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Developments of new classes of efficient compression algorithms, software systems, and hardware for data intensive applications
in today’s digital health care systems provide timely and meaningful solutions in response to exponentially growing patient
information data complexity and associated analysis requirements. Of the different 1D medical signals, electroencephalography
(EEG) data is of great importance to the neurologist for detecting brain-related disorders. The volume of digitized EEG data
generated and preserved for future reference exceeds the capacity of recent developments in digital storage and communication
media and hence there is a need for an efficient compression system. This paper presents a new and efficient high performance
lossless EEG compression using wavelet transform and neural network predictors. The coefficients generated from the EEG signal
by integer wavelet transform are used to train the neural network predictors. The error residues are further encoded using a
combinational entropy encoder, Lempel-Ziv-arithmetic encoder. Also a new context-based error modeling is also investigated
to improve the compression efficiency. A compression ratio of 2.99 (with compression efficiency of 67%) is achieved with the
proposed scheme with less encoding time thereby providing diagnostic reliability for lossless transmission as well as recovery of
EEG signals for telemedicine applications.

1. Introduction

Medical signal processing is a fast growing field of research
that is producing increasingly sophisticated applications in
today’s high-tech medicine [1–8]. In the field of neurology,
EEG, the manifestation of brain’s electrical activity as scalp
potentials, remains as one of the commonly used noninvasive
techniques for understanding brain functions in health and
disease. Since its discovery by Berger [9], many research
activities have centered on how to automatically extract
useful information about the brain’s conditions based on
the distinct characteristics of EEG signals. Many applications
require acquisition, storage, and automatic processing of
EEG during an extended period of time [4, 10–20]. For
example, 24 h monitoring of a multiple-channel EEG is
needed for epilepsy patients. The frequency range of a
normal adult EEG lies between 0.1–100 Hz; thus, a minimum
sampling rate of 200 Hz is needed. At the quantization
level of 16 bit/sample, a 10-channel EEG for a 24 h period

would require storage space of 346 Mb. Furthermore in order
to diagnose the disease and to assess the effectiveness of
the treatment via the brain functions, the analysis process
normally takes a very long period of time. Since every
sample of EEG signal is important and cannot be neglected
without consultation of experts, legal storage of long-term
EEG signals has to be done without any loss.

The compression of Electroencephalographic (EEG) sig-
nal is of great interest to many in the biomedical community
[4, 10–20]. The motivation for this is the large amount of
data involved in collecting EEG information which requires
more memory for storage and high bandwidth for trans-
mission. Lossless compression of EEG is essential due to
the necessity for exact recovery of the data for diagnostic
purposes [10]. Efficient compression of the EEG signal is
a difficult task due to the randomness inherent in the
signal. This makes it difficult to obtain high compression
rates with lossless compression methods [10]. An excellent
review of compression techniques applied to EEG signals
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has been reported in [10]. Two-stage lossless compression
schemes involving predictors and entropy encoders have
been reported in [4, 10–14, 21–23]. In [4, 22], context-
based offset bias cancellation has been applied to the pre-
dictive error to improve the distribution of residues suitable
for encoding. Agarwal and Gotman [15] discussed EEG
compression schemes for intensive care applications. Yi et
al. [16] proposed an adaptive bit assignment algorithm to
compress the raw EEG signal. Sriraam and Eswaran proposed
an adaptive error modeling scheme which replaces the
encoder in the second stage [17] and it has been shown that
histogram-based region selection by heuristic search im-
proves the compression efficiency.

In [18] Wongsawat et al. applied the Karhunen-Loeve
transform (KLT) for lossless EEG compression. The effect of
uniform quantization on near-lossless compression of EEG
signals has been reported by the author [19]. Gopikrishna
and Makur discussed a near-lossless compression scheme
using wavelets and ARX model [20]. Lossy compression
based on genetic algorithm, wavelet-packets, and neural
network and linear predictors have been reported [21–
23]. Recent works reported based on pursuit approach
with wavelet dictionaries, wavelet-SPIHT, and finite rate
of innovation technique exploiting sampling theory have
shown some improvement in the compression performance
[24–26]. It has been observed from the existing literature
that even though several compression techniques have been
reported, the search for new methods continues to achieve
higher compression efficiency, while preserving the point-
to-point diagnostic information in the reconstructed signal.
This paper highlights a high performance lossless EEG
compression using wavelet transform and neural network
predictors. Even though the combinations of wavelet and
neural network have been reported for compression prob-
lems [27–29], it has not been extensively applied for 1D
biomedical signals. Figure 1 shows the proposed lossless EEG
compression scheme.

The coefficients generated by integer wavelet transform
are used to train the neural network predictors. The error
residues obtained as the difference between the actual and
the predicted wavelet coefficient are further encoded using
a combinational entropy encoder, Lempel-Ziv-arithmetic
encoder (LZARIC). The “nsi” carries the initial setting
information such as predictor order, weights, and so forth to
set up the counterpart network at the receiving end. Lossless
compression is assured due to the fact that the decoded error
signal with the predicted signal recovers the original signal
without losing any diagnostic information. Three neural
network models, namely, single-layer perceptron (SLP),
multilayer perceptron (MLP), and Elman network (EN) are
used as predictors [13, 14, 21–23] and the performance are
compared with adaptive linear predictors such as normalized
least mean-square FIR and AR model [4, 30, 31]. EEG
signals recorded under different physiological conditions are
considered.

Two training schemes, namely, single block (SB) and
block adaptive (BA) training schemes are used for training
the neural network predictors [30, 32] and the performance
of the proposed lossless scheme is evaluated in terms of bits

per sample (BPS) and compression ratio (CR). In order to
improve the compression efficiency without losing any inher-
ent information, an improved context-based error mod-
eling is also investigated. This paper is organized as follows.
Section 2 presents a brief introduction to preprocessing using
wavelets transform and the neural network-based prediction.
Section 3 discusses the improved context-based error mod-
eling. The proposed high performance computing algorithm
is tested using EEG signals recorded under different physi-
ological conditions, its compression results, computational
complexity and compression with other coding scheme in
the literature are presented in Section 4. Finally Section 5
provides the concluding remarks of the paper.

2. Preprocessing and Predcition

2.1. Wavelet-Based Preprocessing. Compression techniques
based on the wavelet decomposition of the 1D and 2D digital
signals have received much attention due to its excellent
energy compaction capabilities [3, 17, 19, 33–38] as well as
its ability to locate the short-time high frequency features of
a signal and at the same time ability to resolve low-frequency
behavior [38]. The wavelet lifting transform proposed by
Sweldens [39] which allows fast, efficient, and in place
calculation of the wavelet coefficients provides the feasibility
to reconstruct the integer wavelets thereby satisfying the
lossless criterion [37, 39]. Figure 2 shows the forward and
inverse wavelet lifting transform [27, 37, 39]. The detail
operation of the lifting approach of wavelet transform are
reported in [37, 39].

2.2. Neural Network Predictors. Lossless compression using
neural network predictors is achieved, when it simulates
identical prediction processes [13, 14, 21–23, 32, 40]. The
characteristics of neural networks such as massive paral-
lel structure, high degree of interconnection, capabilities
of high-speed computation, nonlinear mapping, and self-
organization makes it best candidate for prediction and
compression problems [40]. In this work, three neural
network models, single-layer and multilayer perceptrons, a
feedforward model, and Elman network feedback model are
considered [13, 14, 21–23]. The SLP network consists of
only an input layer and an output layer with no hidden
layer. All input nodes or neurons including the bias nodes
are connected to all output nodes. The MLP consists of a
number of interconnected layers of independent neurons
where the outputs of one layer form the inputs to next layer.
MLP consists of three layers, namely, the input layer, the
hidden layer, and the output layer. Elman networks (ENs) are
two-layer backpropagation networks, with the addition of a
feedback connection from the outputs of the hidden layer
to its input [23, 41]. The feedback allows Elman networks
to learn to recognize and generate temporal patterns as
well as spatial patterns [23, 41]. The Elman network
differs from conventional two-layer network in that the first
layer has a recurrent connection [23, 41]. The delay in
this connection stores values from the previous time step,
which can be used in the current time step. In order to
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Figure 1: Proposed lossless compression scheme.

Split P U

+

−

Analysis

xn

Sn−1

dn−1

(a)

MergePU

+

−

Synthesis

xn

Sn−1

dn−1

(b)

Figure 2: Forward and inverse lifting scheme.

compare the performance of neural network predictors, two
linear predictors, namely, autoregressive model (AR) [4]
and normalized least-mean square adaptive finite impulse
response filter (FIR) [30, 31] are considered. The predicted
sample, x̂n related to the current wavelet coefficient sample
xn is shown in

x̂n = f

⎛⎝ p∑
i=1

(xn–1wi)

⎞⎠, (1)

where w stands for the set of all the connection weights, “p”
is the order of the predictor.

Using the criterion of minimizing the mean squared error
E[e2(n)] as given in (2), one can calculate the error between
the actual and target samples:

min
w

E
[
e2(n)

] = min
w

E
[

(x(n)− x̂(n))2
]
. (2)

3. Improved Context-Based Error Modeling

Context-based error modeling has gained much research
importance in improving the performance of compression
algorithms [4, 22, 42, 43]. It is known that most state-of-the-
art lossless coding techniques comprise prediction, context
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modeling of prediction error followed by entropy encoding
[42]. The prediction error sequence is a composition of
multiple sources of varying statistics of distributed different
means. Context modeling of prediction error is a means to
separate these distributions thereby adjusting the offset to
yield zero Laplacian distribution. Such scheme is referred
to as context-based bias cancellation [4, 22, 42, 43] and
has been applied to EEG signals using linear predictors [4]
and neural network predictors [22]. In [4, 22] contexts were
framed by computing the difference between the adjacent
two samples. An improved context calculation is introduced
in this work, where the context for each sample is computed
by determining the difference between the past sample and
next sample as shown in (3). In this way, entropy coding
efficiency increases marginally

di = xk+i − xk−i, 1 ≤ i ≤ m, (3)

where “m” is any integer value.
The signal pattern is well exploited through the forma-

tion of contexts that help in better distribution of prediction
errors [22, 23, 42, 43]. The application of appropriate
encoder further decrease the bits required for transmitting
the signal. In order to reduce the number of contexts,
quantization of the di values can be performed [42, 43]. A
simple quantization is to obtain a two-level value based on
certain threshold as shown in

Q(di) =
{

0, di < 0

1, di ≥ 0
(4)

4. Expermental Evaluation and Results

4.1. EEG Datasets. For experimental study, recordings of
EEG grabbed from extracranial and intracranial electrodes
obtained from the host site of Epileptology Department,
University of Bonn are used [44]. Data sets 1 and 2 (DS1
and DS2) are obtained from healthy volunteers in, an
awaken state with eyes open (DS1) and eyes closed (DS2),
respectively which are recorded using surface electrodes [23,
33]. Data set (DS3) is extracted from hippocampal formation
of the opposite hemisphere of the brain and Data set 4 (DS4)
is recorded from within the epileptic zone [44]. DS3 and DS4
contained activity measured during seizure-free intervals.
Data set 5 (DS5) contains recordings exhibiting ictal seizure
activity. DS3–DS5 is recorded using intracranial electrodes
[44]. A total of 15-minute recordings of EEG are considered.
DS1–DS5 is represented with 12 bit accuracy with a sampling
rate of 173.61 Hz [44]. Figure 3 shows the sample recordings
of EEGs with 180 s samples.

4.2. Performance Evaluation. The compression performance
of neural network predictor is evaluated in terms of the
compression ratio (CR) which is defined as follows:

(CR) = vn

pn + w j + rk
, (5)

where v: total number of samples in test file, n: total number
of bits used to represent a original sample, p: order of

the predictor, w: number of bits to represent the wavelet
coefficient, j: number of bits to represent a weight, r: total
number of error residue samples, k: number of bits to
represent the entropy encoded sample.

Two schemes, namely, single-block (SB) and block-
adaptive (BA) schemes are used [45, 46] to process the
input EEG signal. In SB scheme, the entire EEG signals
are considered as a single fixed block. In BA scheme, EEG
signals are divided into block size of 90 s samples. For
preprocessing, 5/3 biorthogonal wavelet transform with four
decomposition levels is used [27]. The wavelet coefficients
are then used to train the neural network predictors. Before
training the feedforward network, the weights are initialized
using Nyuyen-Widrow algorithm [13, 41]. The order of the
predictors (number of input neurons) chosen are 2, 5, 10,
and 20, respectively. For the output layer, different activation
function is used and the optimal function is identified. For
MLP, several backpropogation learning rules are investigated
and the optimal rule is identified [41]. The appropriate
activation function for the hidden layer and output layer
are also determined. The numbers of hidden neurons used
for MLP are 1, 3, 8, and 12 with predictor orders 2, 5, 10,
and 20, respectively. When EN is created, each layer’s weight
is initialized with the Nguyen-Widrow layer initialization
[41]. For EN, several backpropogation learning rules are
investigated and the optimal rule is identified [41]. The
appropriate activation function for the hidden layer and
output layer is also determined. The number of hidden
neurons used for EN are 1, 5, 8, and 16 with predictor orders
2, 5, 10, and 20, respectively, are used. Levenberg-Marquart
backpropagation learning algorithm is used for SLP and MLP
and gradient descent with momentum and adaptive learning
rate backpropagation algorithm is used for EN [17, 19].

For linear prediction, a fifth-order autoregressive (AR)
model [4, 19, 23] and a fifth-order FIR [12, 19, 30, 31] are
used. In order to estimate the AR parameters, Levinson-
Durbin’s method as reported in [4] is used. For improved
context-based bias cancellation, number of contexts used
are 4, 8, 16, 32, and 256, respectively, and compression
performance is evaluated. Then the improved error residues
obtained after error modeling are further encoded using
combinational encoder, LZARIC. The reason for choosing
this encoder is due to its ability to provide high compression
efficiency compared to other entropy encoders [23, 47].
Figures 4(a) and 4(b) show the BPS value obtained using
different predictors by varying the prediction order for the SB
and BA schemes, respectively, with 32 contexts. The average
values obtained using all the datasets, DS1–DS5, are only
given.

It can be seen from Figures 4(a) and 4(b) that BA scheme
requires less number of bits compared to SB scheme. Among
the different predictors used, SLP yields the best compression
results. The compression performances are also evaluated
with different contexts and prediction order combinations
for SLP and Figure 5 depicts the results.

It can be observed from Figure 5 that increase in context
index until 5 decreases the value of BPS. Further increase
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Figure 3: Sample recordings of DS1–DS5.
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Figure 4: (a) Values of BPS obtained for SB scheme and (b) Values of BPS obtained for BA scheme.

Table 1: Comparison of compression results.

Vector
quantization
with collapsed
Huffman tree
[1]

RLSL filters/
High pass filter
with arithmetic

coding [2]

Dynamical
neural network
with arithmetic

coding [3]

Linear predictor
(AR) with error
modeling and

Huffman coding
[8]

SLP predictor
with error

modeling and
arithmetic

coding [22]

KLT transform
[18]

Wavelet-SPIHT
[26]

Proposed
scheme

2.63 1.61 2.08 2.50 2.72 2.84 2.046 2.99
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in m = 5 does not yield significant improvement in BPS
value. The performances of the proposed lossless scheme are
evaluated in terms of CR with the following schemes:

(i) without applying bias cancellation (WBC),

(ii) with bias cancellation (BC) [22],

(iii) with improved bias cancellation (IBC).

Figure 6 shows the value of CR obtained using SLP
predictor with the above schemes followed by LZARIC
encoder.

From Figure 6, it can be seen that the application of
improved bias cancellation improves the compression per-
formance with an average CR value of 0.14.
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Figure 7: (a) Relative performances of the proposed compression
scheme without error modeling. (b) Relative performances of the
proposed compression scheme with error modeling.

4.3. Computational Complexity. The complexity of the com-
pression system is the computational effort need for encod-
ing and decoding the EEG signal. The total processing time
required per sample either at the transmission end (encoder)
or at the receiving end (decoder) is based on the sum of
the contribution relative to the individual block shown in
Figure 1. Figures 7(a) and 7(b) show the relative performance
of our proposed compression scheme in terms of processing
time calculated (PT) in seconds, CR, and computational
efficiency (CE) [17, 23]. The computational efficiency (CE)
as defined in [17] is given by

CE = CR
Processing time

. (6)

It can be observed from Figures 7(a) and 7(b) that the
fifth-order prediction yields the optimal results in terms
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of achieving best computational efficiency. Further the
incorporation of error modeling does not degrade the
CE value. The compression performance of the proposed
scheme is compared with other known schemes reported in
the literature [4, 10–12, 14, 18, 22]. Since there is no standard
benchmark EEG data were available, an exact comparison
cannot be performed.

Table 1 shows the values of CR obtained using the lossless
schemes reported earlier as well as the proposed lossless
scheme discussed in this work.

It can be noticed that our proposed scheme yields
good compression results with compression efficiency [19]
of 67% compared to the results reported earlier. Further
from Figure 7, it can be seen that our scheme requires less
encoding time which indicates its potential suitability for
real-time transmission. Further the proposed scheme found
to be better than the schemes reported recently [24–26].

5. Concluding Remarks

A high performance lossless compression has been discussed
for EEG signals. The scheme involves preprocessing using
integer wavelet transform, prediction using neural network
predictors followed by adjusting the offset of the prediction
residue through improved context-based bias cancellation.
A Lempel-Ziv-arithmetic combinational encoder has been
used to further encode the residues obtained from wavelet
coefficients. EEG signals recorded under different physiolog-
ical conditions have been used and data are segmented into
single block and block adaptive for further training. Three
neural network models, namely, single-layer perceptron,
multilayer perceptron and Elman network have been used
as predictors and the performance were compared with
adaptive linear predictors such as normalized least mean-
square FIR and AR model. The performances of the proposed
scheme were evaluated in terms of bits per sample (BPS).
It has been found from the experimental results that the
application of wavelets and improved context error modeling
improves the compression efficiency. The adaptive error
modeling scheme as reported in [17] can very well replace
the combinational encoder discussed in this work to further
improve the compression efficiency.
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