes at 55uC, neutralized

with 0.2 volumes of TrisHCl 1 M, pH 4.0, chilled in ice and

finally diluted in Milli-Q water in order to avoid the effect of the

salts on the migration of the samples during the subsequent

electrophoresis. The DNA samples were finally analyzed on an

agarose gel at 1.2% w/v, stained with ethidium bromide and

visualized under UV light.

Nuclease activity was also tested against a 500-bp PCR product

amplified with a forward primer fluorescently labeled at its 59 end

with 6-carboxyfluorescein (FAM) (Applied Biosystems). The PCR

fragment with a fluorescent 59 end was purified using a spin-

column (Qiagen) in order to remove the primers used for the

amplification. The PCR fragments were digested in a final volume

of 20 mL with increasing amounts of rLiEndoG or DNase I

(Boehringer Mannheim) at 37uC for 1 h. 5 mL of the digested

samples were heat-denatured and diluted 1:10 and analyzed by

capillary electrophoresis using the 3130 Genetic Analyzer (Applied

Biosystems). The results obtained were examined using the Peak

Scanner v1.0 (Applied Biosystems) software. The remaining 15 mL

from each digestion were analyzed by electrophoresis on an

agarose gel at 1.2% w/v, stained with ethidium bromide and

visualized under UV light.

Promastigote transfection
The parasites were harvested in logarithmic growth phase and

transfected by electroporation as previously described [12]. Stably

transfected strains were selected in RPMI/20%FCS with 20 mg/

mL of puromycin for hemi-KO parasites and with 20 mg/mL of

puromycin and 30 mg/mL of G418 for double-KO parasites.

The pUC1959UTRLiendoG:puro:39UTRLiendoG construct was

linearized using the restriction enzymes HindIII and EcoRI. The

pUC1959UTRLiendoG:neo:39UTRLiendoG construct was linearized

using the restriction enzyme EcoRI. The digestion products were

gel purified (Illustra GFX gel purification kit, General Electric)

prior to transfection. Individual clones were isolated in agar plates

[13]. Cultured cells were diluted 1:5 when the density exceeded

56106 cells/mL and cell densities were determined by triplicates

using cell counting grids (Marienfeld, with a depth of 0.1 mm).

Protein Extraction and Western Blotting
406106 parasites were lysed in 100 mL of Laemmli lysis buffer

and boiled for 10 minutes. 20 mL of each sample were used for

SDS-PAGE analysis in 10% acrylamide gels. For Western blot

analysis, proteins were transferred from the gels to a PROTRAN

nitrocellulose membrane (Whatman) in transfer buffer (25 mM

Tris-HCl, 192 mM glycine, 20% methanol, 0.02%SDS, pH 8.3).

The membranes were first incubated for 2 h in a blocking solution

consisting of TBS-T buffer (150 mM NaCl, 10 mM Tris, 0,1%

Tween, pH 8) supplemented with 5% of BSA (bovine serum

albumin) (Sigma) and then with anti-LiEndoG monoclonal

antibody for 16 hours at 4uC with shaking. An anti-mouse

monoclonal antibody HRP-conjugated (Sigma) diluted 1:5000 in

the blocking solution was used as the secondary antibody.

Polyclonal anti-Hsp70 antibody diluted 1:2000 was used as a

loading control. In this case, a polyclonal anti-rabbit antibody

conjugated with HRP (Santa Cruz) diluted 1:5000 was used as the

secondary antibody. Antibodies were recognized with ECL

reagent (Thermo Scientific).

LiEndoG Is Essential for Parasite Survival
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THP-1 infections
THP-1 cells were seeded at 120.000 cells mL21 in 24-multiwell

plates (Nunc, Roskilde, Denmark) and differentiated to macro-

phages for 24 h in 1 mL RPMI-1640 medium containing 10 ng

mL21 phorbol 12-myristate 13-acetate (PMA, Sigma–Aldrich) at

37uC. Then the culture medium was removed and L. infantum

promastigotes in a ratio 20:1 to THP-1 cells were added in RPMI-

1640 medium. After 24 hours of incubation all medium with non-

infecting promastigotes was removed. Cells were washed three

times with 16phosphate-buffered saline (PBS) and detached with

TrypLE Express (Invitrogen, Leiden, The Netherlands) according

to the manufacturer’s indications. Infection rates were measured

by flow cytometry as the percentage of GFP positive cells. The

number of amastigotes inside the cells was indirectly determined

based on the intensity of the green fluorescence of the infected

cells.

Mitochondrial transmembrane potential determination
Logarithmically growing promastigotes (16106 cells) were

incubated with Mitotracker Red CMXRos (Life Technologies)

to a final concentration of 100 nM and maintained under normal

growing conditions for 45 minutes. As a mitochondrial membrane

depolarization control the protonophore carbonyl cyanide m-

chloro phenyl hydrazone (CCCP) was used to a final concentra-

tion of 100 mM under the same conditions. Subsequently, samples

were analyzed using a FC500 MPL flow cytometer (Beckman-

Coulter).

LiEndoG activity
The nuclease activity of LiEndoG in the presence of Lei49 was

monitored by measuring the increase in fluorescence derived from

the digestion of a piece of dsDNA. 6-Carboxyfluorescein (FAM)-

derived fluorescence is quenched by the proximity of tetra-

methylrhodamine (TAMRA) in the undigested probe constructed

by hybridization of the oligonucleotides FAM-59-CTG TCG CTA

CCT GTG G-39-TAMRA and FAM-59- CCA CAG GTA GCG

ACA G-39-TAMRA. Digestion of any of the two oligonucleotides

causes separation of the fluorophore from the quencher giving rise

to emission of a fluorescent signal. 30 pmol of the double-stranded

probe were digested with 2.5 ng mL21 LiEndoG. Reactions were

monitored in a Victor 1420 Multilabel Counter (Wallac) at an

excitation and emission wavelengths of 492 and 517 nm,

respectively.

Cell viability assay
Drug treatment of promastigotes was performed during

logarithmic growth phase at a concentration of 26106 parasites/

mL at 26uC. The percentage of living cells was evaluated by flow

cytometry by the propidium iodide (PI) exclusion method [14].

Briefly, treated parasites were stained for 10 min with 5 mg/mL

PI. The number of PI-negative parasites was determined in a

Beckman Coulter FC500 flow cytometer.

Confocal microscopy
All experiments were done starting with 106106 logarithmically

growing promastigotes and visualized under a LEICA TCS-SP5

confocal microscope. Mito-Tracker Red CMXRos (Life Technol-

Figure 1. Analysis of rLiEndoG activity on double-stranded DNA. 1 mg of supercoiled plasmid DNA (sc) was digested with increasing
amounts of rLiEndoG (0, 20, 40, 80 and 160 ng) and with 160 ng of denatured rLiEndoG protein (160DP) as a negative control. The restriction enzyme
Bgl II (Bgl II) was used as a control to generate linear DNA (lin). Each sample of digested DNA was split into two aliquots and one of them was heat-
denatured (D) while the other one remained non-denatured (ND). All samples were electrophoresed in a 1% agarose gel and visualized under UV
light. The different forms of plasmid DNA are indicated: open circular (oc); linear double-stranded (lin); supercoiled (sc); linear single-stranded (lin ss);
circular single-stranded (cir ss).
doi:10.1371/journal.pone.0089526.g001
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ogies) was used for mitochondrial localization at a final concen-

tration of 200 nM according to the manufacturer’s instructions.

Briefly, cell cultures were centrifuged to obtain a cell pellet and

gently suspended in warm (26uC) staining solution containing

200 nM Mito-Tracker Red CMXRos. After 45 minutes at 26uC

the cells were re-pelleted by centrifugation and suspended in fresh

warm medium for 30 minutes. Finally, the cells were re-pelleted

again and washed in PBS. Cells were then fixed in 2%

paraformaldehyde in PBS for 10 minutes at room temperature

and washed with PBS. 1.56106 cells were spread on poly-lysine

pre-coated slides and permeabilized with 0.1% Triton X-100 (TX-

100) in PBS solution for 10 minutes. Preparations were then

incubated with: i) blocking solution (2% BSA, 0.1% TX-100 in

PBS) for 60 minutes at room temperature, ii) primary monoclonal

antibody anti-LiEndoG (diluted 1:2 in blocking solution) for 16 h

at 4uC, and iii) antibody Alexa Fluor 488 anti-mouse (diluted

1:1000 in blocking solution) (Life Technologies). Each incubation

was followed by 3 washes with 16PBS.

Finally, the samples were covered with ProLong Gold Antifade

Reagent with DAPI liquid mountant (Life Techologies) and

visualized under the microscope.

Statistics
All the analyses were carried out with a minimum of three

independent experiments. The statistical significance of the

differences between treatments was evaluated by a two-tailed

unpaired t-test.

Results

The endonuclease activity of LiEndoG generates single-
stranded cuts in the DNA double helix

To determine whether, as described for other endonucleases

[6], LiEndoG is able to produce nicks in dsDNA, we proceeded to

digest supercoiled (sc) plasmid DNA with increasing amounts of

rLiEndoG expressed in E. coli. Each digested sample was divided

into two aliquots, and one of them was denatured to follow the

migration of the distinct forms of released single-stranded DNA.

The restriction enzyme Bgl II was used as a control for the

simultaneous digestion of both strands to generate a linear (lin)

DNA molecule (Figure 1; Bgl II). rLiEndoG is able to digest

supercoiled closed circular DNA, thus demonstrating that this

enzyme displays endonuclease activity. The enzyme primarily

generates open circular (oc) intermediates while only a very faint

band of linear (lin) DNA can be observed. Denaturation of the

samples (D lanes) allowed the detection of the fully-sized linear and

circular single-stranded (ss) DNA molecules that made up the open

circular forms generated after digestion. Because ethidium

bromide has much higher affinity for dsDNA, these ss molecules

are weakly stained compared to the oc DNA. Accordingly,

rLiEndoG displays endonucleolytic activity but digests only one of

the two strands of the double helix in every digestion step.

However, this enzymatic activity may render linear DNA as a

minor digestion product when two independent cuts in the

complementary strands are so close together that base pairing can

no longer maintain the circular structure (Figure 1; lin). The

progressive decrease in the total ethidium-derived fluorescence

reveals a process of DNA degradation that can be explained by the

release of small oligonucleotides from the double helix after

accumulation of single strand breaks. Thus, the enzyme seems to

cut stochastically any of the two strands, as has been described for

Drosophila melanogaster EndoG [15].

rLiEndoG shows exonuclease activity
While EndoGs from higher eukaryotes display only endonucle-

ase activity [6], Nuc1p from S. cerevisiae behaves both as an

endonuclease and as an exonuclease [16]. Once established that

LiEndoG is an endonuclease, we addressed the possibility that it

might also display exonuclease activity. To this end, genomic

Figure 2. Exonuclease activity of rLiEndoG. 500 ng of a PCR
fragment 59-labeled with FAM were digested with rLiEndoG or DNase I.
The amount of enzyme used for digestion is indicated. Digestion
products were processed by both agarose gel (1%) and capillary
electrophoresis. A) Agarose gel of the DNA fragments generated after
1 h of digestion with rLiEndoG or DNase I. B) Capillary electrophoresis
of the DNA probe digested for 1 h with 0.1 mg of rLiEndoG. C) Capillary
electrophoresis results obtained for the DNA probe digested for 1 hour
with 0.01 units of DNase I. Digested DNA was heat-denatured prior to
capillary electrophoresis. Fluorescence intensities (arbitrary units) of the
single-stranded DNA fragments generated after digestion and dena-
turation are shown on the y axis. Sizes of the ssDNA fragments (in
nucleotides) are shown on the x axis. Fragment sizes were analyzed
with the Peak Scanner (Applied Biosystems) software. Accurate sizes
can only be predicted for fragments longer than 50 nucleotides.
doi:10.1371/journal.pone.0089526.g002
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DNA was amplified by PCR using a FAM-labeled forward primer

so as to generate a PCR product with a fluorescent 59 end. The

resulting PCR product was digested with increasing concentrations

of rLiEndoG. DNase I was used as a control for endonuclease

activity [17,18]. The products resulting from the digestion were

processed by both agarose gel electrophoresis (Figure 2A) and

capillary electrophoresis (Figure 2B and 2C). Whereas gel

electrophoresis allows the detection of all the dsDNA fragments

generated after digestion, only ss FAM-labelled fragments

(fragments containing the labelled 59 end) are detected in capillary

electrophoresis.

Digestion with rLiEndoG mostly generated fluorescent low-

molecular-weight ss- DNA fragments, being the major peak the

one closest to the y axis (Figure 2B). This accumulation of small

DNA fragments is not caused by extensive digestion because the

conditions of the reaction were adjusted to allow the detection of a

major peak of undigested DNA (500 bases). By contrast, the peak

pattern observed after digestion with DNase I is much more

dispersed along the x axis and the smallest fragments are not the

most abundant (Figure 2C). Taken these results together, the

nicking activity of rLiEndoG appears to be preferentially directed

against the 59 end of DNA.

LiEndoG has a pro-life role
EndoGs from other lower eukaryotes have been reported to

play a dual role in both cell death and survival [9]. A gene

replacement strategy was followed to determine whether LiEndoG

is also involved in pro-life roles in Leishmania. All attempts to delete

both LiEndoG alleles were unsuccessful but parasites remained

viable after single allele replacement (LiEndoG2/+). The results

shown in Figure 3 indicate that LiEndoG expression is highly

reduced in the LiEndoG2/+ promastigotes (Figure 3A). Growth of

these parasites was analyzed by counting the number of cells for 6

consecutive days. Parasites were kept in the logarithmic growth

phase by daily dilutions (Figure 3B). Since the y axis represents the

log2 of the number of parasites an increase of one unit denotes one

round of division of the entire population. Results for two different

randomly selected LiEndoG2/+ clones (SKOendoG(2) and SKOen-

doG(6)) are shown. LiEndoG2/+ promastigotes grow at a much

lower rate than do their wild-type counterparts under optimal

growth conditions. In fact, a difference of 9 log2 units between

clone 6 and the wild-type parasites is apparent after 6 days of

culture. Variations in the growth rates of clones 2 and 6 seem to

correlate with differences observed in the residual levels of

expression of LiEndoG. Thus, the disadvantage of the parasites

harboring reduced levels of LiEndoG is consistent with a pro-life

role for this protein.

LiEndoG-deficient parasites were also tested for their ability to

grow inside infected macrophages. Clones 2, 6 and wild-type

parasites were transfected with a plasmid containing the sequence

coding for eGFP. After incubation with nourseothricin and

selection of two random clones (SKO-GFP-2.1 and SKO-GFP-

6.1), the fluorescent parasites were incubated with differentiated

THP-1 cells and both the infection rates and the mean fluorescent

values of the infected cells were evaluated by flow cytometry. The

number of infected macrophages is significantly reduced when

incubating with SKO-GFP-2.1 and SKO-GFP-6.1 clones

(Figure 4B). Moreover, the parasite load inside the infected

THP-1 cells is also strongly decreased as indicated by the much

lower mean fluorescence intensities of the infected cells (Figure 4C).

Accordingly, LiEndoG-deficient parasites also have growth defects

during macrophage infection, confirming the pro-survival function

of this protein in amastigotes.

Because of the mitochondrial location of this protein, we also

evaluated any possible disturbances in the morphology of this

organelle in the LiEndoG2/+ clones but no significant differences

could be observed. However, the LiEndoG-deficient parasites

show increased Mitotracker-derived fluorescence intensities when

compared with WT ones (Figure 4D), which demonstrates an

increased mitochondrial transmembrane potential (Dym) in the

LiEndoG2/+ clones. This constitutes an unexpected result as

LiEndoG deficiency is expected to impair the mitochondrial

function. However, it has already been demonstrated that DNA

damages in the mitochondrial DNA of Leishmania parasites cause

an increase in their Dym [19].

We have recently identified several molecules able to reduce the

activity of LiEndoG in vitro [10]. Among them, Lei49 behaves as

one of the best inhibitors (Figure 5) and also as one of the

compounds with better cytotoxic activity against L. infantum

promastigotes (IC50 = 4.3360.05 mM) and amastigotes

Figure 3. LiEndoG single allele replacement reduces L. infantum promastigotes growth rate. A) Immuno-blot using the monoclonal
antibody a-rLiEndoG against cellular extracts from wild-type (WT) promastigotes and from two clones of L. infantum promastigotes with a single copy
of the LiEndoG gene: SKOendoG(2) and SKOendoG(6). A Polyclonal a-Hsp70 (1:5000) antibody was used as a loading control. B) Logarithmic growth
curve for WT, SKOendoG(2) and SKOendoG(6) promastigotes. The curve is expressed as the log2 parasite number per mL. Error bars represent standard
deviations; results are representative of three independent experiments.
doi:10.1371/journal.pone.0089526.g003

LiEndoG Is Essential for Parasite Survival

PLOS ONE | www.plosone.org 5 February 2014 | Volume 9 | Issue 2 | e89526



Figure 4. LiEndoG single allele replacement impairs macrophage infection, reduces intracellular survival and increases
mitochondrial transmembrane potential. A) Immuno-blot using the monoclonal antibody a-rLiEndoG against cellular extracts from GFP-
expressing parasites. GFP: wild-type promastigotes. SKO-GFP-2.1 and SKO-GFP-6.1: Two independent GFP-expressing LiEndoG2/+ promastigote
clones. A Polyclonal a-Hsp70 (1:5000) antibody was used as a loading control. B) and C). Intracellular infections. PMA-differentiated THP-1 cells were
infected with promastigotes expressing the green-fluorescent protein (eGFP). B). Percentages of infection were evaluated by counting the number of
green-fluorescent PMA-differentiated THP-1 cells by flow cytometry. C) Parasite load was determined based on the mean fluorescence intensity

LiEndoG Is Essential for Parasite Survival
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(IC50 = 6.4460.01 mM). To demonstrate that LiEndoG activity is

essential for parasite survival, Lei49-induced death rates were

analyzed in control parasites transfected with an empty vector and

in parasites overexpressing LiEndoG (Figure 6A). Parasite viability

upon treatment with increasing concentrations of Lei49 or

edelfosine was measured based on the percentage of propidium

iodide (PI) negative cells. The results presented in Figure 6B

demonstrate that parasites overexpressing this enzyme are

significantly protected against cell death caused by moderate

concentrations of Lei49 but, as expected, increasing concentra-

tions of the compound abolish the protective effect of overexpres-

sion. By contrast, as previously described [3], the same parasites

are more susceptible to edelfosine-induced cell death (Figure 6C),

probably as a consequence of increased activity of the pro-

apoptotic molecular machinery. As shown in Figure 6D the

overexpressed protein, similarly to the endogenous one, is

correctly targeted to the mitochondrion. These results support

the relevance of LiEndoG for parasite survival in addition to its

better known pro-death role.

Discussion

We show that LiEndoG is an endo-exonuclease that is able to

generate single-strand breaks in circular supercoiled DNA whereas

it has a preferential 59 exonuclease activity over linear DNA.

Previous findings from us and from other groups have already

demonstrated that this nuclease activity is relevant during the

apoptotic cell death process of the parasites [3,20,21]. The results

presented herein demonstrate that this enzyme is also essential for

survival. Firstly, we show that parasites which, as a consequence of

single allele replacement, contain reduced levels of LiEndoG

protein grow at much lower rates than do their wild-type

counterparts. Secondly, we demonstrate that these LiEndoG-

deficient parasites are much less infectious for macrophages.

Thirdly, we prove that the cytotoxic activity of the LiEndoG

inhibitor Lei49 is significantly reduced when the protein is

overexpressed in the parasites. Our results agree with those

reported by Buttner et al. who showed that deletion of Nuc1p

reduces yeast growth rates, an effect attributed to its possible role

in mtDNA recombination [9]. Indeed, orthologs of EndoG in S.

cerevisiae and in Neurospora initiate homologous recombination by

generating single-stranded regions in the chromosomes by means

of their 59 exonuclease activity [22,23]. The 59 exonuclease

activity described for LiEndoG in this article could be considered

as an indication of its possible involvement in recombination and

repair of mitochondrial DNA, even though more work will be

necessary to prove this point. Taken together, our results strongly

indicate that LiEndoG does indeed play a dual pro-life and pro-

death role in L. infantum similar to that described for the EndoG

orthologs in yeast and C. elegans. Moreover, the involvement of

LiEndoG in the survival of these parasites makes this protein a

potential target against which new leishmanicidal drugs could be

developed.

(arbitrary units; AU) of the infected THP-1 cells. D). Analysis of mitochondrial membrane potential based on the relative fluorescence due to
Mitotracker Red CMXRos. Error bars symbolize standard deviations; results are representative of three independent experiments. The mean value of
the clones differ from that of WT with p values ,1023(*), ,1024(**), ,1025(***).
doi:10.1371/journal.pone.0089526.g004

Figure 5. Inhibition of the nuclease activity of LiEndoG by Lei49. LiEndoG activity was assayed by the cleavage of a dually labeled double-
stranded probe. DNA degradation is followed by the increase in fluorescence observed over 40 min of probe digestion in the presence of increasing
amounts of Lei49.
doi:10.1371/journal.pone.0089526.g005
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