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INTRODUCTION 
 

As a provocative title has recently announced, 

“rapamycin fails to extend lifespan in DNA repair 

-deficient mice” [1]. The word “fails” implies bad news. 

Rapamycin tried but failed. Yet, it is expected that the 

anti-aging drug rapamycin should not restore lifespan of 

short-lived mice that fail to grow and die young from 

causes other than normal aging [2]. In such growth-

retarded mice, rapamycin, an inhibitor of cell growth, 

further retards weight gain. 

 

Similarly, rapamycin does not extend but even slightly 

shortens lifespan in telomerase-deficient mice, which 

die young from poor growth and intestinal atrophy 

caused by telomere shortening [3]. (As we will discuss, 

this is predictable by hyperfunction theory.) While 

shortening lifespan by 18% in unnatural telomerase-

deficient mice, in the same study in natural mice, 

rapamycin increased lifespan by 39% and healthspan by 

58% (measured as tumor-free survival) [3]. In dozens of 

independent studies, rapamycin has not failed to extend 

lifespan in normal mice [4].  However, while extending 

lifespan in normal mice, rapamycin may fail to save 

animals dying young from cellular growth retardation. 

But something important should not be overlooked. The 

failure of rapamycin to extend lifespan in these short-

lived mice, dying from DNA damage, rules out the 

damage theory of aging. To understand this point, we 

must first discuss what limits animal lifespan. 

Quasi-programmed (hyperfunctional) aging 
 

In proliferating cells, growth-promoting pathways such 

as mTOR (Target of Rapamycin) and MAPK drive 

cellular growth, which is balanced by cell division. When 

the cell cycle is arrested, however, growth-promoting 

pathways drive cellular senescence, which is a 

continuation of cellular growth in the absence of cell 

division [5]. During geroconversion to senescence, cells 

become hypertrophic and hyperfunctional. One example 

of hyper-function is SASP or Senescence-Associated 

Secretory Phenotype [6]. Rapamycin can cause reversible 

cycle arrest but suppresses geroconversion, thus ensuring 

quiescence instead of senescence. (Note: Rapamycin 

does not prevent cell cycle arrest, it only prevents 

geroconversion that makes this arrest permanent [7]. This 

point is often miscited by others). Rapamycin slows 

down both growth and geroconversion, figuratively 

slowing down time [8]. Like cellular senescence is a 

continuation of growth, organismal aging is a 

continuation of growth too [9]. 

 

According to hyperfunction theory, aging is quasi-

programmed, a continuation of developmental  

growth programs, driven in part by hyper-functional 

signaling pathways including the mTOR pathway 

[9].  Hyperfunction is an excessive normal function 

later in life. It’s not necessarily an increase of function; 

it may even be insufficient decrease of function.  For 

example, protein synthesis is decreased in C elegans but  
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is still too high: its further inhibition extends lifespan 

[10, 11]. 

 

Hyperfunction leads to age-related diseases, secondary 

organ damage and loss of function. For example, 

cellular hyperfunctions result in hypertension, 

culminating in stroke and damage of the brain. Aging is 

a sum of all age-related diseases [12, 13].  This theory 

was discussed in detail [9, 14–20] and has gained 

experimental support [11, 16, 21–26]. I will not discuss 

it here, just to mention that accumulation of molecular 

damage is not a driving force of development and 

therefore of aging. It is hyperfunctional signaling 

pathways such as mTOR (one of many) that drive both 

growth and aging, causing age-related diseases that in 

turn damage organs, leading to secondary loss of 

function.   

 

Although molecular damage accumulates, this 

accumulation is not life-limiting because quasi-

programmed aging terminates life first (Figure 1A). 

Quasi-programmed (hyperfunctional) aging is life-

limiting, because it is favored by natural selection. 

Natural selection favors robust development and 

fitness early in life at the cost of aging. For example, 

growth hormone receptor-deficient mice (GHR-KO 

mice), with decreased mTORC1 activity, live longer 

but are small and weak early in life [27, 28]. In such 

mice mTORC1-driven aging is inhibited and mice live 

longer but would not survive in the wild and therefore 

do not exist in nature. As another example, knockout 

of PI3K, an activator of mTOR pathways, extends 

lifespan 10-fold in C. elegans [29]. The mutant worm 

undergoes prolonged developmental arrest, which 

would be lethal in the wild [29]. Therefore, natural 

selection favors hyperfunctional mTOR that is 

optimal for development but drives age-related 

diseases later in life.    

 

According to damage theories, aging is functional 

decline caused by molecular damage. According to 

hyperfunction theory, quasi-programmed aging is not 

functional decline but a hyperfunction: cellular and 

systemic functions are higher than optimal for 

longevity. They are optimal for early life fitness and in 

part (only in part) mTOR-dependent.  

 

 
 

Figure 1. Rapamycin extends lifespan in natural but not progeroid mice. (A) Natural mice. Hyperfunctional aging (green/yellow/red 
arrow) progresses from development (green) to diseases (red), reaching death threshold and limiting lifespan. Accumulation of molecular 
damage (gray arrow) is slow and does not reach death threshold in animal lifetime. It would take longer to die from molecular damage. 
Treatment with rapamycin (RAPA) extends lifespan by slowing down mTOR-driven aging (B) Progeroid, telomerase- or DNA-repair-deficient 
mice. Accumulation of molecular damage (gray arrow) is artificially accelerated to become life-limiting. Treatment with rapamycin (RAPA) 
cannot extend lifespan.  



www.aging-us.com 3169 AGING 

In both molecular damage and hyperfunction theories, 

aging exists because late-life is shadowed from natural 

selection. But quasi-programmed aging is not simply 

shadowed from, it is promoted by natural selection, 

because accelerated aging is hardwired with fitness 

early in life. By selecting for fitness, nature indirectly 

selects for accelerated aging. This makes quasi-

programmed aging life-limiting. One of predictions of 

hyperfunction theory is that rapamycin must extend 

lifespan in animals [9]. This prediction has been 

confirmed. In dozens of studies, rapamycin prolongs 

lifespan and healthspan in mice [3, 30–65]. Rapamycin 

extends lifespan in C elegans [66] and Drosophila [67–

69]. Furthermore, rapamycin even extends life of the 

simplest animal, Hydra, which is thought to be 

immortal. Depending on conditions, Hydra can be 

either immortal or undergo aging.  Rapamycin slows 

aging, stem cell exhaustion and extends life span in 

Hydra [70].   

 

mTOR-driven aging is only one component of quasi-

programmed (hyperfunction) aging. In addition, 

MEK/MAPK, NF-kB, p63, HIF-1 and many other 

signaling pathways are involved, interacting with the 

mTOR pathway and forming networks. Rapamycin 

cannot affect all of them. In theory, mTOR-independent 

quasi-programmed aging can be life-limiting in some 

conditions and diseases.  I suggest that long-lived GHR-

KO mice with low mTORC1 activity undergo partially 

mTORC1-independent quasi-programmed senescence, 

because rapamycin cannot prolong lifespan in these 

mice further, while prolonging lifespan in parental 

normal mice [71]. Discussion of mTOR-independent 

components of quasi-programmed aging is beyond the 

focus of this article. Let us return to stochastic 

accumulation of molecular damage. 

  

How molecular damage can become life-

limiting  
 

Molecular damage can become life-limiting in two 

ways. First, hyper-functional aging should be eliminated 

or slowed down, so an organism lives long enough to 

die from accumulation of molecular damage. In this 

scenario, accumulation of molecular damage causes 

post-aging. Such examples are unknown, but it is a very 

intriguing possibility. Could a PI3K-null worm [29] 

with 10-fold longer lifespan die from molecular 

damage? 

 

Second, accumulation of molecular damage can be 

greatly accelerated artificially by knockout of 

repair/maintenance enzymes (Figure 1B). Such animals 
do not exist in nature. But artificially created, they may 

provide a glimpse of how post-aging may look.  Their 

pathology differs drastically from normal aging, for 

example, telomere shortening. Second-generation 

telomerase-deficient mice (G2 Terc−/−) with critically 

short telomeres fail to grow and die young from 

unfamiliar diseases such as intestinal atrophy due to 

failure of cell proliferation [3]. When telomeres reach 

critical length, it can cause DNA-damage response, 

leading to aplastic anemia, organ fibrosis, atrophy of the 

small intestine and the spleen, skin and hair lesions. In 

humans, diseases of short telomeres cause death from 

bone marrow failure and pulmonary fibrosis [72]. This 

does not resemble normal aging.  

 

In humans, mice and C. elegans, telomere shortening is 

not life-limiting [73–75]. In mice lacking telomerase, 

even accelerated telomere shortening is still not life-

limiting in the first generation [76]. It took several 

generations to achieve critically short telomeres, leading 

to syndromes strikingly different from normal aging. In 

humans, telomere length does not reach telomere 

threshold during life time [75, 77, 78]. Normal telomere 

shortening would cause telomere-driven pathologies, 

but normal animals do not live long enough to reach this 

threshold. Rapamycin prolongs life in normal mice, 

proving that telomere length does not constrain normal 

lifespan [3]. When artificially shortened, then telomeres 

become life-limiting and rapamycin cannot extend 

lifespan anymore [3]. 

 

Ercc1∆/− mutant mice are defective in DNA repair, such 

as transcription-coupled repair, global-genome 

nucleotide excision and crosslink repair [1, 2]. 

Therefore, multiple types of DNA damages accumulate. 

This leads to decreased cell proliferation, arrested 

development, poor growth, abnormal liver nuclei of 

liver and kidney, absence of subcutaneous fat, ferritin 

deposition, kidney malfunction and early death [2]. 

Unlike natural mice, short-lived Ercc1∆/− mice do not 

develop tumors, probably because they do not live long 

enough to suffer typical age-related diseases [1, 2]. In 

such mice, dying from molecular damage, rapamycin 

fails to extend lifespan [1]. 

 

CONCLUSIONS 
 

Here I discussed new evidence that normal aging is not 

caused by accumulation of molecular damage or 

telomere shortening: while extending normal lifespan in 

mice, rapamycin failed to do so in mice dying from 

molecular damage (Figure 1). 

 

Previously, several lines of evidence suggested that 

molecular damage does not cause normal aging. Their 

detailed discussion is beyond the focus of this article, so I 

will just mention some of them, without referencing them 

(I will reference these points in forthcoming review 

“When longevity drugs do not increase 
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longevity:  Unifying development-driven and damage-

induced theories of aging”, In press).  First, 

overexpression of enzymes that decrease damage does not 

extend lifespan in most studies. Similarly, antioxidants do 

not extend lifespan in animals and may increase mortality 

in humans. Furthermore, even data that support damage 

theory can be explained by other mechanisms. For 

example, N-Acetyl-L-Cysteine, a commonly used anti-

oxidant, can inhibit mTOR.  Second, according to 

calculations, molecular damage, especially mtDNA 

mutations and telomere shortening, cannot reach deadly 

threshold during animal lifetime. Third, genetic knockout 

of signaling pathways can extend lifespan without 

affecting molecular damage. Similarly, pharmacological 

interventions can extend life without affecting damage 

accumulation. Forth, dramatic intra- and inter-species 

differences in lifespan poorly correlate with the rate of 

molecular damage. Fifth, nuclear transfer and nuclear 

reprogramming both rule out DNA damage as a cause of 

aging. Following adult somatic cell nuclear transfer, 

cloned animals are healthy and have normal lifespan. 

Sixth, low levels of molecular damage may increase 

longevity. This phenomenon is known as hormesis. 

Regardless of mechanistic explanations, this indicates 

that molecular damage is not-life-limiting even when 

moderately increased. Finally, rapamycin increases 

lifespan in all normal animals tested, indicating that 

mTORC1-dependent quasi-program is life-limiting. The 

list can go on and on. Once again, damage accumulates 

and must cause death eventually, but quasi-programmed 

(hyperfunctional) aging terminates life first. Molecular 

damage can become life-limiting, when artificially 

accelerated or, potentially, when quasi-programmed 

aging is decelerated. Then interventions to repair 

molecular damage may increase life further.  
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