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To investigate the three-dimensional (3D) genome architecture across normal B cell differ-

entiation and in neoplastic cells from different subtypes of chronic lymphocytic leukemia and

mantle cell lymphoma patients, here we integrate in situ Hi-C and nine additional omics

layers. Beyond conventional active (A) and inactive (B) compartments, we uncover a highly-

dynamic intermediate compartment enriched in poised and polycomb-repressed chromatin.

During B cell development, 28% of the compartments change, mostly involving a widespread

chromatin activation from naive to germinal center B cells and a reversal to the naive state

upon further maturation into memory B cells. B cell neoplasms are characterized by both

entity and subtype-specific alterations in 3D genome organization, including large chromatin

blocks spanning key disease-specific genes. This study indicates that 3D genome interactions

are extensively modulated during normal B cell differentiation and that the genome of B cell

neoplasias acquires a tumor-specific 3D genome architecture.
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Over the last decades, our understanding of higher-order
chromosome organization in the eukaryotic interphase
nucleus and its regulation of cell state, function, specifi-

cation, and fate has profoundly increased1,2.
Chromatin conformation capture techniques have been used to

elucidate the genome compartmentalization3,4. It is widely
accepted that the genome is segregated into two large compart-
ments, named A-type and B-type5, which undergo widespread
remodeling during cell differentiation2,6–9. These compartments
have been associated with different GC content, DNAseI hyper-
sensitivity, gene density, gene expression, replication time, and
chromatin marks5,10. Alternative subdivisions of genome com-
partmentalization have been proposed, including three com-
partments11 or even six compartment subtypes with distinct
genomic and epigenomic features12. All of these studies highlight
the role of three-dimensional (3D) genome organization in the
regulatory decisions associated with cell fate. However, the
majority of these studies have been performed using cell lines,
animal models, or cultured human cells7,8,13–15, and although few
analyze sorted cells from healthy human individuals16–18, there is
limited information regarding 3D genome dynamics across the
differentiation program of a single human cell lineage16.

Normal human B cell differentiation is an ideal model to study
the dynamic 3D chromatin conformation during cell maturation,
as these cells show different transcriptional features and biological
behaviors, and can be accurately isolated due to their distinct
surface phenotypes19,20. Moreover, how the 3D genome of B cells
is modulated upon neoplastic transformation using primary
samples from patients is also widely unknown21. In this context,
several types of neoplasms can originate from B cells at distinct
differentiation stages22. Out of them, chronic lymphocytic leu-
kemia (CLL) and mantle cell lymphoma (MCL) are derived from
mature B cells and show a broad spectrum of partially over-
lapping biological features and clinical behaviors23. Both diseases
can be categorized according to the mutational status of the
immunoglobulin heavy chain variable region (IGHV), a feature
that seems to be related to the maturation stage of the cellular
origin24. CLL cases lacking IGHV somatic hypermutation are
derived from germinal center-independent B cells whereas CLL
with mutated IGHV derives from germinal center-experienced B
cells25. In CLL, this variable is strongly associated with the clinical
features of the patients, with mutated IGHV (mCLL) cases cor-
relating with good prognosis and those lacking IGHV mutation
(uCLL) with poorer clinical outcome25. In MCL, although two
groups based on the IGHV mutational status can be recognized
and partially correlate with clinical behavior, other markers such
as expression of the SOX11 oncogene are used to classify cases
into clinically aggressive conventional MCL (cMCL) and clini-
cally indolent non-nodal leukemic MCL (nnMCL)23,26–28.

From an epigenomic perspective, previous reports have iden-
tified that B cell maturation and neoplastic transformation to CLL
or MCL entail extensive modulation of the DNA methylome and
histone modifications29–34. However, whether such epigenetic
changes are also linked to modulation of the higher-order chro-
mosome organization is yet unknown35.

Here, to decipher the 3D genome architecture of normal and
neoplastic B cells, we generated in situ high-throughput chro-
mosome conformation capture (Hi-C) maps of cell subpopula-
tions spanning the B cell maturation program as well as of
neoplastic cells from MCL and CLL patients. Next, we mined the
data together with whole-genome maps of six different histone
modifications, chromatin accessibility, DNA methylation, and
gene expression obtained from the same human cell subpopula-
tions and patient samples. This multi-omics approach not only
allowed us to describe a widespread modulation of the chromo-
some organization and function during human B cell maturation

and neoplastic transformation but also provides a unique dataset
that shall represent a valuable asset for future studies in the field
of cell differentiation and immunological cancer.

Results
Multi-omics analysis during human B cell differentiation. We
used in situ Hi-C to generate genome-wide chromosome con-
formation maps of normal human B cells across their maturation
program. These included three biological replicates each of
naive B cells (NBC), germinal center B cells (GCBC), memory B
cells (MBC), and plasma cells (PC) (Fig. 1a, b and Supplementary
Data 1). From the same B cell subpopulations, we analyzed
nine additional omics layers generated as part of the BLUEPRINT
consortium29,36. Specifically, we obtained data for chromatin
immunoprecipitation with massively parallel sequencing (ChIP-
seq) of six histone modifications with non-overlapping functions
(H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3,
H3K27me3), transposase-accessible chromatin with high-
throughput sequencing (ATAC-seq), whole-genome bisulfite
sequencing (WGBS), and gene expression (RNA-seq).

We initially explored the intra- and inter-subpopulation
variability and observed that the Hi-C replicas were concordant,
as quantified measuring and clustering the reproducibility score
(RS)37 (Fig. 1c and Supplementary Fig. 1a). Furthermore, the
comparison of samples suggests that the overall genome
architecture of NBC is more similar to MBC and clearly different
from GCBC and PC, which belong to a different cluster (Fig. 1c).
This finding was also reflected in the first component of the
principal component analysis (PCA) of histone modifications,
chromatin accessibility, and gene expression (Fig. 1d). In contrast
to other omics marks, the first component of DNA methylation
data resulted in a division of GCBC, MBC, and PC separated
from the NBC. These analyses suggest fundamental differences
between chromatin-based epigenetic marks, including chromo-
some conformation data, and DNA methylation. In fact, changes
in DNA methylation linearly accumulate throughout B cell
maturation31,32, which explains the clear differences between
NBC and MBC in spite of their converging transcriptomes.

Polycomb-associated chromatin defines an intermediate and
moldable 3D genome compartment. To study the compart-
mentalization of the genome during B cell differentiation, we next
merged all biological replicates per B cell subpopulation resulting
in interaction Hi-C maps with around 300 million valid reads
each. These Hi-C interaction maps were further segmented
into positive and negative eigenvalues based on the eigenvector
decomposition5,38, and regions were assigned to the A-type (active)
and B-type (inactive) compartments using the association with
histone modifications (Fig. 1e and Supplementary Fig. 1b). A
pairwise correlation of the first eigenvector of each B cell sub-
population showed that NBC and MBC on the one hand, and
GCBC and PC on the other hand, have similar compartmentali-
zation (Supplementary Fig. 1c), confirming previous results using
the RS (Fig. 1c). Unexpectedly, the H3K27me3 histone mark, which
is deposited by the polycomb repressive complex39, was neither
correlated with positive nor with negative eigenvector coefficients
(Supplementary Fig. 1b). We then speculated that, as H3K27me3
was not related to standard A-type or B-type compartments, this
histone mark may be linked to a different type of chromatin
compartmentalization. In this context, a visual inspection of the first
eigenvector distribution revealed a positive extreme, a negative
extreme, and a long intermediate valley (Fig. 1f). Indeed, applying
the Bayesian Information Criterion, we observed that classification
into three compartments was the best compromise between dis-
tribution fitting accuracy and a minimum number of compartments
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(Supplementary Fig. 1d). Subsequently, we modeled the eigenvector
distribution to establish the thresholds segmenting the data into an
A-type, B-type, and intermediate (I)-type compartments (Fig. 1f
and Supplementary Fig. 1e). Analyzing these three compartments
together with other omics layers revealed the expected association
of A-type compartment with active chromatin, B-type compart-
ment with H3K9me3, and a remarkable association between the

I-type compartment and the presence of H3K27me3 (Fig. 1g).
Indeed, a chromHMM-based chromatin state model specific for B
cells29,40 revealed that the regions associated with the I-type com-
partment were enriched for poised-promoter and polycomb-
repressed chromatin states (Fig. 2a and Supplementary Fig. 2a).

We next quantified the compartment interactions by comput-
ing the compartment score (C-score) as the ratio of
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intra-compartment interactions over the total chromosomal
interactions per compartment (Supplementary Fig. 2b). The I-
type compartment was associated with a lower C-score than the
A-type and B-type compartments (Supplementary Fig. 2c). We
further explored this phenomenon by dividing the I-type
compartment into two blocks differentiating positive (IA) and
negative (IB) eigenvector components (Supplementary Fig. 2d).
The analysis showed that the I-type compartment, regardless of
being IA or IB, was consistently having a lower C-score than the
A-type or B-type compartments. This finding further supports
the existence of the I-type compartment as an independent
chromatin structure different from A-type and B-type compart-
ments. In addition, it suggests that the I-type compartment tends
to interact not only with itself but also with A-type and B-type
compartments, and as such it may represent an interconnected
space between the fully active and inactive compartments.

As Rao et al.12 proposed a genome segmentation into six
subcompartments, including one enriched in polycomb-repressed
regions, we next aimed at comparing the two strategies, with
particular emphasis on the I-type compartment. We observed
that this I-type compartment was composed of different
percentages from the six subcompartments. The I-type compart-
ment showed the highest proportion of B1, which was described
as polycomb-related but also contained significant fractions of
other compartments (Supplementary Fig. 2e). Similar results were
obtained when these two types of segmentations were compared
using published Hi-C data from the GM12878 cell line
(Supplementary Fig. 2f). These results show that, although there
is some overlap between I-type and B1 compartments, they
appear to reflect distinct structures. However, these differences
may also be influenced by the different analytical approaches used
by the two compartmentalization methods. The six subcompart-
ments clustering was based on a subset of the inter-chromosomal
contact data while a more straight-forward approach including all
interactions was used in this study to determine the I-type
compartment.

To study the potential role of the I-type compartment during B
cell differentiation, we selected poised promoters or polycomb-
repressed regions within this compartment in NBC and studied
how they change in both compartment and chromatin state upon
differentiation into GCBC (Fig. 2b). The majority of compart-
ment transitions affecting these chromatin states (69.1% of the
poised promoter and 73.0% of polycomb-repressed) change into
A-type compartment, a consistent fraction (21.9% and 21.1%)
into B-type, and only a small fraction (9.0% and 5.9%) maintain
their intermediate definition. This finding indicates that the
regions with a most prominent I-type compartment character

undergo a widespread structural modulation during NBC to
GCBC differentiation step. Transitions from I-type to A-type
compartment (activation events) were paired with a reduction of
poised promoters (56.7% loss) and polycomb-repressed states
(70.2% loss). These reductions were associated with an increase of
A-related chromatin states (1.31- or 1.33-fold change coming
from the poised promoter or polycomb-repressed, respectively)
such as a promoter, enhancer, and transcription (Fig. 2b).
Conversely, poised promoters and polycomb-repressed regions
associated with I-type compartments in NBC that changed into B
compartments in GCBC (inactivation events) were related to an
increase of B-related chromatin states (3.81- or 1.4-fold change
coming from the poised promoter or polycomb-repressed,
respectively) such as heterochromatin characterized by
H3K9me3 (Fig. 2b).

Altogether, an analysis of the eigenvalue distribution of Hi-C
data reveals the presence of an intermediate transitional
compartment with biological significance, enriched in poised
and polycomb-repressed chromatin states, interconnected with
A-type and B-type compartments, and amenable to rewire the
pattern of interactions leading to active or inactive chromatin
state transitions upon cell differentiation.

Changes in genome compartmentalization are reversible dur-
ing B cell differentiation. Mapping A, I, and B-type compart-
ments in NBC, GCBC, MBC, and PC Hi-C maps revealed that
28.1% of the genome dynamically changes compartment during B
cell differentiation (Fig. 2a and Supplementary Fig. 2a). B cell
differentiation is not a linear process, NBC differentiates into
GCBC, which then branch into long-lived MBC or antibody-
producing PC. Thus, we studied the 3D genome compartment
dynamics along these two main differentiation paths (NBC-
GCBC-PC and NBC-GCBC-MBC). At each differentiation step,
we classified the genome into three different dynamics: (i) com-
partments undergoing activation events (B-type to A-type, B-type
to I-type, or I-type to A-type), (ii) compartments undergoing
inactivation events (A-type to B-type, A-type to I-type, or I-type
to B-type), and (iii) stable compartments (Fig. 2c, d). The NBC-
GCBC-MBC differentiation path suggests that the extensive
remodeling taking place from NBC to GCBC is followed by an
overall reversion of the compartmentalization in MBC, achieving
a profile similar to NBC (Fig. 2c). To assess the capacity of the
genome to revert to a past 3D configuration, we analyzed the
compartments in NBC as compared to those in PC and MBC.
Indeed, we globally observed that 72.7% of the regions in
MBC re-acquire the same compartment type as in NBC.

Fig. 1 Multi-omics view of B cell differentiation and identification of an intermediate compartment. a Schematic overview of mature B cell differentiation
showing the four B cell subpopulations considered in this study. b Table of sample description together with the number of in situ Hi-C replicates analyzed
by each B cell subpopulations. c Dendrogram of the reproducibility scores of B cell subpopulation replicates for normalized Hi-C contact maps at 100 kb
resolution. d Unsupervised principal component analysis (PCA) for nine omics layers: ChIP-seq of six histone marks (H3K4me3 n= 46,184 genomic
regions, H3K4me1 n= 44,201 genomic regions, H3K27ac n= 72,222 genomic regions, H3K36me3 n= 25,945 genomic regions, H3K9me3 n= 40,704
genomic regions, and H3K27me3 n= 20,994 genomic regions), chromatin accessibility measured by ATAC-seq (n= 99,327 genomic regions), DNA
methylation measured by WGBS (n= 15,089,887 CpGs) and gene expression measured by RNA-seq (n= 57,376 transcripts). e Example of chromosome
12 (chr12) comparing the eigenvector profile, H3K4me1 ChIP-seq signal, chromatin accessibility (ATAC-seq), and gene density. The red and blue
rectangles highlight the features of A and B compartments, respectively. The scale indicates the genomic position in kilobase pairs (kb). f Distribution of
the first eigenvector of each B cell subpopulation (three replicates and merge). The relative abundance of A-type, B-type, and intermediate (I)-type
compartments per merged B cell subpopulations are indicated below each distribution. Compartment definition based on eigenvalue thresholds: A-type,
+1.00 to +0.43; I-type, +0.43 to −0.63; B-type, −0.63 to −1.00. g Boxplots showing the association of the three compartments (A-type, I-type, and B-
type) with each of the nine additional omics layers under study. The median signal of each layer was computed for each B cell subpopulation. For the
boxplots, centerline, box limits, and whiskers represent the median, 25th, and 75th percentiles and 1.5× interquartile range, respectively. Sample sizes were
NBC (naive B cells), GCBC (germinal center B cells), MBC (memory B cells), and PC (plasma cells): n= 3 biologically independent samples (all nine layers
with the exception of ATAC-seq for MBC which n= 6 biologically independent samples were used).
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This phenomenon was mostly related to compartments under-
going activation in GCBC, as 82.9% of them reverted to inacti-
vation upon differentiation into MBC. This finding is in line with
solid evidence showing that NBC and MBC, in spite of repre-
senting markedly different maturation B cell stages, are pheno-
typically similar41,42 (Fig. 1d). In the case of PC, the compartment
reversibility accounted only for 30.8% of the genome (Fig. 2d).

To determine whether this compartment reversibility was also
accompanied by a functional change, we analyzed the chromatin
state dynamics within the compartments becoming uniquely
active in GCBC as compared to NBC, MBC, and PC (n= 937)
(Supplementary Data 2). We observed that the transient com-
partment activation from NBC to GCBC is related to an increase
of A-related chromatin states (1.36-fold change). Conversely, the
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subsequent 3D genome inactivation upon differentiation into PC
and MBC was related to an increase in B-related chromatin states
(1.21- and 1.15-fold change, respectively) (Fig. 2e left). Further-
more, those regions had a significant increase in chromatin
accessibility and gene expression in GCBC as compared to NBC
and MBC, but not in PC (Fig. 2e right). These findings suggest
that structural 3D reversibility in MBC is accompanied by func-
tional reversibility whereas, in these regions, PC partially main-
tains gene expression levels and chromatin accessibility similar to
GCBC in spite of the compartment changes. In contrast to
chromatin-based marks, DNA methylation was overall unrelated
to a compartment or chromatin state dynamics of the B cell
differentiation (Fig. 2e right).

The 3D genome of GCBC undergoes extensive compartment
activation. Our analyses revealed that the NBC to GCBC tran-
sition was associated with a large structural reconfiguration of
compartments involving 95.9% of all dynamic compartments.
Totally, 61.5% of the changes between NBC and GCBC involved
compartment activation (Fig. 2c, d). As the germinal center
reaction is known to be mediated by specific transcription factors
(TFs)43,44 and those may be involved in shaping the spatial
organization of the genome8,14,16, we further explored the pre-
sence of TF-binding motifs in accessible chromatin in regions
gaining H3K27ac within the newly activated compartments. We
identified enriched motifs for several TFs, being members of the
MEF2 and POU families the most significant (Fig. 2f and Sup-
plementary Data 3), which are essential TFs involved in germinal
center formation45–48. Furthermore, the newly activated com-
partments hosted 100 genes significantly upregulated in GCBC as
compared to the rest of B cell subpopulations (FDR < 0.05)
(Supplementary Data 4). Remarkably, among them was the
activation induced cytidine deaminase (AICDA) gene, which is
essential for class-switch recombination and somatic hypermu-
tation in GCBC and is specifically expressed in GCBC49. Indeed,
the AICDA locus was globally remodeled from an inactive state in
NBC to a global chromatin activation in GCBC, which included
an increase in the ratio of GCBC/NBC 3D interactions as well as
increased levels of active chromatin states (that is, active pro-
moter and enhancers as well as transcriptional elongation), open

chromatin, and gene expression (Fig. 3a, b). This analysis also
revealed the presence of possible upstream and downstream
AICDA-specific enhancers that gain interactions with the gene
promoter in GCBC (Fig. 3b). This multi-layer chromatin acti-
vation at the AICDA locus was reverted to the inactive ground
state once GCBC differentiate into MBC or PC.

B cell neoplasms undergo disease-specific 3D genome reorga-
nization. Next, we analyzed whether the observed 3D genome
organization during normal B cell differentiation is further altered
upon neoplastic transformation. To address this, we performed
in situ Hi-C in fully characterized tumor cells from patients with
CLL (n= 7) or MCL (n= 5). Within each neoplasm, we included
cases of two subtypes, IGHV mutated (m, n= 5) and unmutated
(u, n= 2) CLL as well as conventional (c, n= 2) and non-nodal
leukemic (nn, n= 3) MCL (Fig. 4a and Supplementary Data 5).
Initial unsupervised clustering of the RS from the entire Hi-C
dataset indicated that CLL and MCL, similarly to the PCA from
other omics layers generated from the same patient samples,
clustered separately from each other and within a major cluster
that included NBC and MBC (Fig. 4b, c, and Supplementary
Fig. 3a). NBC and MBC have been described as potential cells of
origin of these neoplasms23. Furthermore, pairwise eigenvector
correlation analysis of the cancer samples suggested that the 3D
genome configuration of the two clinico-biological subtypes of
CLL was rather homogeneous (Supplementary Fig. 3b, c). This
was not the case for the two MCL subtypes, which were more
heterogeneous (Supplementary Fig. 3d, e).

The differential clustering of CLL and MCL samples hint into
disease-specific changes of their 3D genome organization
(Fig. 4b). To further detect those changes, we took the fraction
of the genome with stable compartments during normal B cell
differentiation and compared them to each lymphoid neoplasm.
Qualitatively, we observed that roughly one-quarter of the
genome changes compartments in at least one CLL (23.8%) and
at least one MCL sample (27.3%) as compared to normal
B cells (Fig. 4d, e left). Using a more stringent quantitative
approach, we aimed at detecting changes associated with CLL or
MCL as a whole, which revealed a total of 348 and
82 significant compartment changes (absolute difference in the

Fig. 2 Chromatin dynamics across B cell differentiation. a Functional association of the stable (segmented into A-type, I-type, and B-type) and dynamic
compartments during B cell maturation using 11 chromatin states. The percentage of each stable or dynamic compartment is indicated for all B cell
subpopulations. b Intermediate compartment dynamics. The filled area of the pie charts represents the percentage of the poised promoter (top, violet) or
polycomb-repressed (bottom, gray) states within the I-type compartment in NBC which shifts to A-type and B-type compartments in GCBC. The pie charts
under GCBC represent the fraction that maintains the previous chromatin state (colored as previously defined) or changes chromatin states (not colored).
The outline color of the pie charts represents the compartment type. Bar graphs represent the fold change between GCBC and NBC of each of the three
groups of chromatin states (arranged by their relationship to the A-type, I-type, and B-type compartments). c, d Alluvial diagrams showing the
compartment dynamics in the two branches of mature B cell differentiation: NBC-GCBC-MBC (c) and NBC-GCBC-PC (d). Compartment changes are
represented in red if they show activation (as B-type to A-type, B-type to I-type, and I-type to A-type), in blue, in case of inactivation (as A-type to B-type,
A-type to I-type, and I-type to B-type) or in gray for non-changed compartments. At the top, the bar plots between B cell subpopulations represent the total
percentage of regions changing to active or inactive, and regions that conserve its previous compartment definition. e Multi-omics characterization of the
937 regions (at 100 kb resolution) gaining activity exclusively in GCBC. Left: Scheme of B cell differentiation and chromatin state dynamics, in which the bar
plots indicate the log2 fold change of active, intermediate, or inactive-related chromatin state groups. Right: Boxplots of chromatin accessibility (ATAC-seq
signal), DNA methylation (5-mC signal), and gene expression (RNA-seq signal) per B cell subpopulations. The median signal of each layer was
computed for NBC, GCBC, PC, and MBC: n= 3 biologically independent samples (all nine layers with the exception of ATAC-seq for MBC which n= 6
biologically independent samples were used). For the boxplots, centerline, box limits, and whiskers represent the median, 25th, and 75th percentiles
and 1.5× interquartile range, respectively. P values were calculated using the Wilcoxon rank-sum test (two-sided); ns nonsignificant, ***p value < 0.001,
****p value < 0.0001. f Enrichment analysis of transcription factor (TF) binding motifs. Top: Schematic representation of the analytic strategy. Bottom:
Binding motifs of MEF2 and POU TF families in active and accessible loci in the GCBC specific regions gaining activity (n= 171 independent genomic loci)
vs. the background (n= 268 independent genomic loci). P values were calculated using the Wilcoxon rank-sum test (one-sided). ActProm-StrEnh1 active
promoter-strong enhancer 1, WkProm weak promoter, StrEnh2 strong enhancer 2, WkEnh weak enhancer, TxnTrans transcription transition, TxnElong
transcription elongation, WkTxn weak transcription were A-type compartment-related states. PoisProm poised promoter, PolycombRepr polycomb-
repressed were I-type compartment-related states. Het;Repr heterochromatin-repressed, Het;LowSign heterochromatin-low signal were B-type
compartment-related states.
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eigenvalue > 0.4 and FDR < 0.05) in CLL and MCL, respectively.
The larger number of regions changing compartments in CLL
correlates with the results of the Hi-C based clustering (Fig. 4b),
which indicates that MCL is more similar to NBC/MBC than
CLL. Moreover, the observed compartment changes tended
toward inactivation in CLL (57.5%) (Fig. 4d middle) and towards
activation in MCL (57.0%) (Fig. 4e middle) compared to the
normal B cells. These 3D genome organization changes were
associated with the expected changes in chromatin function.
Inactivation at the 3D genome level in CLL was linked to a shift
to the poised promoter and polycomb-repressed chromatin states,
and a significant loss of chromatin accessibility and gene
expression (Fig. 4d right). Activation at the 3D genome level in
MCL was accompanied by an enrichment of active chromatin
states and a significant increase in chromatin accessibility and
gene expression (Fig. 4e right). Overall, these results point to the
presence of recurrent and specific changes in the 3D genome
organization in CLL and MCL.

EBF1 downregulation in CLL is linked to extensive 3D genome
reorganization. To further characterize the compartmentaliza-
tion of neoplastic B cells, we classified the changing compart-
ments as common (between CLL and MCL) or entity-specific
(either in CLL or MCL). We detected 31 compartments com-
monly altered in both malignancies, revealing the existence of a
core of regions that distinguish normal and neoplastic B cells

(Fig. 5a, b). A targeted analysis of CLL and MCL revealed 89 CLL-
specific (41 and 48 inactivated and activated, respectively)
and only 3 MCL-specific compartment changes (Fig. 5c, Fig. 6a,
and Supplementary Fig. 4a). The set of 41 compartments inac-
tivated in CLL were significantly enriched (p value= 0.006) in
downregulated genes (n= 11) as compared to normal B cells
and MCL samples, being the early B cell factor 1 (EBF1) a
remarkable example (Fig. 5c, d and Supplementary Data 6). EBF1
downregulation has been described to be a diagnostic marker in
CLL50, and its low expression may lead to reduced levels of
numerous B cell signaling factors contributing to the anergic
signature of CLL cells51,52 and low susceptibility to host
immunorecognition53,54. To obtain insights into the mechanisms
underlying EBF1 silencing in CLL, we analyzed in detail a 2 Mb
region hosting the gene, which also contains two nearby protein-
coding genes, RNF145 and UBLCP1, and a lncRNA, LINC02202.
We observed that a large fraction of 3D interactions involving
the EBF1 region in normal B cells were lost in CLL resulting in
a change from A-type to I-type compartment and a sharp inac-
tivation of the gene, as shown by the analysis of chromatin sta-
tes (Fig. 5e). Remarkably, in spite of the global reduction of 3D
interactions, the two adjacent genes (RNF145 and UBLCP1)
were located in the only region (spanning 200 kb) that remained
as A-type compartment in the entire 2 Mb region, maintaining
thus an active state. To obtain further insights into the
EBF1 genome structure, we modeled its spatial organization

Fig. 3 Chromatin organization at the AICDA locus. a Normalized Hi-C contact map of the domain structure surrounding the AICDA gene
(chr12:8,598,290-8,615,591, GRCh38) in NBC. The log fold change interaction between GCBC, MBC, or PC as compared to NBC was computed. Below
each interaction map, chromatin state tracks of three biological replicates per B cell subpopulation are shown. The coordinates of the represented region
are chr12:8,550,000–9,050,000, GRCh38. bMulti-layer epigenomic characterization of the AICDA gene region in four B cell subpopulations. Arc diagrams
indicate significant Hi-C interactions (continuous red lines involve the region of interest, while dashed red lines involve other regions of chromosome 12).
Below them, compartment definition (red, compartment A-type: green, compartment I-type), chromatin states, chromatin accessibility (ATAC-seq, y-axis
signal from 0 to 105), and gene expression (RNA-seq, y-axis signal from 0 to 4 for the positive strand and from 0 to −0.1 for the negative strand) are
shown. Tracks of Hi-C interactions and compartment definition are based on merged replicates whereas chromatin states, chromatin accessibility, and
gene expression tracks of each replicate are shown separately. The coordinates of the represented region are chr12:8,570,000–8,670,000, GRCh38.
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in NBC and CLL by using the restraint-based modeling
approach implemented in TADbit55,56 (Fig. 5f and Supplemen-
tary Fig. 4b, c). The EBF1 domain in CLL resulted in larger
structural variability as compared with the models in NBC due to
the depletion of interactions in neoplastic cells (Supplementary
Fig. 4b). The 3D models revealed that the EBF1 gene is located in
a topological domain, isolated from the rest of the region in

NBC, hosting active enhancer elements (Fig. 5f). Remarkably,
the active enhancer elements together with the interactions are
lost in CLL (Fig. 5f), resulting in more collapsed conformations
(Fig. 5g). Overall, these analyses suggest that EBF1 silencing
in CLL is linked to a compartment shift of a large genomic
region leading to the abrogation of interactions and regulatory
elements.

Fig. 4 Characterization of the chromatin architecture of human B cell neoplasms. a Table of samples description together with the number of in situ Hi-C
replicates analyzed by each CLL and MCL cases. b Dendrogram of the reproducibility scores for normalized Hi-C contact maps at 100 kb for B cell
subpopulations replicates and samples from B cell neoplasia patients. IGHV unmutated (u)CLL; IGHV mutated (m)CLL; conventional (c)MCL and non-
nodal (nn)MCL. c Unsupervised principal component analysis (PCA) for nine omics layers generated in the same patient samples as Hi-C: ChIP-seq of six
histone marks (H3K4me3 n= 53,241 genomic regions, H3K4me1 n= 54,653 genomic regions, H3K27Ac n= 106,457 genomic regions, H3K36me3 n=
50,530 genomic regions, H3K9me3 n= 137,933 genomic regions, and H3K27me3 n= 117,560 genomic regions), chromatin accessibility measured by
ATAC-seq (n= 140,187 genomic regions), DNA methylation measured by WGBS (n= 14,088,025 CpGs) and gene expression measured by RNA-seq
(n= 57,376 transcripts). d Compartment changes upon CLL transformation. Left: First bar graph represents the percentage of stable and dynamic
compartments during normal B cell differentiation. The second bar graph shows the percentage of stable and differential compartments in CLL as
compared to normal B cells. A total of 23.8% of the compartments change in at least one CLL sample. Middle: Heatmaps showing eigenvector coefficients
of the 348 compartments significantly losing (n= 200) or gaining (n= 148) activation in CLL samples as compared to normal B cells. Right: Multi-omics
characterization of the 200 regions losing activity in CLL. Chromatin states, chromatin accessibility (ATAC-seq signal), DNA methylation (5-mC signal),
and gene expression (RNA-seq signal) is shown for the CLL cases and normal B cells. The median signal of each layer was computed for NBC, GCBC, PC,
and MBC while for the CLL the signal per each omics layer was considered. e Compartment changes upon MCL transformation. Left: First bar graph
represents the percentage of stable and dynamic compartments in B cells. The second bar graph shows the percentage of conserved compartments
between B cells and MCL. A total of 27.3% of the compartments change in at least one MCL sample.Middle: Heatmaps showing eigenvector coefficients of
significant dynamic compartments between MCL and B cells (n= 82). Regions were split in two groups (MCL activation, n= 35 or inactivation, n= 47)
according to the structural modulation of the MCL as compared to B cells. Right: Example of the MCL activation subset showing the chromatin states
pattern, chromatin accessibility (ATAC-seq signal), DNA methylation (5-mC signal), and gene expression (RNA-seq signal). The median signal of each
layer was computed for NBC, GCBC, PC, and MBC while for the MCL cases the signal per each omics layer was applied. Sample sizes were for uCLL: n= 2
biologically independent samples (all nine layers), for mCLL: n= 5 biologically independent samples (all nine layers), for cMCL: n= 2 biologically
independent samples (all nine layers), for nnMCL: n= 3 biologically independent samples (all nine layers), for NBC, GCBC, PC, and MBC: n= 3 biologically
independent samples (all nine layers with the exception of ATAC-seq for MBC in which n= 6 biologically independent samples were used). For the
boxplots, centerline, box limits, and whiskers represent the median, 25th and 75th percentiles and 1.5× interquartile range, respectively. Comparisons were
performed using the Wilcoxon rank-sum test (two-sided). **p value < 0.01, ****p value < 0.0001.
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Our analysis also detected 48 regions that changed toward a
more active compartment exclusively in CLL (Fig. 6a). As
expected, these regions were significantly enriched in upregulated
genes (p value= 0.0038) and harbored nine genes with increased
expression (Fig. 6b and Supplementary Data 7). As previously
shown for regions gaining activity in GCBC (Fig. 2e), we
evaluated whether particular TFs were related to the CLL-specific
increase in 3D interactions. Indeed, we found an enrichment in

TF binding motifs of the TCF (p value= 0.00004) and NFAT
(p value= 0.00647) families, which have been described to be
relevant for CLL pathogenesis29,57,58 (Fig. 6c and Supplementary
Data 8). One of the nine upregulated genes in CLL-specific active
compartments was KSR2, a gene whose upregulation has a strong
diagnostic value in CLL50. Importantly, this gene contained
several motifs for the TCF4 TF (Fig. 6d), which itself is
overexpressed in CLL as compared to normal B cells29, suggesting

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20849-y ARTICLE

NATURE COMMUNICATIONS |          (2021) 12:651 | https://doi.org/10.1038/s41467-020-20849-y | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


in this particular example that TCF4 overexpression may lead to
aberrant binding to KSR2 regulatory elements and a local
remodeling of its 3D interactions.

Increased 3D interactions across a 6.1 Mb region including the
SOX11 oncogene in aggressive MCL. In addition to entity-
specific 3D genome changes, our initial analyses also suggested
that different clinico-biological subtypes may have a different 3D
genome organization, especially in MCL (Fig. 4b). To identify
subtype differences within each B cell neoplasia, we selected
regions with homogeneous compartments within each disease
subtype and classified them as distinct if the difference between
the Hi-C matrices cross-correlation eigenvalues was greater than
0.4. Applying this criterion, we defined 47 compartment changes
between uCLL and mCLL, and 673 compartment changes
between nnMCL and cMCL (Fig. 7a). This finding confirmed the
previous analyses (Supplementary Fig. 3b–e) and indicated that
the two MCL subtypes have a markedly different 3D genome
organization. Two-thirds of the compartments changing in the
MCL subtypes (n= 435, 64.6%) gained activity in the clinically
aggressive cMCL, and one-third gained activity in nnMCL. We
then characterized the chromosomal distribution of these com-
partment shifts, which, surprisingly, was significantly biased
toward specific chromosomes (Fig. 7b). In particular, those
regions gaining 3D interactions in aggressive cMCL were highly
enriched in chromosome 2, being 22.3% (n= 97) of all 100 kb
compartments located in that chromosome (Fig. 7b). We next
analyzed chromosome 2 of cMCL in detail and we observed a de
novo gain of A-type and I-type compartments accumulated at
band 2p25 as compared to both normal B cells and nnMCL
(Fig. 7c). The entire region of about 6.1 Mb had a dramatic
increase of interactions and active chromatin states in cMCL as
compared to nnMCL (Fig. 7d and Supplementary Fig. 5a). This
region contains SOX11, whose overexpression in cMCL repre-
sents the main molecular marker to differentiate these two MCL
subtypes59, and has been shown to play multiple oncogenic
functions in cMCL pathogenesis60–62. However, as SOX11 is
embedded into a large block of 6.1 Mb gaining activation in
cMCL, we wondered whether additional genes could also become
upregulated as a consequence of the large-scale spatial organi-
zation of chromosomal band 2p25. Indeed, mining the expression
data from the 5 MCL cases studied herein as well as two addi-
tional published cohorts50,63, we observed that 13 (43%) of the 30
expressed genes within the 6.1 Mb region were overexpressed in
cMCL as compared to nnMCL in at least one cohort (Fig. 7d and

Supplementary Fig. 5b–d), which may also contribute to cMCL
pathogenesis and clinical aggressiveness.

Discussion
We present a comprehensive analysis of the dynamic genome
architecture reorganization during normal human B cell differ-
entiation and upon neoplastic transformation into CLL and MCL.
The integration of 3D genome data with nine additional omics
layers including DNA methylation, chromatin accessibility, six
histone modifications, and gene expression, has allowed us to
obtain insights into 3D genome functional compartmentalization,
cellular transitions across B cell differentiation, and 3D genome
aberrations in neoplastic B cells. We initially explored the dis-
tribution of Hi-C eigenvector coefficients and identified that
categorization into three components seemed to be more
appropriate than the well-established dichotomous separation of
the genome into A-type and B-type compartments5. Between
the active (A) and repressed (B) compartments, we observed the
presence of an intermediate (I) component which contained more
inter-compartment interactions than fully active or inactive
chromatin and is enriched in H3K27me3 located within poised
promoters and polycomb-repressive chromatin states. This dis-
tribution resembles the traditional chromatin structure organi-
zation into euchromatin, facultative heterochromatin, and
constitutive heterochromatin. In this context, the I-type com-
partment may represent the facultative heterochromatin, a labile
state of the high-order chromatin organization that can evolve
either into active or inactive chromatin compartments64. The I-
compartment in part overlaps with the B1 compartment enriched
in H3K27me3 described by Rao et al.12 in their recent classifi-
cation of the 3D genome into six subcompartments5 (Supple-
mentary Fig. 2e, f). A confirmation of the I-compartment may be
further supported by several lines of published evidence. For
example, during T cell commitment, a correlation between
intermediate compartment scores with intermediate levels of gene
expression was observed15. Recently, using super-resolution
imaging, it was found that some compartments could belong to
active or inactive states depending on the observed cell65, which
could resemble an intermediate compartment in a population-
based analysis such as Hi-C. Finally, this evidence is also in line
with the observation that the polycomb repressive complex forms
discrete subnuclear chromatin domains66–68 that can be dyna-
mically modulated during cell differentiation69,70.

The three compartments had extensive modulation during
human B cell differentiation, a process whose 3D genome
architecture has been previously studied in cell lines and primary

Fig. 5 EBF1 silencing in CLL is accompanied by structural changes affecting a 2Mb region. a Venn diagram showing the significant number of dynamic
compartments in CLL and MCL as compared to normal B cell differentiation and the regions shared between both B cell neoplasms (n= 31). b Heatmaps
showing eigenvector coefficients of compartments significantly losing or gaining activation between B cell neoplasms (MCL and CLL together) and B cells.
c Heatmap showing the eigenvector coefficients of the compartments losing activation specifically in CLL (n= 41). Significantly downregulated genes
(FDR < 0.05) associated to each compartment are shown on the right of the heatmap. d FPKM values of all the CLL-specific significantly downregulated
genes within compartments loosing activation. Sample sizes were for CLL: n= 7 biologically independent samples and for non-CLL: n= 17 biologically
independent samples (n= 3 for each NBC, GCBC, PC, and MBC, n= 5 for MCL cases). eMap of the EBF1 regulatory landscape. Significant Hi-C interactions
(p value= 0.001) and compartment definitions from merged NBC and a representative CLL sample, followed by chromatin state tracks from each NBC
(n= 3 biologically independent samples) and CLL (n= 7 biologically independent samples). The coordinates of the represented region are
chr5:158,000,000–160,000,000, GRCh38. f Restraint-based model at 5 kb resolution of the 2Mb region containing EBF1 gene (total 400 particles, EBF1
locus localized from 139 to 220 particle) in NBC and CLL. The surface represents the ensemble of 1000 models and is color-coded based on the
compartment definition (A-type, B-type, and I-type in red, blue, and green, respectively). The top-scoring model is shown as trace, where protein-coding
genes are colored in blue and long noncoding RNAs in yellow. Spheres represent enhancer regions. g Violin plot of the convex hull volume involving the 81
particles from the EBF1 region. Sample sizes were for NBC: n= 3 biologically independent samples and for CLL: n= 7 biologically independent samples. For
the boxplots, centerline, box limits, and whiskers represent the median, 25th, and 75th percentiles and 1.5× interquartile range, respectively. The
comparison was performed using the Wilcoxon rank-sum test (two-sided). *adjusted p value < 0.05, **adjusted p value < 0.01, ***adjusted p value < 0.001,
****adjusted p value < 0.0001.
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mouse cells8,14,71–74 or during the human germinal center reac-
tion16. We observed that 28.1% of the genome is dynamically
altered in particular B cell maturation transitions, a magnitude
that is in line with compartment transitions observed during the
differentiation of human embryonic stem cells into four cell
lineages7 or the reprogramming of mouse somatic cells into
induced pluripotent stem cells8,75, but lower than an analysis of
compartment transitions across 21 human cells and tissues, which
reached 59.6% of the genome13. The compartment modulation
linked to B cell maturation was mainly related to two phenomena,
a large-scale activation from NBC to GCBC and a reversion of the
3D genome organization of MBC back to the one observed in less

mature NBC. As the number of mid-range 3D interactions upon
activation has been suggested to decrease76, our result on the
GCBC structural activation supports a previous study in which
the chromatin structure of GCBC undergoes global de-
compaction16. In this context, TFs have been described to act
as the architects instructing structural changes in the genome77

and a recent report has described that TFs are able to drive
topological genome reorganizations even before detectable
changes in gene expression8. A detailed analysis of regions that
become exclusively active in GCBC as compared to any other B
cell subpopulation under study revealed enrichment in TF
binding motifs of MEF2 and POU families, which have been

Fig. 6 Transcription factors associated with CLL-specific activated compartments. a Heatmap showing the first eigenvector coefficients of the
compartments gaining activation specifically in CLL (n= 48). Significantly upregulated genes (FDR < 0.05) associated with each compartment are shown
on the right of the heatmap. b FPKM values of all the CLL-specific significantly upregulated genes within compartments gaining activation. c Enrichment
analysis of transcription factor (TF) binding motifs. The most significant TF binding motifs enriched inactive and accessible loci within the CLL-specific
regions gaining activity (n= 25 independent genomic loci) vs. the background (n= 28 independent genomic loci). P values were calculated using the
Wilcoxon rank-sum test (one-sided). d Example of TCF4 binding motifs at the KSR2 promoter region in CLL and NBC. The H3K27ac ChIP-seq signal,
chromatin accessibility (ATAC-seq) and chromatin states of a representative NBC replicate and CLL sample are shown. The coordinates of the represented
region are chr12:117,856,977–117,975,164, GRCh38. Sample sizes were for CLL: n= 7 biologically independent samples and for non-CLL: n= 17 biologically
independent samples (n= 3 for each NBC, GCBC, PC, and MBC, n= 5 for MCL cases). For the boxplots, centerline, box limits, and whiskers represent the
median, 25th, and 75th percentiles and 1.5× interquartile range, respectively. The comparison was performed using the Wilcoxon rank-sum test (two-
sided). *adjusted p value < 0.05, **adjusted p value < 0.01, ***adjusted p value < 0.001, ****adjusted p value < 0.0001.
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described to play a key role in the germinal center formation44. In
line with this important role of TFs in activating chromatin in
GCBC, we also identified that NFAT and TCF binding motifs are
enriched in those compartments specifically activated in CLL, and
these TFs have also been previously linked to de novo active
regulatory elements in CLL and its pathobiology29. All these

results are concordant with studies in which lineage-restricted
TFs have been proposed to establish and maintain genome
architecture of specific lineages14,77–79. The outcome of the
germinal center reaction is PC and MBC, which are phenotypi-
cally and functionally distinct subpopulations. GCBC and PC
show an overall high level of conservation of their 3D genome
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organization, but the differentiation into MBC is related to
extensive changes. Remarkably, we observed roughly three-
quarters of the changes in MBC compartments reverted back to
the compartment profile observed in NBC. This reversibility
of the higher-order chromatin structure is very much in line with
the previously observed similarity of histone modifications,
chromatin accessibility, and gene expression profiles in NBC and
MBC. In sharp contrast to this congruent behavior of chromatin-
based traits, DNA methylation is rather different between NBC
and MBC, as this mark follows an accumulative pattern during
cell differentiation31,80 and can be used to faithfully track the
lineage trajectory of the cells81.

We describe that B cell neoplasms show tumor-specific chan-
ges in the 3D genome organization that can span over large DNA
stretches and contains genes linked to their pathogenesis. Of
particular interest was the observation of the structural activation
of 6.1 Mb affecting the entire chromosome band 2p25.2 in
aggressive cMCL, which contains the SOX11 oncogene, a bio-
marker whose expression defines this MCL subtype59 and plays
key functional roles in its pathogenesis82. Although the SOX11
oncogene expression is related to the presence of active histone
modifications in the promoter region83 and the establishment of
novel 3D loops with a distant enhancer element33, our finding
indicates that such looping is embedded into long-range altera-
tions in the 3D genome structure. This change is not only linked
to SOX11 overexpression but seems to be related to the simul-
taneous overexpression of multiple genes within the target region.
This phenomenon of long-range epigenetic changes has been
observed at the DNA methylation level, as the hypermethylation
over one chromosomal band of 4Mb has been linked to silencing
of several genes in colorectal cancer84. In addition, in prostate
cancer, long-range chromatin activation or inactivation analyzed
by histone modifications has been shown to target oncogenes,
microRNAs, and cancer biomarker genes85. The presence of
large-range epigenetic remodeling in cancer84–93 shall support a
more generalized use of genome-wide chromosome conformation
capture techniques as part of the global characterization of pri-
mary human tumors. Beyond the identification of concerted
deregulation of multiple contiguous genes with a potential role in
cancer biology, targeting long-range aberrations in the 3D gen-
ome structure may itself represent a therapeutic target.

In conclusion, we provide an integrative and functional resource
describing the dynamic 3D genome topology during human B cell
differentiation and neoplastic transformation. Our analysis points to
a highly dynamic 3D genome organization in normal B cells,
including extensive activation from NBC to GCBC and reversibility
in MBC. In neoplastic cells from CLL and MCL, we identify the
disease and subtype-specific change in the 3D genome organization,
which include large chromatin blocks containing genes playing key
roles in their pathogenesis and clinical behavior.

Methods
Isolation of B cell subpopulations for in situ Hi-C experiment. Four B cell
subpopulations spanning mature normal B cell differentiation were sorted for

in situ Hi-C as previously described31. Briefly, peripheral blood B cell sub-
populations, i.e., NBC and MBC were obtained from buffy coats for healthy adult
male donors from 56 to 61 years of age, obtained from Banc de Sang i Teixits
(Catalunya, Spain). GCBC and PC were isolated from tonsils of male children
undergoing tonsillectomy (from 2 to 12 years of age), obtained from the Clínica
Universidad de Navarra (Pamplona, Spain). Samples were cross-linked before
FACS sorting, to separate each of the B cell subpopulations, and afterward were
snap-frozen and kept at −80 °C. Three replicates per B cell subpopulation were
processed and each replicate was derived from individual donors with the excep-
tion of PC, for which two of the three replicates proceeded from the pool of four
different donors. The use of the samples analyzed in the present study was
approved by the ethics committee of the Hospital Clínic de Barcelona and Clínica
Universidad de Navarra.

Patient samples. The samples from CLL (n= 7)29 and MCL (n= 5) patients were
obtained from cryopreserved mononuclear cells from the Hematopathology col-
lection registered at the Biobank (Hospital Clínic-IDIBAPS; R121004-094). All
samples were >85% tumor content. Clinical and biological characteristics of the
patients are shown in Supplementary Data 5.

The enrolled patients or legally authorized representatives/parents minor
participants (age below 18 years of age) gave informed consent for scientific study
following the ICGC guidelines and the ICGC Ethics and Policy committee94. This
study was approved by the clinical research ethics committee of the Hospital Clínic
of Barcelona.

In situ Hi-C. In situ Hi-C was performed based on the previously described pro-
tocol12. Two million cross-linked cells per sample were used as starting material.
Chromatin was digested adding 100U DpnII (New England BioLabs) and incu-
bated overnight. After the fill-in with bio-dCTP (Life-Technologies, 19518-018),
nuclei were centrifuged 5 min, 3000 rpm at 4 °C, and ligation was performed for 4 h
at 16 °C adding 2 µl of 2000 U/µl T4 DNA ligase on a total of 1.2 mL of ligation mix
(120 µl of 10× T4 DNA ligase buffer; 100 µl of 10% Triton X-100; 12 µl of 10 mg/ml
BSA; 966 µl of H2O). Following ligation, nuclei were pelleted and resuspended with
400 µl 1× NEBuffer2 (New England BioLabs). Then, 10 µl of RNAseA (10 mg/ml)
was added to the nuclei and incubated for 15 min at 37 °C while shaking (300 rpm),
and after that 20 µl of proteinase K (10 mg/mL) was added and incubated overnight
at 65 °C while shaking (600 rpm). After reversion of the cross-link, DNA was
purified by phenol/chloroform/isoamyl alcohol and DNA was precipitated by
adding to the upper aqueous phase: 0.1× of 3 M sodium acetate pH 5.2, 2.5× of
pure ethanol, and 50 µg/ml glycogen. Samples were mixed and incubated overnight
at −80 °C. Next, samples were centrifuged 30 min at 13,000 rpm at 4 °C, and the
pellet was washed with 1 mL of EtOH 70% followed by a 15 min centrifugation at
13,000 rpm at 4 °C. The supernatant was discarded and the pellet air-dried for
5 min and resuspended in 130 µl of 1× Tris buffer (10 mM TrisHCl, pH 8.0), which
to be fully dissolved was incubated at 37 °C for 15 min. Purified DNA was soni-
cated using Covaris S220, and then the final volume was adjusted to 300 µl with 1×
Tris buffer. Sonicated DNA was mixed with washed magnetic streptavidin T1
beads (total of 100 µl 10 mg/ml beads), split in two tubes (150 µl each), and
incubated for 30 min at room temperature (RT) under rotation. Subsequently,
beads were separated on the magnet, the supernatant discarded and the DNA was
washed with 400 µl of BB 1×, twice. Sonicated DNA conjugated with beads was
washed with 100 µl of 1× T4 DNA ligase buffer, pooling the two tubes per con-
dition. After that, beads were reclaimed in the end-repair mix. Once incubated for
30 min at RT the beads were washed twice with 400 µl of BB 1×. Then, beads were
washed with 100 µl of NEBuffer2 and reclaimed in A-tailing mix, incubated for 30
min at 37 °C and washed twice with 400 µl of BB 1×, followed by a wash in 100 µl
of 1× T4 DNA ligase buffer. Afterward, the beads were resuspended in 50 µl of 1×
Quick ligation buffer, 2.5 µl of Illumina adaptors, and 4000 U of T4 DNA ligase and
incubated for 15 min at RT. Then, beads were washed twice with 400 µl BB 1× and
resuspended in 30 µl of 1× Tris buffer. In the end, libraries were amplified by eight
cycles of PCR using 8.3 µl of beads and pooling a total of 4 PCRs per sample. The
PCR products were mixed by pipetting with an equal volume of AMPure XP beads
and incubated at RT for 5 min. Beads were washed with 700 µl of EtOH 70%,
without mixing, twice, and left the EtOH to evaporate at RT without over-drying
the beads (approximately 4 min). Finally, the beads were resuspended with 30 µl 1×
Tris buffer, incubated for 5 min, and the supernatant containing the purified library

Fig. 7 Long-range chromatin remodeling of a 6.1 Mb involving SOX11 in cMCL. a Heatmaps showing eigenvector coefficients of compartments
significantly changing in cMCL vs. nnMCL (n= 673) and in uCLL vs. mCLL (n= 47). b Left: Genome-wide distribution of compartments (its position is
determined with orange vertical lines) changing in MCL subtypes. Right: Relative abundance of the compartments significantly gaining activity in cMCL or
nnMCL as compared with a random probability evaluated using a Monte-Carlo test (one-tailed). A gain in compartment activation was defined as an
increase of the eigenvector coefficient of at least 0.4. *p value < 0.05, ****p value < 0.0001. c Heatmap showing eigenvector coefficients of compartments
specifically gaining activation in cMCL (n= 93) in chromosome 2. On top of the heatmap, a 6.1 Mb genomic block gaining activation in 2p25 is highlighted.
d Top: Differentially expressed genes between cMCL and nnMCL in each of the three cohorts of transcriptional data of MCL patients. Bottom: Compartment
definition tracks on all the MCL cases. Eigenvalue subtraction between a representative cMCL and an nnMCL cases highlighting the 6.1 Mb region gaining
activity in the former.
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was transferred in a new tube and stored at −20 °C. DNA was quantified by Qubit
dsDNA High Sensitivity Assay, the library profile was evaluated on the Bioanalyzer
2100 and the ligation was assessed. Libraries were sequenced on HiSeq 2500.
Supplementary Data 1 summarizes the number of reads sequenced and quality
metrics for each B cell subpopulation replicate and B cell neoplasm.

Hi-C data preprocessing, normalization, and interaction calling. The sequen-
cing reads of Hi-C experiments were processed with TADbit version 0.4.6256.
Briefly, sequencing reads were aligned to the reference genome (GRCh38) applying
a fragment-based strategy; dependent on GEM mapper95. The mapped reads were
filtered to remove those resulting from unspecified ligations, errors, or experi-
mental artifacts. Specifically, we applied seven different filters using the default
parameters in TADbit: self-circles, dangling ends, errors, extra dangling-ends, over-
represented, duplicated, and random breaks56. Hi-C data were normalized using
the OneD R package version 0.0.0.910096 at 100 kb of resolution to remove known
experimental biases, a method that controls for the presence of abnormal kar-
yotypes in cancer samples96. The significant Hi-C interactions were called with the
analyzeHiC function of the HOMER software suite version 4.9.178, binned at 10 kb
of resolution and with the default p value threshold of 0.001.

Reproducibility of Hi-C replicas. The agreement between Hi-C replicates was
assessed using the RS37. The RS is a measure of matrix similarity ranging between 0
(totally different matrices) and 1 (identical matrices). A genome-wide RS was
defined for each experiment as the average RS between pairs of corresponding
normalized chromosome matrix (Supplementary Fig. 1a and Supplementary
Fig. 3a). Then, the matrix representing all the genome-wide RSs was analyzed using
a hierarchical clustering algorithm with Ward’s agglomeration method using hclust
function from stats R package version 3.5.1.

ChIP-seq and ATAC-seq data generation and processing. ChIP-seq of the six
different histone marks and ATAC-seq data were generated as described in (http://
www.blueprint-epigenome.eu/index.cfm?p=7BF8A4B6-F4FE-861A-
2AD57A08D63D0B58)29. Briefly, fastq files of ChIP-seq data were aligned to the
GRCh38 reference genome using bwa version 0.7.797, Picard version 2.8.1 (http://
broadinstitute.github.io/picard/) and SAMtools version 1.3.198, and wiggle plots
were generated (using PhantomPeakQualTools R package version 1.1.0) as
described (http://dcc.blueprint-epigenome.eu/#/md/methods). Peaks of the histone
marks were called as described in http://dcc.blueprint-epigenome.eu/#/md/
methods using MACS2 version 2.0.10.2013121699 with input control. ATAC-seq
fastq files were aligned to genome build GRCh38 using bwa version 0.7.7 (para-
meters: -q 5 –P -a 480)97 and SAMtools version 1.3.1 (default settings)98. BAM
files were sorted and duplicates were marked using Picard tools version 2.8.1
with default settings (http://broadinstitute.github.io/picard/). Finally, low
quality and duplicate reads were removed using SAMtools version 1.3.1
(parameters: -b -F 4 -q 5,-b, -F 1024)98. ATAC-seq peaks were determined using
MACS2 version 2.1.1.20160309(parameters: -g hs q 0.05 -f BAM –nomodel -
shift −96 extsize 200 - keep -dup all) without input99. For downstream analyses
peaks with FDR threshold of 1 × 10−7 (H3K4me3, H3K4me1, H3K27ac) or 1 ×
10−2 (H3K36me3, H3K9me3, H3K27me3, and ATAC-seq) were included.

For each mark a set of consensus peaks (chr1-22) present in the normal B cells
(n= 12 biologically independent samples for histone marks and n= 15 biologically
independent samples for ATAC-seq) was generated by merging the locations of the
separate peaks per individual sample. Also, the second set of consensus peaks was
generated taking into account normal B cells, CLL (n= 7 biologically independent
samples), and MCL (n= 5 biologically independent samples). For the histone
marks, the number of reads per sample per consensus peak was calculated using the
genomecov function of BEDtools suite version 2.25.0100. For ATAC-seq, the
number of insertions of the TN5 transposase per sample per consensus peaks was
calculated determining the estimated insertion sites (shifting the start of the first
mate 4 bp downstream), followed by the genomecov function of BEDtools suite
version 2.25.0100. The number of consensus peaks for normal B cell samples were
46,184 (H3K4me3), 44,201 (H3K4me1), 72,222 (H3K27ac), 25,945 (H3K36me3),
40,704 (H3K9me3), 20,994 (H3K27me3), 99,327 (ATAC-seq), while the number of
consensus peaks for normal B cells, CLL and MCL samples were 53,241
(H3K4me3), 54,653 (H3K4me1), 106,457 (H3K27ac), 50,530 (H3K36me3), 137,933
(H3K9me3), 117,560 (H3K27me3), 140,187 (ATAC-seq). Using DESeq2 R package
version 1.28.0101 counts for all consensus peaks were transformed by means of the
variance stabilizing transformation (VST) with blind dispersion estimation. PCAs
were generated with the prcomp function from the stats R package version 3.5.1
using the VST values.

RNA-seq data generation and processing. Single-stranded RNA-seq data were
generated as previously described102. Briefly, RNA was extracted using TRIZOL
(Life Technologies) and libraries were prepared using TruSeq Stranded Total RNA
kit with Ribo-Zero Gold (Illumina). Adapter-ligated libraries were amplified and
sequenced using 100 bp single-end reads. RNA-seq data of the 24 samples, some
(n= 19) mined from a previous study29, were aligned to the reference human
genome build GRCh38 (Supplementary Data 5). Signal files were produced and
gene quantifications (gencode 22, 60,483 genes) were calculated as described

(http://dcc.blueprint-epigenome.eu/#/md/methods) using the GRAPE2 pipeline
with STAR version 2.4.0j and RSEM version 1.2.21 software (adapted from the
ENCODE Long RNA-Seq pipeline). The expected counts and fragments per
kilobase million (FPKM) estimates were used for downstream analysis. The PCA of
the RNA-seq data was generated with the prcomp function from the stats R package
version 3.5.1 in the 12 analyzed normal B cell samples or 24 analyzed normal and
neoplastic B cell samples.

WGBS data generation and processing. WGBS was generated as previously
described31. Mapping and determination of methylation estimates were performed
as described (http://dcc.blueprint-epigenome.eu/#/md/methods) using GEM ver-
sion 3.0. Per sample, only methylation estimates of CpGs with ten or more reads
were used for downstream analysis. The PCA of the DNA methylation data was
generated with the prcomp function from the stats R package version 3.5.1 using
methylation estimates of 15,089,887 CpGs (chr1-22) with available methylation
estimates in all 12 analyzed normal B cell samples or 14,088,025 CpGs (chr1–22) in
all 24 analyzed normal and neoplastic B cell samples.

Definition of sub-nuclear genome compartmentalization. The segmentation of
the genome into compartments was determined as previously described5. In short,
normalized chromosome-wide interaction matrices at 100 kb resolution were
transformed into Pearson correlation matrices. These correlation matrices were
then used to perform PCA for which the first eigenvector (EV) normally delineates
genome segregation. All EVs were visually inspected to ensure that the EV selected
corresponded to genomic compartments5. For a limited number of chromosomal
regions (i.e. chromosome 19 for MBC-rep2, uCLL2, mCLL2, and mCLL4 as well as
chromosomes 13 and 18 for uCLL2), TADbit could not unequivocally assign
compartments due to the sparseness of the Hi-C datasets. Since the sign of the EV
is arbitrary, a rotation factor based on the histone mark H3K4me1 signal and
ATAC-seq signal were applied to correctly call the identity of the compartments. A
Pearson correlation coefficient was computed between the EVs for each pair of
merged B cell subpopulation (Supplementary Fig. 1c). Each merged sample was
also correlated with its replica (Supplementary Fig. 1c). The multi-modal dis-
tribution of the EV coefficients from the B cells dataset was modeled as a Gaussian
mixture with three components (k= 3). To estimate the mixture distribution
parameters, an Expectation-Maximization algorithm using the normalmixEM
function from the mixtools R package version 1.2.0 was applied103.

A Bayesian Information Criterion (BIC) was computed for the specified mixture
models of clusters (from 1 to 10) using mclustBIC function from mclust R package
version 5.4.6104 (Supplementary Fig. 1d). Three underlying structures were defined;
alternative compartmentalization into A-type (with the most positive EV values),
B-type (with the most negative EV values), and I-type (an intermediate-valued
region with a distinct distribution) compartments. Two intersection values (IV1,
IV2) were defined at the intersection points between two components. The mean
IV1 and IV2 values across all the B cell replicas (n= 12) were then used as
standard thresholds to categorize the data into the three different components (that
is, A-type compartment was defined for EV values between +1.00 and +0.43,
I-type compartment was defined for EV values between +0.43 and −0.63, and
B-type compartment was defined for EV values between −0.63 and −1.00)
(Supplementary Fig. 1e).

Characterizing compartment types in B cells by integrating nine omics layers.
Given a set of peaks as previously defined by Beekman et al.29 from nine different
omics layers including six histone marks (H3K4me3, H3K4me1, H3K27ac,
H3K36me3, H3K9me3, and H3K27me3), gene accessibility (ATAC-seq), gene
expression (RNA-seq), and DNA methylation (WGBS), a bedmap function from
BEDOPS software version 2.4.28105 was applied to get the mean scoring peak over
the 100 kb intervals genome-wide. Next, Pearson correlation coefficients were
computed between the EV coefficients and the mean scoring value of each epi-
genetic mark at 100 kb intervals (Supplementary Fig. 1b). Finally, the mean scoring
values were normalized by the total sum of the values for each mark and grouped
by the three defined genomic compartments (A, I, B-type; Fig. 1g). A Wilcoxon
rank-sum test was used to compute the significance between all the possible
pairwise comparisons of the signal distribution.

Compartment interaction score (C-score). The compartment score is defined as
the ratio of contacts between regions within the same compartment (intra-com-
partment contacts) over the total chromosomal contacts per compartment (intra-
compartment+ inter-compartment). To compute the compartment score, all the
compartments that shared the same genomic segmentation were merged.

Chromatin states enrichment by genomic compartments. The genome was
segmented into 12 different chromatin states at 200 bp interval as previously
described29. The active promoter and strong enhancer 1 were merged as a unique
state, giving a total of 11 chromatin states. The genome compartmentalization was
next split into 4 groups; 3 conserved groups, in which the B cells samples shared A-
type compartment (n= 6,409), B-type compartment (n= 6,267), or I-type com-
partment (n= 5,467) and a dynamic group (n= 7,099) of non-conserved com-
partmentalization among B cells subpopulation. Each group was correlated with
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the defined 11 chromatin states using foverlaps function from data.table R package
version 1.13.0. The frequency of each chromatin state (corrected by the total fre-
quency in the genome) was computed per each genomic compartment. The
chromatin state score is thus the median frequency of the three replicas scaled by
the columns and the rows using scale function from base R package version 3.5.1.

Description of chromatin states in the intermediate (I)-type compartment. A
200 bp-windows containing poised promoter (n= 547) or polycomb-repressed
(n= 11,665) chromatin states were extracted from the NBC intermediate com-
partments (n= 1,885). From those regions, two main subgroups were dis-
tinguished according to the chromatin state shown in the next stage of
differentiation (GCBC): (1) those regions that maintained their chromatin state
(poised promoter or polycomb-repressed), and (2) those regions that changed their
chromatin state; which were further classified into three categories: (i) I-related
chromatin states (poised promoter or polycomb-repressed), (ii) B-related chro-
matin states (repressive heterochromatin and low signal heterochromatin), (iii)
A-related chromatin states (active promoter/strong enhancer 1, weak promoter,
strong enhancer 2, transcription transition, transcription elongation, and weak
transcription). Finally, the fold-change of related chromatin states between GCBC
and NBC was computed.

Analysis of chromatin state dynamics upon B cell differentiation. B cell dif-
ferentiation axis was divided into two main branches: (i) NBC-GCBC-PC and (ii)
NBC-GCBC-MBC. Both branches presented a common step from NBC to GCBC
and then a divergence step in PC or MBC. The 5,445 common compartments from
both branches were considered for the analysis. The general modulation of chro-
matin structure was drawn using the alluvial function from alluvial R package
version 0.1.2.

TF analyses. From GCBC-specific 937 active compartments (B to A-type, n= 18;
B to I-type, n= 512 and I to A-type, n= 407) were narrowed down to 171 peaks
due to the following filtering steps: (i) only the 200 bp-windows contain an active
promoter, strong enhancer 1, and strong enhancer 2 chromatin states were retained
(n= 1,907 regions). (ii) Regions, where H3K27ac peaks were differentially enriched
in GCBC, replicates compared to the rest of normal B cell subpopulations (FDR <
0.05) computed using DESeq2 R package version 1.28.0101 were retained. (iii)
Regions with a presence of ATAC-seq peaks in at least two GCBC replicates were
retained (n= 171 peaks). The background considered as the rest of the ATAC-seq
peaks (n= 268) presented at the 1,907 regions in at least two GCBC replicates.

From CLL-specific 48 active compartments (in normal B cells defined as I-type:
n= 28 and B-type: n= 20), were narrowed down to 25 peaks due to the following
filtering steps: (i) regions where H3K27ac peaks were differentially enriched
(FDR < 0.05) comparing CLL from all normal B cells and MCL using DESeq2 R
package version 1.28.0101, (ii) regions where ATAC-seq peaks were presented in at
least five CLL (n= 25). The background considered was all the resting ATAC-seq
peaks (n= 28) on the 48 compartments presented in at least five CLL.

On both analyses, FASTA sequences of targeted regions (GCBC-specific regions
and CLL-specific regions) were extracted using getfasta function from BEDtools
suite version 2.25.0100 using GRCh38 as reference assembly. An analysis of motif
enrichment was done by the AME-MEME suite version 5.0.3106 using non-
redundant TF-binding profiles of Homo sapiens Jaspar 2018 database107 as a
reference motif database. The database contained a set of 537 DNA motifs.
Maximum odd scores were used as a scoring method and one-tailed Wilcoxon
rank-sum test as motif enrichment test. Only TF genes that were expressed (FPKM
median values > 1) were included.

TCF4-binding motif example from the KSR2 gene. FASTA sequences of 25
ATAC-seq peaks detected in CLL-specific active compartments were extracted
using GRCh38 as reference assembly. A search of individual motif occurrences
analysis was done using AME-FIMO suite version 4.12108 library(BSgenome.
Hsapiens.UCSC.hg38,masked) with a custom random model (letter frequencies:
A, 0.262: C, 0.238: G, 0.238 and T, 0.262). A p value < 0.0001 was established as a
threshold to determine 23 significant motif occurrences where TCF4 binding motif
(MA0830.1) was one of the top candidates.

Log-ratio of normalized interactions in the AICDA regulatory landscape.
Normalized Hi-C maps were analyzed at 50 kb of resolution at the specific genomic
region, chr12:8,550,000–9,050,000 (GRCh38), from the four B cell subpopulations.
A logarithmic ratio of the contact maps was computed between NBC and GCBC
and GCBC with PC and MBC. The resulting array was convolved with a one-
dimensional Gaussian filter of standard deviation (sigma) of 1.0 using and inter-
polated with a nearest-neighbor approach using scipyndimage Python package
version 1.2.1.

Statistical testing for detecting significantly changed compartment regions.
Briefly, 100 kb regions that had at least one missing value among the compared
samples were removed from the analysis. Then, two different groups were defined,
case and control, according to the case–control pair analyzed. A t test was

computed to compare each case–control pair, and the resulting p values were
adjusted using the false discovery rate (FDR)109. The regions with significantly
different means and fold changes were selected based on two specific thresholds: a
p-adjustment value less than 0.05 and a fold change greater than 0.4. The results
were then generated for a total of four different case–control pairs.

(I) Control: all regions conserved across all B cell samples without missing
values in CLL (A-type, n= 3,967, I-type, n= 4,301 and B-type, n= 5,226), case: all
CLL regions non-conserved in B cell samples (n= 3,217). The analysis resulted in
348 B cell_CLL significantly changed regions.

(II) Control: all regions conserved across all B cell samples without missing
values in MCL (A-type n= 6,167, I-type n= 5,299, B-type n= 5,812), case: all
MCL regions non-conserved in B cell samples (n= 4,716). The analysis resulted in
82 B cell_MCL significantly changed regions.

(III) Control: B cell-CLL significantly changed regions (n= 348) — MCL-CLL
overlapping (n= 31)= B cell-CLL specific regions (n= 317), case: MCL regions
(A-type n= 97, I-type n= 154, B-type n= 61; total n= 312). The analysis resulted
in 89 B cell_CLL-specific regions.

(IV) Control: B cell-MCL significantly changed regions (n= 82) — MCL-CLL
overlapping (n= 31)= B cell-MCL specific regions (n= 51), case: CLL regions
(n= 41). The analysis resulted in three B cell_MCL-specific regions.

Integrative 3D modeling of EBF1 and structural analysis. Hi-C interactions
matrices from the merging of three replicas of NBC and the seven cases of CLL
were used to model chr5:158,000,000:160,000,000 (GRCh38) at 5 kb of resolution.
For NBC and CLL merged Hi-C interaction maps, an MMP score was calculated to
assess the modeling potential of the region, resulting in 0.79 for NBC and 0.84 for
CLL indicative of good quality Hi-C contact maps for accurate 3D reconstruc-
tion110. Next, this region was modeled using a restraint-based modeling approach
as implemented in TADbit version 0.4.6256, where the experimental frequencies of
interaction are transformed into a set of spatial restraints55. Briefly, each 5 kb bin of
the interaction Hi-C map was represented as a spherical particle in the model,
which resulted in 400 particles each of radius equal to 25 nm. All the particles in
the models were restrained in the space based on the frequency of the Hi-C
contacts, the chain connectivity, and the excluded volume. The TADbit optimal
parameters (maxdist=−1.0; lowfreq= 1.0; upfreq= 200; and dcutoff= 150)
resulted in the best Spearman correlations of 0.61 (NBC) and 0.63 (CLL) between
the Hi-C interaction map and the model’s contact map. Next, a total of 5000
models per cell type were generated, and the top 1000 models that best satisfied the
imposed restraints were retained for the analysis. To assess the structural simila-
rities among the 3D models, the distance root-mean-square deviations (dRMSD)
value was computed for all the possible pairs of top models (1000 in NBC and 1000
in CLL) and a hierarchical clustering algorithm was applied on the resulting
dRMSD matrix using ward.D method from stats R package version 3.5.1 (Sup-
plementary Fig. 4c). The convex hull volume spanned by the 81 particles of the
EBF1 gene (chr5:158,695,000–159,000,000, GRCh38) was computed in each model
using the convexhull function from the scipy.spatial Python package version 1.2.1
(Fig. 5g).

Differential Gene expression analyses. Differentially expressed genes were
defined using the DESeq2 R package version 1.28.0101 in all the genes. Then, the
genes present in the compartments of interest were selected and the Benjamini y
Hochberg test (FDR < 0.05) was applied. In detail, expected counts were used on
the following considered comparisons: (i) for GCBC-specific activate compart-
ments, GCBC samples (n= 3) vs. the rest of normal B cells samples (NBC, PC,
MBC; n= 9); (ii) for CLL-specific active compartments, CLL samples (n= 7) vs.
the rest of the samples (normal B cells and MCL, n= 17); (iii) for CLL-specific
inactive compartments, all normal B cells and MCL samples (total n= 17) vs. CLL
samples (n= 7), and (iv) for cMCL, cMCL (n= 2) vs. nnMCL (n= 3) samples
were studied. Then, the expression of the genes differentially expressed on each
comparison of interest was assessed. Only genes that were expressed (FPKM
median values > 1) were included.

The findOverlaps function from GenomicRanges R package version 1.34.0111

was used to annotate genes that overlapped with these defined regions. The one-
tailed Monte–Carlo method was applied to evaluate the significant number of
differentially expressed genes in CLL-specific compartments (this process was
randomly repeated 10,000 times).

Defining de novo (in)active regions in sub-type specific neoplastic group.
MCL and CLL patient samples were grouped according to their biological and
clinical characteristics. This classification resulted in two conventional (c) and three
leukemic non-nodal (nn) MCL cases and two IGHV-unmutated (u) and five
IGHV-mutated (m) CLL cases.

First, the non-assigned neoplasia compartments were removed from the
analysis. A sample homogenization was applied to reduce the intra-subtype
variance; the samples that presented a difference of EV smaller than 0.4 were
retained (91.3% in MCL, 87.1% CLL). Next, to study the inter-subtype variance, the
mean of the EV from each subtype of B cell malignancy was computed. Significant
regions were determined if the difference between the two subtypes (cMCL vs.
nnMCL and uCLL vs. mCLL) was equal or higher than 0.4, which resulted in 673
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regions in MCL and 47 in CLL. MCL-subtype specific regions were split into
two groups according to the value of its EV coefficient (n= 435 region called
cMCL gain, n= 238 regions called nnMCL gain). The distribution and the
frequency of the significantly changed regions were studied per chromosome and
compared with the probability of finding them by chance in each chromosome.
N-subsamples of 100 kb size was selected from the GRCh38 genome and their
frequency was calculated per chromosome (this process was randomly repeated
10,000 times). The one-tailed Monte–Carlo method was applied to compute
p values. The findOverlaps function from GenomicRanges R package version
1.34.0111 was next used to annotate protein-coding genes that overlapped with
these defined regions. Differentially expressed genes among cMCL and nnMCL at
chr2:2,700,000–8,800,000 (GRCh38) was computed using DESeq2 R package
version 1.28.0101 (using a FDR < 0.05). The expression analysis was validated in
two independent published cohorts, i.e., a series with 30 conventional and 24
leukemic non-nodal MCL (GEO GSE79196) from peripheral blood50 and a second
series from the lymphoma/leukemia molecular profiling project (LLMPP) (GEO
GSE93291)63. The microarrays were normalized using the frma R package version
1.38.0112 and limma R package version 3.42.2113 was used to identify differentially
expressed genes with adjusted p value < 0.05. Standardized expression matrices
were used to do the heatmaps using pheatmap R package version 1.0.12. Gene
differentially expressed on the identified cohort: [1] RNAseq from BLUEPRINT
data, [2] peripheral blood, and [3] LLMPP. The magnitude of the
compartmentalization change was calculated by subtracting the EV of cMCL1
and nnMCL2. The karyotype and chromosome 2 were designed using the
karyoploteR package version 1.14.1114.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
In situ Hi-C data generated within this study have been deposited at the European
Genome-Phenome Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted at the
European Bioinformatics Institute (EBI), accession number EGAS00001004763. The
remaining epigenomic data from normal B cells, CLL and MCL generated within the
Blueprint Consortium can be found under accession numbers EGAS00001000326 (ChIP-
seq), EGAS00001001596 (ATAC-seq), EGAS00001000418 (WGBS) and
EGAS00001000327 (RNA-seq). We have created a website accompanying the manuscript
[http://resources.idibaps.org/paper/dynamics-of-genome-architecture-and-chromatin-
function-during-human-b-cell-differentiation-and-neoplastic-transformation], which
contains links to ucsc sessions displaying the multi-omics data, to the EBF1 models using
TADkit, and to the Hi-C matrices at 20 kb resolution. All other relevant data supporting
the key findings of this study are available within the article and its Supplementary
Information files or from the corresponding author upon reasonable request. A reporting
summary for this article is available as a Supplementary Information file.
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