
From Qualitative to Quantitative AOP:
A Case Study of Neurodegeneration
Dennis Sinitsyn1,2, Natàlia Garcia-Reyero3 and Karen H. Watanabe1*

1Arizona State University, School of Mathematical and Natural Sciences, Glendale, AZ, United States, 2Oak Ridge Institute for
Science and Education, Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS,
United States, 3US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, United States

Adverse outcome pathways (AOPs) include a sequence of events that connect a
molecular-level initiating event with an adverse outcome at the cellular level for human
health endpoints, or at the population level for ecological endpoints. When there is enough
quantitative understanding of the relationships between key events in an AOP, a
mathematical model may be developed to connect key events in a quantitative AOP
(qAOP). Ideally, a qAOP will reduce the time and resources spent for chemical toxicity
testing and risk assessment and enable the extrapolation of data collected at the
molecular-level by in vitro assays, for example, to predict whether an adverse outcome
may occur. Here, we review AOPs in the AOPWiki, an AOP repository, to determine best
practices that would facilitate conversion from AOP to qAOP. Then, focusing on a
particular case study, acetylcholinesterase inhibition leading to neurodegeneration, we
describe specific methods and challenges. Examples of challenges include the availability
and collection of quantitative data amenable to model development, the lack of studies that
measure multiple key events, and model accessibility or transferability across platforms.
We conclude with recommendations for improving key event and key event relationship
descriptions in the AOPWiki that facilitate the transition of qualitative AOPs to qAOPs.
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INTRODUCTION

The ability to predict the potential hazard of chemicals is crucial to better understand and protect
both human health and ecological receptors. Regardless of numerous international efforts to improve
predictions, many challenges remain. The Adverse Outcome Pathway (AOP) framework (Ankley
et al., 2010) is an increasingly accepted approach to link biological pathways at the molecular level to
adverse outcomes. While the development of AOPs has increased substantially, the need for
quantitative approaches using the AOP framework remains a challenge. It took years to develop
what could be considered the first quantitative AOP (qAOP), and several approaches have been
proposed to date (Conolly et al., 2017; Perkins et al., 2019b). The development of qAOPs is arguably
one of the main challenges remaining within the AOP framework, nevertheless necessary in order to
improve risk and hazard prediction.

The development of a qAOP logically follows AOP development given its function as a
mathematical representation of the key event relationships (KERs) in an AOP. Different
approaches have been used including: 1) fitting functions to key event (KE) data bounding a
KER(s) (response-response method) (Doering et al., 2018; Doering et al., 2019; Zgheib et al., 2019;
Song et al., 2020); 2) biologically based mathematical modeling using ordinary differential equations
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(aka systems biology modeling) (Muller et al., 2015; Gillies et al.,
2016; Conolly et al., 2017; Zgheib et al., 2019); and recently 3) a
causal modeling approach using a Bayesian Network (Jeong et al.,
2018; Perkins et al., 2019a; Zgheib et al., 2019; Burgoon et al.,
2020; Moe et al., 2021; Paini et al., 2022). Bayesian Networks, in
particular, are useful for describing complex AOPs involving
multiple pathways leading to an AO as long as there are no
feedback loops. The KEs of the AOP can be taken as the nodes of
the network and can even be used to model time dependencies in
the form of Dynamic Bayesian Networks (Zgheib et al., 2019).
Note that in this article, response-response relationships are
defined as mathematical functions determined by a regression
analysis, whereas in other publications, e.g., Paini et al. (2022), the
response-response relationship is defined more broadly to
include biologically based models that quantitatively relate two
KEs. The merits and pitfalls of the response-response approach
and biologically basedmodeling have been discussed (Schultz and
Watanabe, 2018; Foran et al., 2019; Zgheib et al., 2019; Spinu
et al., 2020), but a significant barrier to the development of
qAOPs in any form is the availability of quantitative data
amenable for mathematical model development.

The goal of this article is to improve the efficiency of
converting a qualitative AOP into a qAOP. A workflow for
qAOP development, electronic resources, and three case
studies are described in Paini et al. (2022) based on a recent
Lorentz workshop. In the following, challenges to qAOP
development were identified by reviewing AOPs with WPHA/
WNT1 endorsement by the Organisation for Economic Co-
operation and Development (OECD, 2021) in the AOPWiki2,
and through a case study on developing a qAOP for
acetylcholinesterase (AChE) inhibition leading to
neurodegeneration (Conrow et al., 2021). As the construction
of AOPs are an ever-evolving process, and as we reviewed these
AOPs in November 2021, it should be noted that the information
contained in the list of endorsed AOPs and the information
presented inside the AOPs may change over time, and what was
available at the time of this review may not reflect what is
available in the future. We selected AOPs with WPHA/WNT
endorsement as it provided us with a relatively broad and
manageable set of AOPs to review.

REVIEW OF AOPS WITH OECD STATUS

We performed a review of AOPs with OECD status to determine
how readily other KER descriptions would facilitate conversion
from AOP to qAOP, and explore any similar challenges shared
between AOPs. Determining confidence in an AOP and its
associated KERs is established through weight of evidence
(WoE) evaluations based on modified Bradford-Hill criteria
involving biological plausibility, empirical support, and
quantitative understanding (OECD, 2018). The process of

determining confidence through said criteria has been
discussed previously (Becker et al., 2015), and while
confidence in the supporting data may be considered high for
a qualitative AOP, the next step of converting to a qAOP requires
a more specific, quantitative set of data. Our goal in this case was
to review the cited quantitative data and categorize the AOPs
based on how readily a qAOP could be developed based on the
presentation of information and WoE for the quantitative
understanding section. Our review of AOPs with OECD status
included only those that provided a WoE evaluation for KERs
(see Table 1).

When quantitative data are available for a KER, a question
arises as to how to go about extracting it for use in quantitative
model development. Our review found that quantitative data are
presented in a variety of ways, ranging from text with cited
references to data presented in a tabulated form along with
relevant figures. The majority of the AOPs reviewed currently
contain text with cited references in the KER quantitative
understanding section, although AOP 131 supplements some
of the text with a figure (Farhat et al., 2021). In contrast, AOP 3
provides text and relevant figures for all KERs and includes tables
of quantitative data (Bal-Price et al., 2019). It is important to note
that while the presentation of data in the quantitative
understanding section of an AOP varies depending on the
AOP in question, it does not reflect an AOP’s capability to be
converted to a qAOP. For example, AOP 25, Aromatase
Inhibition Leading to Reproductive Dysfunction, has a qAOP
while containing only text with cited references in the
quantitative understanding sections (Villeneuve, 2021).

CASE STUDY: AChE INHIBITION LEADING
TO NEURODEGENERATION

AChE inhibition leading to neurodegeneration is AOP 281 in the
AOP Wiki (Conrow et al., 2021) and is currently under
development (see Figure 1). The molecular initiating event
(MIE) is AChE inhibition resulting in an excess of
acetylcholine (ACh) in the synapse (KER 1). The build-up of
ACh overactivates muscarinic acetylcholine receptors (mAChR)
within the brain (KER 2), initializing local (focal) seizures (KER
3). Spreading of the focal seizure through glutamate release (KER
4) and subsequent activation of n-methyl-D-aspartate (NMDA)
receptors (KER 5) propagates the excitotoxicity and leads to
elevated intracellular calcium levels (KER 6), status epilepticus
(KER 7), and ultimately cell death (KER 8) and
neurodegeneration (KER 9). Additionally, status epilepticus
induces further release of glutamate (KER 10), forming a
positive feedback loop. The following text outlines our
methods used during the conversion process, and the
challenges we encountered.

qAOP Development Methods
Literature Review
The first step in creating the qAOP was to examine the studies
and data obtained during the construction of the qualitative AOP.
We performed a comprehensive literature review that included

1Working Party on Hazard Assessment/Working Group of the National
Coordinators of the Test Guidelines Programme.
2https://aopwiki.org/.
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the qualitative evidence previously obtained and examined
additional studies found through publicly available databases,
totaling over 200 papers examined. Concluding the review, we
gathered and grouped the data into two categories: 1) model
development, and 2) model evaluation. Ideally, model development
data covers at least two adjacent key events, and if there is an
abundance of data meeting this criterion then a dataset(s) could
be set aside and used to evaluate the model’s predictive ability. In
cases where data are reported for non-adjacent KEs, two outcomes
are possible: 1) If the qAOP is being developed on response-response
relationships and all KEs need to be in the qAOP, then these data
should be used for evaluating the qAOP. 2) In a biologically based
modeling context, data for non-adjacent KEs can be used for model
development. However, as an example, given two datasets, one that
contains data for three adjacent KEs, and another that only
contains data for the first and third (non-adjacent) KEs, we would
use the first data set for model development and the latter for model
evaluation.

Quantitative Model Development
Data Needs
We initially planned to use a response-response relationship
approach for the construction of a modular qAOP, however,
while there were data available for KER 1, data to develop
response-response relationships for the remaining KERs were
not available. Thus, we chose a hybrid approach that would
combine a response-response model for KER 1 with a biologically
based model spanning KERs 2 through 10. Response-response
relationships are built upon dose-response data for adjacent KEs,
and linear regression analysis was used KER 1. For the remaining
KERs, response-response data were sparse, and a feedback loop in
the AOP (KERs 5, 6, 7, 10) precludes the use of response-response
modeling and necessitates the development of a biologically based
model. Of the papers reviewed for qAOP model development,
approximately 10 studies in the primary literature resulted in
useable quantitative data for model development (Michaels and
Rothman, 1990; Kosasa et al., 1999; Kim et al., 2003; Falkenburger
et al., 2010; Mergenthal et al., 2020), and model evaluation
(Lallement et al., 1992; Marks et al., 1996; McDonough and
Shih, 1997; Miller et al., 2015; Reddy et al., 2021).

Studies reporting data for non-adjacent KEs, while useful for
model evaluation, are not ideal for developing quantitative
models for KERs. For example, Miller et al. (2015) reported
percent AChE inhibition (MIE) and hippocampal volume loss,
but did not report data for any KEs adjacent to these endpoints. In
AOP 281, hippocampal volume loss is a potential measure of the
neurodegeneration adverse outcome. Though it may not be the
best measure to use in a response-response relationship, a
biologically based model could predict this endpoint among
other indicators of neurodegeneration and utilize the study for
model evaluation. Similarly, Lallement et al. (1992) reported
measurements of ACh and glutamate. In this case, we could
not determine a response-response relationship relating ACh
concentration to glutamate. However, the data can be used to
evaluate predictions from a biologically based model that
incorporates mechanistic processes representing the
intermediate KEs. We acknowledge that the published studies
discussed were not designed with qAOP model development in

TABLE 1 |Categorization of AOPs with OECD Status based on presentation of quantitative data in the quantitative understanding section of the KER description. Total KERs
include KERs between non-adjacent KEs. T = Written in text only with cited references, F = Includes figures extracted from articles, Ta = References are provided in a
tabulated form. QU-WoE, Weight of Evidence under the quantitative understanding section.

AOP # Title QU-WoE for KERs in the AOP Category

Low Moderate High

3 Inhibition of the mitochondrial complex I of nigro-striatal neurons leads to parkinsonian motor deficits 3 4 1 T, F, Ta
25 Aromatase inhibition leading to reproductive dysfunction 1 7 0 T
131 Aryl hydrocarbon receptor activation leading to uroporphyria 2 1 2 T, F
54 Inhibition of Na+/I− symporter (NIS) leads to learning and memory impairment 10 3 2 T
23 Androgen receptor agonism leading to reproductive dysfunction (in repeat-spawning fish) 8 5 0 T
21 Aryl hydrocarbon receptor activation leading to early life stage mortality, via increased COX-2 1 4 0 T
150 Aryl hydrocarbon receptor activation leading to early life stage mortality, via reduced VEGF 4 3 0 T
42 Inhibition of thyroperoxidase and subsequent adverse neurodevelopmental outcomes in mammals 7 5 0 T
10 Binding to the picrotoxin site of ionotropic GABA receptors leading to epileptic seizures in adult brain 0 3 2 T
6 Antagonist binding to PPARα leading to body-weight loss 2 4 2 T

FIGURE 1 | Graphical representation of AOP 281: AChE Inhibition
Leading to Neurodegeneration (Conrow et al., 2021). Each arrow represents
the key event relationship (KER) between key events (KE) of the AOP.
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mind, though they provide examples of where changes in
experimental design and increased research funding could
yield a more comprehensive understanding of underlying
biological mechanisms.

Biological systems are often regulated by feedback loops,
which requires development of a time-dependent biologically
based model in contrast to a response-response relationship
(Zgheib et al., 2019). At “steady-state”, when time
dependencies are removed and derivatives with respect to time
are set to zero, a response-response relationship could be used to
relate the input into a feedback loop with the output, essentially
ignoring the mathematical dynamics of the feedback loop (Zgheib
et al., 2019). However, when a system is perturbed, and a feedback
loop exists, a time-dependent biologically based model is needed
to capture the system dynamics. Thus, biologically based models
benefit from time series measurements of the associated KEs to
identify model parameter values. In AOP 281, KERs 5, 6, 7, and
10 form a positive feedback loop requiring data to uniquely define
model equations and parameter values. Response-response
models work for linear pathways with one input and one
output and are implemented sequentially through an AOP
(Foran et al., 2019). In contrast, feedback loops involve more
than one input/output for a KE (e.g., two inputs into the
glutamate release KE and two outputs from the increased
intracellular calcium KE), resulting in a non-linear pathway.
As feedback loops are a commonly used regulatory
mechanism in nature, methods to develop quantitative models
should be encouraged instead of avoided.

In the context of high-throughput chemical toxicity
applications, KE measurements need to be made quickly and
inexpensively. Some studies report excellent data obtained
through sophisticated measurement techniques that are not
practical for use in chemical toxicity testing and risk
assessment due to cost and time constraints. Such techniques
might be described as part of the evidence in a KE description
though the technique is impractical for measuring a KE in high-
throughput toxicity testing. With respect to the status epilepticus
KE, researchers used quantitative MRI to predict hippocampal
damage based on changes in the structure and volume of the
hippocampus after inducing status epilepticus through
overactivation of mAChR by pilocarpine (Choy et al., 2010).
While the data obtained are informative, the tools (i.e., the MRI)
required are likely to be costly and impractical for toxicity testing
applications. Ultimately, this issue can be applied more generally
to the time and financial costs required of in vivo experiments
compared to in vitro.

Distribution of available data throughout an AOP differs for
KERs. In the context of AOP 281, KER 1 was supported by
quantitative data that resulted in a response-response
relationship. In contrast, data to develop a response-response
relationship for KER 2 were not found. Similar data availability or
lack thereof can be seen in many other AOPs. As an example, the
quantitative understanding section of AOP 3 ranges from low to
high depending on the KER in question (Bal-Price et al., 2019).
This uneven distribution of data can be restrictive and prevent
model developers from working with a single modeling approach
to develop a qAOP. Thus, research funding that supports the

collection of data for multiple (adjacent) endpoints in an AOP
would facilitate qAOP model development tremendously.

Interspecies Differences in Biological Response
Consideration should also be given to interspecies differences in
response to chemical stressors (Celander et al., 2011). Ideally,
there should be equivalent measurable responses between the
target species and the animal model(s) or in vitro assays that
provide data. In the case of AOP 281, we started with rat data
because there were significantly more studies available across the
AOP than other animal models. By definition, AOPs are
independent of chemical stressor, however data required to
develop a qAOP are obtained from in vivo and/or in vitro
experiments using chemical(s), and interspecies differences in
the measured responses may occur. For example, in response to
OPs, rats respond similarly to humans, though they have a 3-6
fold higher LD50 compared to humans when administered sarin
intravenously, and guinea pigs have a 1.7-fold higher LD50

(Pereira et al., 2014). Pereira et al. attribute the fold difference
in LD50 values to differences in OP metabolism between species,
and quantitatively, this can be addressed through toxicokinetic
modeling and methods to quantify measurement uncertainty and
biological variability (Gelman et al., 1996; Bernillon and Bois,
2000; Jager, 2021). In terms of our qAOP, guinea pig data may be
better suited for predicting human responses, but the data
spanning the qAOP are insufficient. Thus, we will rely upon
data from other species and use principles of interspecies
extrapolation and allometric scaling (Davidson et al., 1986) as
needed. For regulatory use, interspecies differences in biological
responses could be quantified along with measurement
uncertainty and biological variability using methods cited above.

Reducing the number of animals used in toxicity testing is a
benefit of new approachmethodologies such as in vitro assays and
in silico models. Given the considerations above regarding
interspecies differences, a wider array of in vitro assays
focused on non-model organisms should be developed for
ecotoxicology purposes (Hecker, 2018), and to provide a
knowledge base that will improve our quantitative
understanding of interspecies differences in biological response.

Reuse of Quantitative Models
Accessibility and transferability of established quantitative
models are important factors to consider for accelerating
qAOP development. Currently, there are two models that
simulate cellular response to mAChR activation (Greget et al.,
2016; Mergenthal et al., 2020), which could be extended for use in
our qAOP. Mergenthal et al. (2020) describe a computational
model of cholinergic modulation of CA1 pyramidal cells
developed in the NEURON simulation environment, spanning
KERs 2 to 3, while Greget et al. (2016) describes a simulation of a
CA1 hippocampal cells responding to OP-induced neurotoxicity,
spanning KERs 1 to 3. However, the model by Greget et al. was
not accessible, and the NEURON simulation environment is too
specialized for our qAOP. Thus, we will use Mergenthal et al. as a
reference for KERs 2 and 3 to construct a biologically basedmodel
spanning KERs 2 to 10. The reuse of existing models can
dramatically improve the pace of qAOP development, though
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access and cross-platform transferability are of concern.
Additionally, models developed in proprietary or unfamiliar
software can be restrictive to newer model developers. Tools
built with user-friendly, open-source software and data exchange
formats such as Systems Biology Markup Language (Hucka et al.,
2003) are possible solutions.

DISCUSSION

Overall, the process of converting an AOP to a qAOP is time and
resource-intensive and requires an abundance of quantitative
data for the associated KERs. Some of the challenges presented
above are not expected to be resolved for the foreseeable future.
Costly measurements and the uneven distribution of data will
remain an issue and will decrease in significance over time if and
when new methods are developed or when research bridges the
knowledge gaps in areas lacking in quantitative understanding. A
recommendation for these challenges would be best aimed
toward funding agencies placing additional funding into the
areas identified by modelers to be lacking in data. Below are
four additional recommendations pertaining to the remainder of
the challenges.

Regarding the review of the AOPs with OECD status and their
presentation of quantitative data, we recommend that
quantitative data be presented in a more easily accessible form
to facilitate use in a qAOP. Additionally, we would also like to
emphasize the importance of quality data reporting. Data that are
not produced under OECD guidelines still need to follow a
standard to be considered reliable for regulatory applications.
Hartung et al. (2019) provides the reader with existing reporting
guidelines and discusses the need for and what constitutes Good
In Vitro Reporting Standards (GIVReSt). The majority of
quantitative data in KER descriptions are reported as in-text
citations that requires a modeler to manually extract the data for
qAOP development. This process could be shortened if the data
were presented in a tabular form that combines data and
quantitative relationships extracted from the cited sources.
Factors that aide in this process include incorporating relevant
figures from the cited studies with appropriate copyright
permissions, tabulated data, and dose-response or response-
response quantitative relationships. In the AOP Wiki, AOP 3
(Bal-Price et al., 2019) demonstrates these factors, as the KER
description’s quantitative evidence section contains significant
and detailed information. The individual KERs contain relevant
figures and tabulated information of the studies supporting the
AOP. Presentation of information in this manner required a
significant amount of effort by the AOP authors, which will
ultimately improve the rate at which an AOP can be converted to
a qAOP.

Concerning the biological differences between species, we
would like to highlight the need to understand the physiology
of the organism to be used in modeling, and more specifically
to know which chemical stressors can be used if multiple
species are involved in model development. Using AOP 3 as
an example, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) is a compound commonly used in animal models

of Parkinson’s disease. More specifically, the AOP 3 authors
mention that the effect on mice produces Parkinsonian
symptoms similar to that seen in humans, however rats are
much less susceptible to MPTP, which would not be a good fit
for a model (Petroske et al., 2001; Bal-Price et al., 2019).
Understanding differences such as these are crucial to
successful qAOP development. With the ultimate goal of
21st century toxicology moving away from in-vivo testing,
greater emphasis should be placed on developing in vitro
assays to be used as a replacement for animal studies (US
EPA, 2021). In this case, research funding for the development
of these assays and qAOPs would facilitate a move away from
animal models by providing additional data sets for qAOP
model development.

In the context of our case study, we would like to make
recommendations for two of the challenges presented
involving studies that measure multiple non-adjacent key
events and model transferability. Currently, existing studies
that measure non-adjacent key events are less ideal for
modeling and better suited for evaluation. This highlights the
need for studies that measure multiple adjacent key events. There
exists a similar need for models following a biologically based
approach or AOPs that contain feedback loops. Biologically based
models benefit most from having both dose-response and time
series data for multiple key events, and studies that can provide
that set of data would be invaluable to qAOP model developers
and would aide in the transition from AOP to qAOP. Lastly, in a
recommendation aimed toward model developers, we suggest
keeping model transferability in mind when developing a model,
as this would simplify the process for both developers and data
scientists looking to adapt available models for their needs.
Hosting models in repositories such as Github or SourceForge
enables version tracking and would benefit model development
by allowing multiple authors to modify existing models to meet
new needs. Additionally, during the construction of either a
qualitative or qAOP, the authors may come across raw data or
models that could support qAOP development. In this case, we
suggest hosting additional materials in the AOPWiki to allow for
better data management and efficient model development. To
that end, we would also like to recommend development of
modular qAOP models for KERs that can be shared and re-
used to fit a developer’s needs. Hosting of such models could take
place in already existing repositories, such as BioModels (Malik-
Sheriff et al., 2019).

In addition to their application in toxicity testing, AOPs and
qAOPs have benefits beyond their original purpose. The design
structure of AOPs can be helpful in other fields not associated
with chemical risk assessment. The pharmacological and medical
field could adapt the concept of AOPs to fit their needs. For
example, recent efforts have begun in developing AOPs for
COVID-19, known as the CIAO project3. Physicians could
follow a similar modular approach in diagnosing and treating
patients based on symptoms and treatment options. Additionally,
AOPs can help identify knowledge gaps in a particular area (Leist

3https://www.ciao-covid.net/.
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et al., 2017). As AOPs are constructed from sources of published
literature or sets of experimental data, their modular nature can
easily highlight areas lacking in mechanistic understanding.
Identification of these gaps will guide future studies and allow
for a deeper understanding of the pathology in question (US EPA,
2020). Lastly, as progress continues in the development of AOPs
and the addition of more qAOPs, the next logical step would be
the integration of multiple qAOPs into qAOP networks. This
might best be achieved with a Bayesian Network approach, as the
structure of the AOPs and KEs naturally follow the form of the
network (Perkins et al., 2019a). In conclusion, one may ask what
specifically is needed to make these recommendations happen.
Additional funding in the areas lacking in data suitable for model
development would be a first major step, followed by a change in
the culture of data sharing for better accessibility, and lastly, a
change in best practices for how we write KE and KER
descriptions. These changes will allow these recommendations
come to fruition and will facilitate the transition from AOP
to qAOP.
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