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Abstract

Insertion and deletion (INDEL) mutations, the most common type of structural variance, are

associated with several human diseases. The detection of INDELs through next-generation

sequencing (NGS) is becoming more common due to the decrease in costs, the increase in

efficiency, and sensitivity improvements demonstrated by the various sequencing platforms

and analytical tools. However, there are still many errors associated with INDEL variant call-

ing, and distinguishing INDELs from errors in NGS remains challenging. To evaluate INDEL

calling from whole-exome sequencing (WES) data, we performed Sanger sequencing for all

INDELs called from the several calling algorithm. We compared the performance of the four

algorithms (i.e. GATK, SAMtools, Dindel, and Freebayes) for INDEL detection from the

same sample. We examined the sensitivity and PPV of GATK (90.2 and 89.5%, respec-

tively), SAMtools (75.3 and 94.4%, respectively), Dindel (90.1 and 88.6%, respectively), and

Freebayes (80.1 and 94.4%, respectively). GATK had the highest sensitivity. Furthermore,

we identified INDELs with high PPV (4 algorithms intersection: 98.7%, 3 algorithms intersec-

tion: 97.6%, and GATK and SAMtools intersection INDELs: 97.6%). We presented two key

sources of difficulties in accurate INDEL detection: 1) the presence of repeat, and 2) hetero-

zygous INDELs. Herein we could suggest the accessible algorithms that selectively reduce

error rates and thereby facilitate INDEL detection. Our study may also serve as a basis for

understanding the accuracy and completeness of INDEL detection.

Introduction

Recent advances in next-generation sequencing (NGS) technologies have rapidly altered the

research and routine work of human geneticists. Specifically, whole-exome sequencing (WES)

has been used to elucidate genetic variants underlying human diseases [1]. WES has proven to

be a valuable method for the discovery of the genetic causes of rare and complex diseases due

to its moderate costs, the amount of manageable data, and straightforward interpretation of

results [2, 3].

Several types of natural genetic variations are present in patient samples, including single-

nucleotide polymorphisms (SNPs), short insertions or deletions (INDELs) ranging from 1

base (bp) to 10 kilobases (kb) in length, and larger structural variants ranging from 10 kb to
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several megabases in length. INDELs is a common and functionally important type of

sequence polymorphism [4]. This will provide an important resource for applications in medi-

cal sequencing, as INDELs have been implicated in a number of diseases [5].

By applying NGS on a large scale, WES is now possible at an individual level [6]. One of the

most important aspects of genetics is to identify genetic variants in individuals [1]. INDELs

can cause or contribute to human genetic diseases. For example, cystic fibrosis (CF, MIM

#219700), neurofibromatosis (NF1, MIM #162200), Charcot-Marie-Tooth neuropathy type 2A

(CMT2A, MIM #118210), glycogen storage disease 2 (GSD2, MIM #23200), Huntington dis-

ease (HD, MIM #143100), and Duchenne muscular dystrophy (DMD, MIM #310200) are

caused by INDELs in the coding regions of DNA. Therefore, the results of INDEL calling from

individual WES can be used to predict the future health of individuals and to develop custom-

ized medical treatments [7].

Large number of tools are available for short-read alignment and searching for variants (e.g.

SNVs and INDELs). However, the accurate detection of INDELs is still difficult and remains a

critical issue. False-positive (FP) and false-negative (FN) rates are critical, especially for genetic

diagnosis and Mendelian disease studies. For the future of personalized medicine and genetic

diagnosis, highly accurate variant calling remains one of the most important problems [8].

In this study, we used whole exome data from one human genome and analyzed four

INDEL detection algorithms: Genome Analysis Toolkit (GATK), Sequence Alignment/Map

tools (SAMtools), Dindel, and Freebayes. Here, we show algorithms for available and com-

monly used methods that detect INDELs and compared their performances using the actual

validation data.

Materials and methods

Subject

This study examined whole-exome data available from a previous study [9]. Informed consent

was obtained from the participant, and the Institutional Review Board of the Korea National

Institutes of Health (NIH) approved this study.

Whole-exome data analysis

Whole-exome libraries were generated from genomic DNA of one individual using the Seq-

Cap EZ Human Exome Library v2.0 (Roche/NimbleGen, Madison, WI, USA) and sequenced

using the Illumina HiSeq2000 system (Illumina, San Diego, CA, USA) with paired end reads

of 101 bp according to the manufacturer’s protocols. Raw reads in FASTQ format from WES

were aligned to the reference genome hg19 using the Burrows-Wheeler Aligner (BWA; http://

bio-bwa.sourceforge.net/). Duplicates were removed with Picard (http://picard.Sourceforget.

net).

WES data were analyzed using four INDEL calling algorithms, (1) GATK (http://www.

broadinstitute.org/gatk/) [10], (2) SAMtools (http://samtools.sourceforge.net/) [11], (3) Dindel

[12], and (4) Freebayes [13], following the guidelines provided in the user manuals. INDELs

were called with each algorithm and the variants annotated using the ANNOVAR program

(http://www.openbioinformatics.org/annovar/).

Sanger sequencing analysis

INDELs found using the four algorithms were subsequently validated with Sanger sequencing.

The Primer3 program (http://frodo.wi.mit.edu/primer3) was used to design primers for ampli-

fication of the INDELs identified via exome sequencing. Amplicons from blood genomic
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DNA were analyzed via gel electrophoresis and were sequenced using an ABI 3730 genetic

analyzer (Applied Biosystems, Forster City, CA, USA) with forward and reverse primers.

Statistical analysis

Their effects on positive predictive value (PPV) and sensitivity were tested using Pearson’s cor-

relation tests. To assess the performance of the different algorithms, we defined several met-

rics. We defined a call as a true-positive (TP) when WES called a variant and Sanger

sequencing detected a variant. A false-positive (FP) call was considered when WES called a

variant but Sanger sequencing revealed a wild-type; PPV was calculated as TP/(TP+FP). We

defined a false-negative (FN) when Sanger sequencing detected a variant, but the WES called

this locus a reference; the sensitivity was calculated as TP/(TP + FN).

Results

Performance of INDEL calling in WES

We provide an analysis pipeline for the detection of INDELs. The genomic pipeline is outlined

in Fig 1. For INDEL detection, BAM files were merged so that INDEL calling was performed

using four algorithms (i.e. GATK, SAMtools, Dindel, and Freebayes), and were analyzed. The

identified INDELs were then annotated using ANNOVAR to include information such as

what gene the variant was in and the consequence of the mutation. S1 Table lists all 840

INDELs identified from the human exome data using the four algorithms.

Validation of INDELs by Sanger sequencing

Sanger sequencing was used to evaluate INDEL calling by the four algorithms. The INDEL

counts from the four algorithms and validation are presented in Table 1. The 840 INDELs

were detected in coding regions and included 429 insertions (51%) and 411 deletions (49%).

Fig 2A shows the number of INDELs called by each algorithm. GATK can call INDELs and

reported 703 variants and SAMtools identified 556 INDELs. Dindel and Freebayes detected

709 and 591 INDELs, respectively.

We compared the distribution of INDEL sizes called by the four algorithms. All INDEL dis-

tributions based on size are shown in Fig 2B. We found that 800 (95%) of the INDELs were

1–10 bp in size. In fact, most INDELs called were� 10 bp, which accounted for 95% (665) of

calls by GATK, 96% (535) of calls by SAMtools and Dindel 96% (680), and 97% (575) of calls

by Freebayes.

We also examined the overall performance of the four algorithms and computed the sensi-

tivity and positive predictive value (PPV) for each algorithm. The FP and FN number of

INDELs called by each algorithm are shown in Table 2. The sensitivity values for GATK, SAM-

tools, Dindel, and Freebayes were 90.2, 75.3, 90.1, and 80.1%, respectively. The PPVs for

GATK (89.5%), SAMtools (94.4%), Dindel (88.6%), and Freebayes (94.4%) were determined

by Sanger sequencing (Fig 2C). GATK had the highest sensitivity (90.2%) and SAMtools and

Freebayes had the highest PPV (94.4%).

Comparison of INDEL-calling algorithms

We compared the performance of the GATK, SAMtools, Dindel, and Freebayes algorithms for

INDEL detection (Table 3). Fig 3 shows the concordance and PPVs of INDELs called by each

algorithm and intersection. The concordance for the intersection of the four algorithms (461,

54.9%), three algorithms (494, 59.9%), and GATK and SAMtools (502, 66.3%) were deter-

mined (Fig 3A). In addition, the PPV for the four algorithms intersection, the three algorithms
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intersection, and the GATK and SAMtools intersection INDELs were much higher than those

of the intersection for GATK and Dindel, Dindel and SAMtools, and GATK and Freebayes

(98.7, 97.6, and 97.6% vs. 94.6, 95.8, and 97.1%, respectively). INDELs were identified with

high accuracy (four algorithms intersection: 98.7%, three algorithms intersection: 97.6%, and

GATK and SAMtools intersection: 97.6%) (Fig 3B).

Fig 1. INDEL calling workflow in WES. INDELs were called using four algorithms: GATK, SAMtools, Dindel, and Freebayes. Analysis

pipelines and workflow systems are shown.

https://doi.org/10.1371/journal.pone.0182272.g001

Table 1. INDELs called and validation in four algorithms.

INDELs called Validated

INDEL size GATK SAMtools Dindel Freebayes Total GATK SAMtools Dindel Freebayes Total PPV (%)

� 10 25 16 20 12 25 23 16 20 12 23 92

-10 0 0 1 0 1 0 0 0 0 0 0

-9 4 3 3 3 4 4 3 3 3 4 100

-8 2 2 2 1 2 2 2 2 1 2 100

-7 0 1 1 1 1 0 1 1 1 1 100

-6 14 10 10 8 14 13 10 10 8 13 93

-5 14 12 13 14 14 14 12 13 14 14 100

-4 18 21 20 18 23 17 19 18 17 21 91

-3 51 49 53 44 59 47 46 47 44 49 83

-2 59 51 68 39 79 43 42 48 36 51 65

-1 171 120 174 153 207 162 114 156 147 179 86

1 210 152 215 197 248 183 145 191 179 201 81

2 47 40 41 37 58 38 36 37 34 45 78

3 30 33 34 27 38 30 33 32 27 36 95

4 20 20 20 18 23 19 20 20 17 21 91

5 3 4 4 3 4 3 4 4 3 4 100

6 10 9 10 4 12 8 8 9 4 10 83

7 2 1 1 2 2 1 1 1 1 1 50

8 2 2 2 2 2 2 2 2 2 2 100

9 3 3 3 2 4 3 3 3 2 4 100

10 5 2 5 2 5 4 1 4 2 4 80

> 10 13 5 9 4 15 11 4 7 4 11 73

Total 703 556 709 591 840 629 525 628 558 697 83

https://doi.org/10.1371/journal.pone.0182272.t001
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The size distributions of validated INDELs are shown in Fig 4. For the not validated

INDELs, there was striking enrichment of heterozygous INDELs (39.9%) and yielded 9.2-fold

(2% to 18.4%) more repeat INDELs than validated set. The PPVs of heterozygous INDELs

(76.9%), homozygous INDELs (92.1%), repeat INDELs (34.9%), and non-repeat INDELs

(88.4%) were also calculated. We found that the validation rate of heterozygous and repeat

INDELs for GATK and SAMtools intersection increase with 96.0 and 81.0%.

Discussion

In this study, we investigated the performance of tools available for the INDEL detection from

WES data. We evaluated four publicly available algorithms that are well-known for calling

Fig 2. Number of INDELs called by the four algorithms. (A) INDELs were called using four algorithms: GATK, SAMtools, Dindel, and

Freebayes. (B) Histograms of insertion (right) and deletion (left) counts by INDEL size. Counts were adjusted within each algorithm to

account for the fraction of polarizable calls. (C) Accuracy of detection of INDELs in the four algorithms.

https://doi.org/10.1371/journal.pone.0182272.g002

Table 2. Validation of the four algorithms used for INDEL calling with WES and Sanger sequencing.

Algorithm INDELs called True positive False positive False negative Sensitivity (%) PPV (%)

GATK 703 629 74 68 90.2 89.5

SAMtools 556 525 31 172 75.3 94.4

Dindel 709 628 81 69 90.1 88.6

Freebayes 591 558 33 139 80.1 94.4

PPV: Positive predictive value was calculated by the following: PPV = (#TP/(#TP+#FP))x100, where #TP is the number of true-positive calls, and #FP is the

number of false-positive calls.Sensitivity was calculated as follows: (#TP/(#TP+#FN))x100, where #FN is the number of false-negative calls.

https://doi.org/10.1371/journal.pone.0182272.t002
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short INDELs. We provide an analysis pipeline for the detection of INDELs so that INDEL

calling were performed using four algorithms (i.e. GATK, SAMtools, Dindel, and Freebayes)

to identify TP INDEL calls while reducing FP calls.

Many studies have reported the INDEL calling capabilities of available tools from NGS data

[14–18]. Previous evaluation by Neuman et al. was based on simulated data [14]. Notably, only

random selected 215 INDELs were validated [15, 16]. However, our study used actual

Table 3. Comparison of INDEL-calling algorithms.

Category INDELs True positive False positive PPV (%)

GATK 703 629 74 89.5

SAMtools 556 525 31 94.4

Dindel 709 628 81 88.6

Freebayes 591 558 33 94.4

GATK and Dindel 610 577 33 94.6

SAMtools and Dindel 525 503 22 95.8

GATK and Freebays 549 533 16 97.1

GATK and SAMtools 502 490 12 97.6

3 algorithms intersection 494 482 12 97.6

4 algorithms intersection 461 455 6 98.7

heterozygous INDELs 498 383 115 76.9

homozygous INDELs 342 315 27 92.1

repeat INDELs 83 29 54 34.9

non-repeat INDELs 757 669 88 88.4

https://doi.org/10.1371/journal.pone.0182272.t003

Fig 3. Performance versus detected INDELs and PPVs. (A) Concordance of INDEL detection between the four algorithms: GATK,

SAMtools, Dindel, and Freebayes. Venn diagram showing the numbers and percentages of shared INDELs from the four algorithms: 4

algorithm intersection INDELs, 3 algorithm intersection INDELs, 2 algorithm intersection INDELs, and algorithm-specific INDELs. (B)

Validation rates and PPVs of the intersecting INDELs between algorithms. The sensitivity increases at higher intersecting algorithms.

https://doi.org/10.1371/journal.pone.0182272.g003
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validation data. We reported 840 INDELs called from the four programs in one human

genome, all of these INDELs were validated by Sanger sequencing.

GATK is a collection of analysis tools for human data that was developed by the Broad

Institute. GATK performs variant calling using HaplotyperCaller (HC) [10]. SAMtools is

based on a Bayesian model for INDEL calling, which parses SAM and BAM files and includes

BCFtools to call SNPs and short INDELs from a single alignment [11]. Dindel is a program

developed by the Wellcome Trust Sanger Institute that uses a Bayesian approach for calling

INDELs from NGS data [12]. Freebayes is a Bayesian genetic variant detector designed to find

SNPs, INDELs, MNPs, and complex events smaller than the length of a short-read sequencing

alignment [13].

The GATK’s model is derived from Dindel’s model, where GATK is expected to show simi-

lar performance to Dindel. Freebayes is a haplotype-based caller, similar to GATK; however,

GATK contains additional algorithms for filtering with low mapping quality and local realign-

ments (http://software.broadinstitute.org/gatk/) [19]. SAMtools may improve the processing

of INDELs through likelihood algorithms, such as the indel genotype likelihood model, geno-

type-free analysis, and physical phasing (http://samtools.sourceforge.net/) [19, 20].

In our actual validation data, a total of 629 true positive INDELs in GATK and 628 in Din-

del were identified. GATK and Dindel had the least FNs and the highest number of TPs, show-

ing sensitivity of 90.2% (GATK: 629 of 697) and 90.1% (Dindel: 628 of 697), respectively. We

Fig 4. Sources of INDEL detection error from WES. (A) Number of validated INDELs in the following INDEL size. (B) Percentages of

homozygous, heterozygous, repeat, and non-repeat in the validated and not validated set. (C) PPVs of error sources, 1) heterozygous, 2)

repeat INDELs in all and GATK & SAMtools intersecting call set.

https://doi.org/10.1371/journal.pone.0182272.g004
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also examined the positive predictive value (PPV) for the two algorithms, and GATK had a

higher PPV than Dindel (89.5 vs. 88.6%). On the other hand, SAMtools and Freebayes had the

least FPs. By decreasing the false positive rate, the accuracy (PPV) of SAMtools and Freebayes

improved to 94.4% (525 of 556) and 94.4% (528 of 591), but it reduce the power of true positive

INDEL detection. The GATK and SAMtools intersection INDELs were much higher than

those of the intersection for GATK and Dindel, Dindel and SAMtools, and GATK and Free-

bayes. Based on these results, GATK had the fewest FN calls, while SAMtools had the fewest

FP calls. Thus, GATK had high sensitivity, while SAMtools had high accuracy. Collectively,

GATK and SAMtools complement the strengths and weaknesses of the other algorithm to

yield superior results.

We compared the distribution of INDEL size called by the four algorithms. Most INDELs

called by the algorithms were�10 bp. The statistical tests showed that the distribution of

INDEL size did not differ significantly among the algorithms. In other words, INDEL size is

not a confounding factor that affects the performance of these calling algorithms.

To determine the error of INDEL call from WES data, INDELs were compared based on

where they were repeats or heterozygous. The PPVs for heterozygous and repeat INDELs were

76.9 and 34.9%, respectively, while homozygous and non-repeat INDELs were validated 92.1

and 88.4%. For the heterozygous and repeat INDELs called by both GATK and SAMtools, 96.0

and 81.0%, were successfully validated.

GATK had the highest sensitivity of all the algorithms, while SAMtools had high PPV.

Thus, we recommend that GATK and SAMtools be used in combination for the detection of

INDELs. GATK and SAMtools show better performance in calling INDELs than Dindel and

Freebayes. Additionally, two key sources of difficulties in accurate INDEL detection are the

presence of repeats and heterozygous INDELs. Our study may also serve as a basis for under-

standing the accuracy and completeness of INDEL detection. We believe that our method is a

useful tool for understanding human diseases through WES analysis.

Supporting information

S1 Table. Summary of INDELs called by GATK, SAMtools, Dindel, and Freebayes.
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