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Energy-temperature uncertainty relation in
quantum thermodynamics
H.J.D. Miller1 & J. Anders1

It is known that temperature estimates of macroscopic systems in equilibrium are most

precise when their energy fluctuations are large. However, for nanoscale systems deviations

from standard thermodynamics arise due to their interactions with the environment. Here we

include such interactions and, using quantum estimation theory, derive a generalised ther-

modynamic uncertainty relation valid for classical and quantum systems at all coupling

strengths. We show that the non-commutativity between the system’s state and its effective

energy operator gives rise to quantum fluctuations that increase the temperature uncertainty.

Surprisingly, these additional fluctuations are described by the average Wigner-Yanase-

Dyson skew information. We demonstrate that the temperature’s signal-to-noise ratio is

constrained by the heat capacity plus a dissipative term arising from the non-negligible

interactions. These findings shed light on the interplay between classical and non-classical

fluctuations in quantum thermodynamics and will inform the design of optimal nanoscale

thermometers.
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Bohr suggested that there should exist a form of com-
plementarity between temperature and energy in thermo-
dynamics similar to that of position and momentum in

quantum theory1. His reasoning was that in order to assign a
definite temperature T to a system it must be brought in contact
with a thermal reservoir, in which case the energy U of the system
fluctuates due to exchanges with the reservoir. On the other hand,
to assign a sharp energy to the system it must be isolated from the
reservoir, rendering the system’s temperature T uncertain. Based
on this heuristic argument Bohr conjectured the thermodynamic
uncertainty relation:

Δβ � 1
ΔU

; ð1Þ

with β= (kBT)−1 the inverse temperature. While Eq. (1) has since
been derived in various settings2–9, it was Mandelbrot who first
based the concept of fluctuating temperature on the theory of
statistical inference. Concretely, for a thermal system in canonical
equilibrium, Δβ can be interpreted as the standard deviation
associated with estimates of the parameter β. Mandelbrot proved
that Eq. (1) sets the ultimate limit on simultaneous estimates of
energy and temperature in classical statistical physics2.

The notion of fluctuating temperature has proved to be fun-
damental in the emerging field of quantum thermometry, where
advances in nanotechnology now allow temperature sensing at
sub-micron scales10–22. Using the tools of quantum metrology23,
the relation Eq. (1) can also be derived for weakly coupled
quantum systems11,12,14, where the equilibrium state is best
described by the canonical ensemble. Within the grand-canonical
ensemble the impact of the indistinguishability of quantum par-
ticles on the estimation of temperature and the chemical potential
has also been explored24. Relation Eq. (1) informs us that when
designing an accurate quantum thermometer one should search
for systems with Hamiltonians that produce a large energy
variance14.

Recently there has been an emerging interest into the effects of
strong coupling on temperature estimation13,15,25. At the
nanoscale the strength of interactions between the system and the
reservoir may become non-negligible, and the local equilibrium
state of the system will not be of Gibbs form26,27. In this regime
thermodynamics needs to be adapted as the equilibrium prop-
erties of the system must now depend on the interaction
energy28–40. We will see that the internal energy U and its fluc-
tuations ΔU are determined by a modified internal energy
operator, denoted by Ê�

S , that differs from the bare Hamiltonian
of the system35,39. This modification brings into question the
validity of Eq. (1) for general classical and quantum systems, and
the aim of this paper is to investigate the impact of strong cou-
pling on the thermodynamic uncertainty relation.

Taking into account quantum properties of the effective
internal energy operator and its temperature dependence, we here
derive the general thermodynamic uncertainty principle valid at
all coupling strengths. Formally this result follows from a general
upper bound on the quantum Fisher information (QFI) for
exponential states. We prove that quantum fluctuations arising
from coherences between energy states of the system lead to
increased fluctuations in the underlying temperature. Most
interestingly, the non-classical modifications to Eq. (1) are
quantified by the average Wigner-Yanase-Dyson (WYD) skew
information41–44, which is a quantity closely linked to measures
of coherence, asymmetry and quantum speed limits45,46. We then
demonstrate that the skew information is also linked to the heat
capacity of the system through a modified fluctuation-dissipation
relation (FDR). This result is used to find an upper bound on the
achievable signal-to-noise ratio of an unbiased temperature

estimate, and we illustrate our bound with an example of a
damped harmonic oscillator.

Results
The Wigner-Yanase-Dyson skew information. Our analysis
throughout the paper will rely on distinguishing between classical
and non-classical fluctuations of observables in quantum
mechanics, and we first present a framework for quantifying these
different forms of statistical uncertainty for arbitrary mixed states.

Let us consider a quantum state ρ̂ and an observable Â. Wigner
and Yanase considered the problem of quantifying the quantum
uncertainty in observable Â for the case where ρ̂ is mixed41.
However, they observed that the standard measure of uncertainty,
namely the variance Var½ρ̂; Â� := tr½ρ̂ δÂ2� with δÂ= Â� Â

� �
,

contains classical contributions due to mixing, and thus fails to
fully quantify the non-classical fluctuations in the observable Â.
This problem can be resolved by finding a quantum measure of
uncertainty Q½ρ̂; Â� and classical measure K½ρ̂; Â� such that the
variance can be partitioned according to

Var½ρ̂; Â� ¼ Q½ρ̂; Â� þ K½ρ̂; Â�: ð2Þ

Following the framework introduced by Luo47, these functions
are required to fulfil three conditions: (i) both terms should be
non-negative, Q½ρ̂; Â� � 0 and K½ρ̂; Â� � 0, so that they can be
interpreted as forms of statistical uncertainty, (ii) if the state ρ̂ is
pure, then Q½ρ̂; Â�=Var½ρ̂; Â� while K½ρ̂; Â� ¼ 0 as all uncertainty
should be associated to quantum fluctuations alone, (iii) Q½ρ̂; Â�
must be convex with respect to ρ̂, so that it decreases under
classical mixing. Correspondingly, K½ρ̂; Â� must be concave with
respect to ρ̂.

The following function, known as the WYD skew informa-
tion41 was shown to be a valid measure of quantum uncertainty:

Qa½ρ̂; Â� :¼ � 1
2
tr½½Â; ρ̂a�½Â; ρ̂1�a��; a 2 ð0; 1Þ; ð3Þ

with the complementary classical uncertainty given by

Ka½ρ̂; Â� :¼ tr½ρ̂a δÂ ρ̂1�aδÂ�; a 2 ð0; 1Þ: ð4Þ

While conditions (i) and (ii) are easily verified, the convexity/
concavity of Qa½ρ̂; Â� and Ka½ρ̂; Â� respectively can be proven
using Lieb’s concavity theorem.

The presence of the parameter a demonstrates that there is no
unique way of separating the quantum and classical contributions
to the variance. We here follow the suggestion made in refs. 43,44

and average over the interval a∈ (0, 1) to define two new
quantities:

Q½ρ̂; Â� :¼
Z 1

0
da Qa½ρ̂; Â�; ð5Þ

K½ρ̂; Â� :¼
Z 1

0
da Ka½ρ̂; Â�: ð6Þ

It is not only the Qa½ρ̂; Â� and Ka½ρ̂; Â� that separate the
quantum and classical fluctuations of a quantum observable Â in
a state ρ̂ according to Eq. (2), but also the averaged Q½ρ̂; Â� and
K½ρ̂; Â�. This follows from the linearity of the integrals in Eqs. (5)
and (6) which also preserve the conditions (i)–(iii). Throughout
the remainder of the paper we will consider Q½ρ̂; Â� and K½ρ̂; Â� as
the relevant measures of quantum and classical uncertainty,
respectively. While this may appear to be an arbitrary choice, we
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will subsequently prove that the average skew information is
intimately connected to thermodynamics.

Bound on quantum Fisher information for exponential states.
We now prove that the average skew information is linked to the
quality of a parameter estimate for a quantum exponential state.
A quantum exponential state is of the form ρ̂θ = e�Âθ=Zθ where
Zθ ¼ tr½e�Âθ � and Âθ is a hermitian operator that is here assumed
to depend analytically on a smooth parameter θ. For any state of
full rank, an operator Âθ can be found such that the state can be
expressed in this form, i.e. all full rank states are exponential
states.

We first recall the standard setup for estimating the parameter
θ48. First one performs a POVM measurement M̂ðξÞ, whereR
dξ M̂ðξÞ ¼ Î and ξ denotes the outcomes of the measurement

which may be continuous or discrete. The probability of obtaining
a particular outcome is pðξjθÞ ¼ tr½M̂ðξÞρ̂θ�. The measurement
is repeated n times with outcomes {ξ1,ξ2,..ξn}, and one
constructs a function ~θ ¼ ~θðξ1; ξ2; ::ξnÞ that estimates the true
value of the parameter. We denote the average estimate by h~θi,
where ð::Þh i= R dξ1 ¼ dξn pðξ1jθÞ¼ pðξnjθÞð::Þ, and assume the
estimate is unbiased, i.e. h~θi ¼ θ. In this case the mean-squared
error in the estimate is equivalent to the variance, which is
denoted by Δθ2 ¼ h~θ2i � θ2.

The celebrated quantum Cramér-Rao inequality sets a lower
bound on Δθ, optimised over all possible POVMs and estimator
functions23,48–50:

Δθ � 1ffiffiffiffiffiffiffiffiffiffiffiffi
nFðθÞp ; ð7Þ

where F(θ) is the QFI. The bound becomes tight in the asymptotic
limit n →∞23. If the exponential state belongs to the so-called
‘exponential family’, which is true if Âθ ¼ θX̂ þ Ŷ for commuting
operators X̂; Ŷ , then the bound is also tight in the single-shot
limit (n= 1)50. The QFI with respect to θ is defined by
FðθÞ :¼ tr ρ̂θL̂

2
θ

� �
, where L̂θ is the symmetric logarithmic

derivative which uniquely satisfies the operator equation
∂θρ̂θ =

1
2 L̂θ; ρ̂θ
� �

49. Here {..,..} denotes the anti-commutator.
We now state a general upper bound on F(θ) valid for any

exponential state:
Theorem 1: For an exponential state ρ̂θ ¼ e�Âθ=Zθ the QFI with

respect to the parameter θ is bounded by

FðθÞ � K½ρ̂θ; B̂θ�: ð8Þ

Here K½ρ̂θ; B̂θ� is defined in Eq. (6), and B̂θ is the hermitian
observable B̂θ :¼ ∂θÂθ . The bound becomes tight in the limits
where ρ̂θ is maximally mixed.

This theorem demonstrates that the strictly classical fluctua-
tions in B̂θ constrain the achievable precision in estimates of θ.
The proof of the theorem is outlined in the ‘Methods’ section.

We note that for states σ̂θ that fulfil the von-Neumann
equation ∂θσ̂θ ¼ �i ½Âθ; σ̂θ� a connection between skew informa-
tion Q1=2½σ̂θ; Âθ� and parameter estimation has previously been
made by Luo51. While the particular dependence on θ implied by
this equation is relevant for unitary parameter estimation23, this
dependence will not be relevant for temperature estimation since
thermal states do not generally fulfil this von-Neumann equation.
In contrast, we will see in the next section that Theorem 1 has
implications for the achievable precision in determining
temperature.

Generalised thermodynamic uncertainty relation. We will now
use the results of the previous section to derive an uncertainty
relation between energy and temperature for a quantum system
strongly interacting with a reservoir. To achieve this we will first
discuss the appropriate energy operator for such a system, and
then proceed to generalise Eq. (1).

A quantum system S that interacts with a reservoir R is
described by a Hamiltonian

ĤS ∪R :¼ ĤS � ÎR þ ÎS � ĤR þ V̂S ∪R; ð9Þ

where ĤS and ĤR are the bare Hamiltonians of S and R
respectively, while V̂S ∪R is an interaction term of arbitrary
strength. We will consider situations where the environment is
large compared to the system, i.e. the operator norms fulfil
ĤR
		 		� ĤS

		 		; V̂S ∪R
		 		. We make no further assumptions

about the relative size of the coupling V̂S ∪R
		 		 between the

system and the environment, and the system’s bare energy ĤS
		 		.

The global equilibrium state at temperature T for the total
Hamiltonian S ∪R is of Gibbs form π̂S ∪RðTÞ= e�βĤS ∪R=ZS ∪R
where β= (kBT)−1 and ZS ∪R = trS ∪R e�βĤS ∪R

h i
is the partition

function for S ∪R. The Boltzmann constant kB will be set to
unity throughout.

Due to the presence of the interaction term the reduced state of
S, denoted π̂SðTÞ ¼ trR½π̂S ∪RðTÞ�, is generally not thermal with
respect to ĤS , unless the coupling is sufficiently weak, i.e.
ĤS
		 		� V̂S ∪R

		 		. Therefore the partition function determined
by ĤS can no longer be used to calculate the internal energy of
the system35. To resolve this issue one can rewrite the state of S
as an effective Gibbs state π̂SðTÞ := e�βĤ�

SðTÞ=Z�
S , where

Ĥ�
SðTÞ :¼ � 1

β
ln

trR e�βĤS ∪R
h i

trR e�βĤR
� �

0
@

1
A; ð10Þ

is the Hamiltonian of mean force28,30–37,39,40. The operator
Ĥ�

SðTÞ acts as a temperature-dependent effective Hamiltonian
describing the equilibrium properties of S through the effective

partition function Z�
S ¼ trS e�βĤ�

SðTÞ
h i

. The free energy associated

with Z�
S also appears in the open system fluctuation relations30,52.

The internal energy of S can be computed from this partition
function via USðTÞ :¼ �∂β lnZ�

S . It is straightforward to show
that USðTÞ is just the difference between the total energy,
US ∪R ¼ �∂β lnZS ∪R, and the energy of the reservoir, ~UR ¼
�∂β lnZR with ZR ¼ trR e�βĤR

h i
, in the absence of any coupling

to S, i.e. USðTÞ=US ∪RðTÞ � ~URðTÞ. In other words, USðTÞ is
the energy change induced from immersing the subsystem S into
the composite state S ∪R29,36.

Seifert has remarked35 that USðTÞ can be expressed as an
expectation value, USðTÞ= Ê�

SðTÞ
� �

, of the following observable:

Ê�
SðTÞ :¼ ∂β βĤ�

SðTÞ
� �

: ð11Þ

One can interpret Ê�
SðTÞ as the effective energy operator

describing the system, and we will refer to its eigenstates as “the
system energy states”. The introduction of this operator allows

one to consider fluctuations in the energy ΔUS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var π̂S ; Ê�

S
� �q

.

It is important to note that Ê�
SðTÞ depends explicitly on the

coupling V̂S ∪R and the temperature T.
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Our first observation is that, in general, Ê�
SðTÞ differs from

both the bare system Hamiltonian ĤS and the mean force
Hamiltonian Ĥ�

SðTÞ. Indeed, this effective energy operator for the
system contains the bare energy part as well as an energetic
contribution from the coupling, Ê�

SðTÞ=
ĤS þ ∂β β Ĥ�

SðTÞ � ĤS

 �� �

. Moreover, Ê�
SðTÞ does not even

commute with ĤS and Ĥ�
SðTÞ. This non-commutativity implies

that the state π̂SðTÞ exists in a superposition of energy states,
aside from the trivial situation in which ĤS þ ĤR; V̂S ∪R

� � ¼ 0.
As expected, in the limit of weak coupling Ê�

SðTÞ reduces to the
bare Hamiltonian ĤS .

We are now ready to state the generalised thermodynamic
uncertainty relations for strongly coupled quantum systems.
Following the approach taken by De Pasquale et al.13, we consider
the QFI FSðβÞ associated with the inverse temperature β.
According to the quantum Cramér-Rao bound this functional
quantifies the minimum extent to which the inverse temperature
fluctuates from the perspective of S, and we denote these
fluctuations by ΔβS . Given that the state of S takes the form

π̂SðTÞ :¼ e�βĤ�
SðTÞ=Z�

S we can immediately apply Theorem 1 by
identifying B̂θ ¼ Ê�

SðTÞ with θ= β, leading to
FSðβÞ � K π̂S; Ê

�
S

� �
. Applying Eq. (7) for the single-shot case

(n= 1) and using the fact that K π̂S; Ê
�
S

� �
= ΔU2

S � Q π̂S ; Ê
�
S

� �
, we

obtain the following thermodynamic uncertainty relation:

ΔβS � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔU2

S � Q π̂S; Ê�
S

� �q � 1
ΔUS

: ð12Þ

This is the main result of the paper and represents the strong-
coupling generalisation of Eq. (1). It can be seen that the bound
on the uncertainty in the inverse temperature is increased
whenever quantum energy fluctuations are present. These
additional fluctuations are quantified by the non-negative
Q π̂S ; Ê

�
S

� �
, increasing which implies a larger lower bound on

ΔβS . One recovers the usual uncertainty relation when Q π̂S ; Ê
�
S

� �
can be neglected, which is the case when the interaction
commutes with the bare Hamiltonians of S and R or when the
interaction is sufficiently weak. We note that Q π̂S; Ê

�
S

� �
vanishes

for classical systems and Eq. (12) reduces to the original
uncertainty relation Eq. (1), but with energy fluctuations
quantified by Ê�

S instead of the bare Hamiltonian ĤS .
If one repeats the experiment n times, then the uncertainty in

the estimate can be improved by a factor of 1=
ffiffiffi
n

p 48. We remark
that in the weak coupling limit, where Ĥ�

SðTÞ ’ ĤS , the state of S
belongs to the exponential family, and hence the bound on ΔβS
becomes tight for a single measurement in agreement with Eq.
(1). However, when V̂S ∪R is non-negligible the Hamiltonian of
mean force cannot generally be expressed in the linear form
βĤ�

SðTÞ= βX̂S þ ŶS . This means in general it is necessary to take
the asymptotic limit in order to saturate Eq. (12).

Fluctuation-Dissipation relation beyond weak-coupling. We
now detail the impact of strong interactions on the heat capacity
of the quantum system and the implications for the precision of
temperature measurements. For a fixed volume of the system, the
heat capacity is defined as the temperature derivative of the
internal energy USðTÞ31,32, i.e.

CSðTÞ :¼
∂US
∂T

: ð13Þ

In standard thermodynamics where the system is described by
a Gibbs state the FDR states that the heat capacity is proportional
to the fluctuations in energy, i.e. CSðTÞ ¼ ΔU2

S=T
2. However,

example studies of open quantum systems of the form Eq. (9)
have shown that the heat capacity can become negative at low
temperatures31,32,53,54, thus implying it cannot be proportional to
a positive variance in general.

Our second result indeed shows that there are two additional
contributions to the FDR due to strong-coupling (see ‘Methods’
section):

CSðTÞ ¼
ΔU2

S
T2

� Q π̂S; Ê
�
S

� �
T2

þ ∂TÊ
�
S

� �
; ð14Þ

implying that CSðTÞ can be less than ΔU2
S=T

2 and even negative.
We see that the first correction is due to the quantum fluctuations
in energy given by the average WYD information Q π̂S ; Ê

�
S

� �
,

which only vanishes in the classical limit where
Ê�
SðTÞ; π̂SðTÞ

� � ¼ 0. The second correction is a dissipation term
stemming from the temperature dependence of the internal
energy operator Eq. (11). Notably this term can still be present in
the classical limit where the energy operator may depend on
temperature if the coupling is non-negligible. As expected both
terms can be dropped in the limit of vanishing coupling and the
standard FDR is recovered.

Bound on signal-to-noise ratio for temperature estimates. Let
us denote the uncertainty in the temperature from a given
unbiased estimation scheme by ΔTS , with measurements per-
formed on S alone. It is known11,12,14,55 that in the weak-
coupling limit, the optimal signal-to-noise ratio for estimating T
from a single measurement is bounded by CSðTÞ:

T
ΔTS

� 
2

� CSðTÞ: ð15Þ

This bound is tight for a single measurement of T and implies
that precise measurements of the temperature require a large heat
capacity. The result follows straightforwardly from the quantum
Cramér-Rao inequality and the standard FDR.

Using our modified FDR Eq. (14), we here give the strong-
coupling generalisation of the bound Eq. (15). Considering
estimates of T rather than the inverse temperature β, a simple
change of variables reveals that the QFI with respect to T is
related to that of β, FSðβÞ ¼ T4FSðTÞ. From Theorem 1 we again
have T4FSðTÞ � K π̂S; Ê

�
S

� �
, and combining this with Eqs. (14)

and (7) we obtain:

T
ΔTS

� 
2

� CSðTÞ � ∂TÊ
�
S

� �
: ð16Þ

This is our third result and demonstrates that the optimal
signal-to-noise ratio for estimating the temperature of S is
bounded by both the heat capacity and the added dissipation
term, which can be both positive or negative. This bound is
independently tight in both the high temperature and weak-
coupling limits. In these regimes the POVM saturating Eq. (16) is
given by the maximum-likelihood estimator measured in the
basis of the relevant symmetric logarithmic derivative48. We
stress that Eq. (16) is valid in the classical limit, in which case it is
always tight. We remark that the RHS of Eq. (16) can alternatively
be expressed in terms of the skew information, in which case
ðT=ΔTSÞ2 � ΔU2

S=T
2 � Q π̂S; Ê

�
S

� �
=T2.
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Application to damped harmonic oscillator. While the bound
Eq. (16) is tight in the high temperature limit, for general open
quantum systems the accuracy of the bound is not known. We
show that the bound is very good for the example of a damped
harmonic oscillator linearly coupled to N harmonic oscillators in
the reservoir34,56,57. Experimentally, such a model describes the
behaviour of nano-mechanical resonators58 and BEC impu-

rities59. Here the system Hamiltonian is ĤS ¼ p̂2

2M þ Mω2 x̂2
2 , while

the reservoir Hamiltonian is ĤR ¼PN
j¼1

p̂2j
2Mj

þ Mjω
2
j x̂

2
j

2

� �
and the

interaction term is given by

V̂S ∪R ¼
XN
j¼1

�λjx̂ � x̂j þ
λ2j

2Mjω
2
j
x̂2

 !
: ð17Þ

To allow a fully analytical solution, the reservoir frequencies
are chosen equidistant, ωj= jΔ and the continuum limit is taken
so that Δ → 0 (and N →∞). The coupling constants are chosen as

the Drude-Ullersma spectrum34, λj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γMjMω2

j Δ

π
ω2
D

ω2
Dþω2

j

r
, where γ

is the damping coefficient controlling the interaction strength and
ωD is a large cutoff frequency.

As shown by Grabert et al.56, the resulting Hamiltonian of
mean force for the oscillator can be parameterised by a
temperature-dependent mass and frequency,

Ĥ�
SðTÞ ¼

p̂2

2MT
þMTω

2
T x̂

2

2
¼ �hωT n̂T þ 1

2

� 

; ð18Þ

where MT and ωT are given through the expectation values of p̂2

and x̂2 in the global thermal state, see Supplementary Note 3 for
detailed expressions. In its diagonal form the mean-force
Hamiltonian contains a temperature-dependent number

operator, n̂T ¼ âyT âT , with annihilation operator âT ¼ffiffiffiffiffi
AT
2�h

q
x̂ þ i

AT
p̂

� �
with AT=MTωT.

The internal energy operator is now obtained by straightfor-
ward differentiation, see Eq. (11), and given by

Ê�
SðTÞ ¼ αTĤ

�
SðTÞ � gT

â2T þ âyT
� �2
2

;
ð19Þ

where αT ¼ 1� ω′
T

ωT
T and gT ¼ �hωTT

A′
T

AT
. Using this operator we

obtain analytic expressions for CSðTÞ, FSðTÞ, Q π̂S ; Ê
�
S

� �
and

∂T Ê
�
S

� �
in Supplementary Note 3.

Figure 1 shows the square root of the average skew information
Q π̂S; Ê

�
S

� �
in units of ħω as a function of temperature for different

coupling strengths. As expected we see that the quantum
fluctuations in energy vanish in the high temperature limit, while
fluctuations grow with increased coupling strengths due to
increased non-commutativity between Ê�

SðTÞ and the state π̂S of
the oscillator. Interestingly we see that Q π̂S; Ê

�
S

� �
decays

exponentially to zero in the low temperature limit, implying that
the state of the oscillator commutes with the internal energy
operator in this regime. Whether this is a general feature or
specific to the example here remains an open question.

Figure 2 shows the optimal signal-to-noise ratio for estimating
T determined by the Cramér-Rao bound Eq. (7),
ðT=ΔTSÞ2opt ¼ T2FSðTÞ, as a function of temperature T and
coupling strength γ. The bound we derived in Eq. (16) given by
the heat capacity and an additional dissipation term is also
plotted and shows very good agreement with the optimum
estimation scheme quantified by the QFI. The bound clearly
becomes tight in the high-temperature limit (T →∞) independent
of the coupling strength. Conversely the bound is also tight in the
weak-coupling limit (γ → 0) independent of the temperature. The
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Fig. 1 Skew information for the damped oscillator. Plot of quantum

energetic fluctuations

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q π̂S ; Ê�S
h ir

=�hω for the damped oscillator as a

function of T/ħω for different coupling strengths γ. Here Q π̂S ; Ê
�
S

h i
is the

average Wigner-Yanase-Dyson skew information for the effective energy

operator Ê�S . These fluctuations are present when the state of the oscillator

π̂SðTÞ is not diagonal in the basis of Ê�S due to the non-negligible interaction
between the system and reservoir. The plot shows that increasing the
coupling γ leads to an increase in the skew information. The quantum
fluctuations are most pronounced at low temperatures where the thermal
energies become comparable to the oscillator spacing, T ’ �hω. As
expected, the skew information decreases to zero in both the high
temperature and weak coupling limits
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Fig. 2 Bound on temperature signal-to-noise ratio. The coloured plot shows
the optimal signal-to-noise ratio ðT=ΔTSÞ2opt of an unbiased temperature
estimate for the damped oscillator, as a function of temperature T and
coupling strength γ. This optimal measurement is determined by the
quantum Fisher information, which places an asymptotically achievable
lower bound on the temperature fluctuations ΔTS through the Cramér-Rao
inequality13. The mesh plot shows the upper bound on ðT=ΔTSÞ2opt derived
here from the generalised thermodynamic uncertainty relation Eq. (16).
This uncertainty relation links the temperature fluctuations to the heat
capacity of the system at arbitrary coupling strengths. It can be seen that
the upper bound becomes tight in both the high temperature and weak
coupling limits
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optimum and the bound both converge exponentially to zero as
T → 0, albeit with different rates of decay. Outside of these limits
the difference between the bound and ðT=ΔTSÞ2opt has a
maximum, and at the temperature and coupling for which this
maximum occurs the bound is roughly 30% greater than
ðT=ΔTSÞ2opt.

Discussion
In this paper we have shown how non-negligible interactions
influence fluctuations in temperature at the nanoscale. Our main
result Eq. (12) is a thermodynamic uncertainty relation extending
the well-known complementarity relation Eq. (1) between energy
and temperature to all interaction strengths. This derivation is
based on a bound on the QFI for exponential states which we
prove in Theorem 1. As Theorem 1 is valid for any state of full-
rank, the bound will be of interest to other areas of quantum
metrology. Our uncertainty relation shows that for a given finite
spread in energy, unbiased estimates of the underlying tempera-
ture are limited to a greater extent due to coherences between
energy states. These coherences only arise for quantum systems
beyond the weak coupling assumption. We found that these
additional temperature fluctuations are quantified by the average
WYD skew information, thereby establishing a link between
quantum and classical forms of statistical uncertainty in nanos-
cale thermodynamics. With coherence now understood to be an
important resource in the performance of small-scale heat
engines60,61, our findings suggest that the skew information could
be used to unveil further non-classical aspects of quantum ther-
modynamics. This complements previous results that connect
skew information to both unitary phase estimation51 and quan-
tum speed limits46.

Our second result Eq. (14) is a generalisation of the well-
known FDR to systems beyond the weak coupling regime. This
further establishes a connection between the skew information
and the system’s heat capacity CSðTÞ. Proving that the heat
capacity, with its strong coupling corrections, vanishes in the
zero-temperature limit in accordance with the third law of ther-
modynamics remains an open question. The appearance of the
skew information in Eq. (14) suggests that quantum coherences
may play a role in ensuring its validity. Recent resource-theoretic
derivations of the third law62,63 could provide a possible avenue
for exploring the impact of coherences.

By applying the FDR to temperature estimation we derive our
third result, Eq. (16), an upper bound on the optimal signal-to-
noise ratio expressed in terms of the system’s heat capacity.
Notably the bound implies that when designing a probe to
measure T, its bare Hamiltonian and interaction with the sample
should be chosen so as to both maximise CSðTÞ whilst mini-
mising the additional dissipation term ∂T Ê

�
S

� �
. It is an interesting

open question to consider the form of Hamiltonians that achieve
this optimisation in the strong coupling scenario. Furthermore,
one expects that improvements to low-temperature thermometry
resulting from strong interactions, such as those observed in25,
will be connected to the properties of the effective internal energy
operator. In particular, it is clear from Eq. (16) that any improved
scaling of the QFI at low temperatures must be determined by the
relative scaling of CSðTÞ and ∂TÊ

�
S

� �
, and exploring this further

remains a promising direction of research. Advancements in
nanotechnology now enable temperature sensing over micro-
scopic spatial resolutions64,65, and understanding how to exploit
interactions between a probe and its surroundings will be crucial
to the development of these nanoscale thermometers.

The presented approach opens up opportunities for exploring
the intermediate regime between the limiting cases66,67 of

standard thermodynamics with negligible interactions and those
where correlations play a prominent role38,68,69. The results
establish a connection between abstract measures of quantum
information theory, such as the QFI and skew information, and a
material’s effective thermodynamic properties. This provides a
starting point for future investigations into nanoscale thermo-
dynamics, extending into the regime where the weak coupling
assumption is not justified.

Methods
Proof of Theorem 1. Here we provide a sketch for the proof of the bound Eq. (8)
on the QFI for exponential states. The full derivation can be found in Supple-
mentary Note 1. Let us first denote the spectral decomposition of the state ρ̂θ ¼
e�Âθ=Zθ by ρ̂θ ¼

P
n pn ψn

�� �
ψn

� ��, where the eigenstates satisfy Âθ ψn

�� � ¼ λn ψn

�� �
.

From this decomposition the QFI can be expressed as follows50:

FðθÞ ¼ 2
X
n;m

ψn

� ��∂θρ̂θ ψm

�� ��� ��2
pn þ pm

: ð20Þ

To proceed we utilise the following integral expression for the derivative of an
exponential operator70:

∂θ e�Âθ

h i
:¼ �

Z 1

0
dae�ð1�aÞ Âθ∂θ ½Âθ �e�a Âθ : ð21Þ

Combining Eqs. (20) and (21) eventually yields

FðθÞ ¼ ΔB̂2
θ þ

X
n<m

f 2ðpn; pmÞ
pn þ pm

� 

� ðpn þ pmÞ

� �
B2
nm; ð22Þ

where Bnm ¼ ψn

� ��∂θÂθ ψm

�� ��� ��, ΔB̂2
θ ¼ Var ρ̂θ ; B̂θ

� �
and

f pn; pmð Þ :¼ 2ðpn � pmÞ
ln pn=pmð Þ : ð23Þ

Similarly, expanding in the basis ψn

�� �� �
leads to an expression for the average

skew information with respect to the operator B̂θ :

Q ρ̂θ ; B̂θ

� � ¼X
n<m

ðpn þ pmÞ � f ðpn; pmÞð ÞB2
nm: ð24Þ

Using the inequality

f ðpn; pmÞ
pn þ pm

� 1; ð25Þ

and comparing Eqs. (22) and (24) yields FðθÞ � ΔB̂2
θ � Q ρ̂θ ; B̂θ

� �
. The theorem

then follows from the fact that ΔB̂2
θ ¼ K ρ̂θ ; B̂θ

� �þ Q ρ̂θ ; B̂θ

� �
according to Eq. (2).

Derivation of the fluctuation-dissipation relation. Here we briefly outline the
proof of the modified FDR Eq. (14). First note that according to the definition Eq.
(5), the classical uncertainty in energy is given by

K π̂S ; Ê
�
S

� � ¼ Z 1

0
da tr π̂1�a

S δÊ�
S π̂

a
S δÊ

�
S

� �
; ð26Þ

where δÊ�
S :¼ Ê�

SðTÞ � Ê�
SðTÞ

� �
. By using the integral expression Eq. (21), we

show in Supplementary Note 2 that this equation for K π̂S ; Ê
�
S

� �
is equivalent to

K π̂S ; Ê
�
S

� � ¼ T2tr Ê�
S ∂T π̂S

� �
: ð27Þ

Using the product rule for the differential of an operator, along with the equation
K π̂S ; Ê

�
S

� �
= ΔU2

S � Q π̂S ; Ê
�
S

� �
given by Eq. (5), completes the derivation.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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