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Purpose. Impaired adaptation to changes in lighting levels as well as mesopic visual function is a common complaint in those over
the age of 65. )e use of photostress is a well-established method to test the adaption rate and the response of the visual cycle. In
this study, we test visual function recovery to mesopic luminance stimuli following a long duration photostress in young and
elderly subjects. If successful in strongly differentiating aging macular function, these methods may also be useful in the study of
pathologies such as age-related macular degeneration.Methods. A group of 12 older normal subjects (mean age 75.1± 4.79) and a
control group of 5 younger normal subjects (mean age 26.2± 4.19) were subjected to macular photostress using the OraLux
photostress system.)e OraLux system provides a diffuse light source bleaching 84% of cone photopigment while maintaining an
exposure safety factor of 200 times less than the maximum safe exposure. After each photostressing session, macular recovery was
tracked using a foveal, variable contrast, flickering stimulus of mean luminance in the high mesopic range. Recovery was tracked
for 300 seconds. )e endpoint was time to recovery to each individual’s baseline sensitivity as determined by two static sensitivity
trials prior to photostress. Results. Proportional hazards analysis of recovery time yielded a statistically significant difference
between the older group and the young group (HR� 0.181; p � 0.0289). )e estimated hazard ratio of 0.181 indicates that older
subjects return to baseline at less than one-fifth the rate of younger subjects. )e hazards ratio remained statistically significant
after adjusting for visual acuity (HR� 0.093; p � 0.0424). Conclusion. Photostress recovery of flicker sensitivity under mesopic
conditions is a strong differentiator of agingmacular function.)is agrees with subject-reported complaints in reduced luminance
conditions after exposure to bright lights such as night driving. )e qualitative similarity between the aging retina and changes in
early AMD suggests that flicker recovery following photostress may be useful as a surrogate endpoint in AMD clinical trials.

1. Introduction

)e use of photostress is a well-established method to test
the adaption rate of the visual system and the response of the
visual cycle [1, 2]. )e regeneration of photopigment can be
impaired either due to retinal disease [3–6] or as a normal
consequence of aging [7]. In the elderly, difficulties in ad-
aptation to changes in lighting levels as well as mesopic
luminance visual function are a common quality of life
complaint, particularly regarding night driving [8].

Age-related changes in the eye may arise from several
sources and affect visual function. In particular, changes in
the cornea and lens have strong effects on visual acuity. Age-
related changes in the retina are less well studied. )e use of
flickering stimuli is less dependent on refractive error or
straylight and is useful for this purpose [9]. )e addition of
photostress with a flicker endpoint is thus a possibly useful
stress test for assessing the health of the aging retina.

Retinal diseases may also result in diminished robustness
of the visual cycle and adaptation to changing light levels.
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Both age-related macular degeneration (AMD) and diabetic
retinopathy have been shown to be important examples
[5, 6, 10–14]. )e use of photostress in this context is as a
stress test of the visual cycle analogous to the widely used
cardiovascular stress test in order to more easily detect
pathology in the early disease state.

Both aging and AMD have been shown to result in rod
photoreceptor loss and diminished sensitivity in short
wavelength (blue) photoreceptors [15, 16]. )us, in addition
to improved understanding of adaptive visual processes in
the elderly, the study of the normal aging retina may yield
insight into retinal disease as well.

A considerable number of studies using photostress have
been reported since the initiation of this method. Studies
have included both normal aging subjects [17–26] and
subjects with retinal disease [5, 6, 10–14, 22]. A common
difficulty of many of these studies has been inconsistency of
the hardware apparatus used for the bleaching process [21].
Following the bleach process, recovery has been determined
using various outcomes, most commonly recovery of visual
acuity.

In recent studies, the introduction of computer-based
stimuli using central foveal disks or blobs with sinusoidal
time-varying flickering stimuli has permitted much greater
flexibility in testing methodology [9, 27, 28]. As a stand-
alone endpoint, foveal flicker sensitivity has shown declines
with age in both photopic and mesopic luminance levels
[9, 29]. In addition, recent studies of AMD subjects have
found that computer-based methods using variable contrast
flickering stimuli are a particularly useful and effective
endpoint [27, 28].

)e purpose of the present study is to improve the
understanding of photostress recovery using a time-varying
flickering stimulus in an aged population. Results are
compared to a group of young subjects. Within the context
of clinical trials, these results may be useful to provide
control data for the clinical application of variable contrast
flickering stimuli to pathological conditions such as AMD.

2. Methods

2.1. Subjects. Two groups of subjects were enrolled: young
subjects (early thirties and younger) and older subjects (60
years of age and older). All subjects were recruited from a
single general ophthalmology practice. All subjects provided
written informed consent, and study protocols were ap-
proved by a properly constituted Institutional Review Board
(Alpha IRB, San Clemente, CA).)e study was conducted in
accordance with the ethical principles of the Declaration of
Helsinki.

All subjects provided medical and ocular history and
were tested for ETDRS visual acuity at baseline and fol-
lowing photostress. Retinal imaging, including OCT and
dilated fundus photography, was used to confirm absence of
retinal disease. All subjects, young and old, were required to
have no evidence or history of ocular disease or any medical
condition that the investigator felt put the subject at sig-
nificant risk, confounded the study results, or interfered
significantly with study participation. All subjects were

required to present with visual acuity of 20/25 or better in at
least one eye (the study eye). If different, the eye with better
visual acuity was chosen as the study eye. If both eyes were
tested at equal visual acuity, the right eye was chosen as the
study eye. Data were collected on all qualified eyes.

2.2. Baseline Cone Function and Recovery. Baseline retinal
cone photoreceptor sensitivity was measured using a Py-
thon-based software program developed in-house for this
study. A foveal, flickering sinusoidal time-varying stimulus
of approximately 2° visual angle was presented on a back-
ground of luminance intensity in the upper mesopic range.
)e luminance range chosen was based on the earlier work
of Collins and Brown in a study of an AMD population
[13, 14]. )e contrast between maximum stimulus bright-
ness and background was the outcome variable. )e flicker
frequency of the target stimulus was based on a range chosen
to bracket the sensitivity of the human visual system to this
stimulus [30]. Based on previous studies of AMD subjects
[27, 28], we investigated stimuli at several frequencies. )e
stimulus was viewed monocularly from a distance of one
meter. )e visual task was the subject identifying the
presence of the stimulus. All subjects were first required to
complete a demonstration run to ensure that each subject
could properly identify the presence or absence of the
stimulus based on ten trials. Subjects were required to
correctly identify the presence or absence of the stimulus at
least 80% of the time. )e sensitivity of the subject to the
stimulus was first determined before photostress as a
baseline based on two trials. After assessing baseline flicker
threshold, photostress was applied as described below. Re-
covery wasmeasured by the subjects identifying the presence
of the stimulus through the resulting afterimage.)e test was
terminated five minutes after exposure to the bleaching
lamp. )e study outcome was the time to return to baseline
sensitivity. A simple staircase procedure was used to track
recovery following photobleach.

During the photostress recovery process, fixation lines
were presented to assist the subject in maintaining gaze on
the area of the screen in which the stimulus was presented. In
addition, a fixation circle of diameter corresponding to the
bleaching area was presented. )e subject was instructed to
center the resulting afterimage within the circle.

A second measurement of ETDRS visual acuity was
made following photostress testing as a safety check. In
addition, subjects who had not returned to baseline after five
minutes were retested one hour following photostress to
confirm recovery of visual function before visit termination.

2.3. Photobleach Procedure. )e photostress procedure was
performed using a custom-designed full-spectrum diffused
fluorescent light source (Ora LUX) [31]. )e level of retinal
irradiance of the Ora LUX source yields at least 84% cone
photoreceptor bleach. )e center of the bleaching light was
aligned with the center of each subject’s gaze in the vertical
and horizontal directions as required. Subjects were
instructed to maintain their gaze on the center of the
bleaching light and to avoid squinting, but were allowed to
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blink normally during the procedure. Compliance by the
subject was monitored by the technician. A safety analysis
found that themaximum exposure level of the Ora LUX light
source was 200 times less than maximum permissible ex-
posure (at least 2000 times less actual damage level) based on
accepted safety standards for thermal and photochemical
mechanisms [32]. For additional safety in this sensitive
group, exposure is less than 90 seconds and distance greater
than 12 inches.

2.4. Statistical Methods. Unadjusted group means were
compared using pooled two-sided two-sample t-tests if the
folded F-test for equality of variances was not statistically
significant at α� 0.05 level; otherwise, the Satterthwaite
approximation was used.

)e proportion of subjects that failed to return to
baseline within 5 minutes were calculated and compared
between groups using Fisher’s exact test. Failure rates using
all qualified eyes were compared using logistic regression
with a random subject factor to account for the correlation
between eyes. Recovery times were analyzed using pro-
portional hazards regression and tested using a Wald test.
Proportional hazards analyses of all qualified eyes included a
random subject factor. Kaplan–Meier product limit esti-
mation was used to generate recovery time curves.

Statistical analyses were conducted using SAS 9.4, with
PROC FREQ, PROCGENMOD, PROC PHREG, and PROC
LIFETEST.

3. Results

3.1. Demographics and ETDRS BCVA. )e mean age for the
older group was 75.1± 4.79 years (67.0–83.3) (4M, 8F). For
the young group, the mean age was 26.2± 4.19 years
(19.5–30.0) (2M, 3F). At baseline, mean ETDRS best-cor-
rected visual acuity for the younger group was − 0.04± 0.055
and for the older group 0.17± 0.167. )e group means were
statistically different based on the Satterthwaite t-test
(p � 0.0017).

3.2. Baseline Flicker Sensitivity. Mean normalized baseline
flicker sensitivity (SD) was 0.11 (0.161) for the older group
and 0.05 (0.026) for younger. )e difference was not sta-
tistically significant, p � 0.2077.

3.3. Photostress Recovery. In the older group, 9 out of 12
(75%) study eyes failed to return to baseline within 5
minutes, compared to 1 out of 5 (20%) in the young group
(p � 0.1007) (Figure 1). In the analysis of failure rates using
all qualified eyes, the odds of failing to return to baseline are
1.92 in the older group compared to 0.25 in the young group
(OR� 7.69; p � 0.0203).

)e proportional hazards analysis of recovery time
yielded a statistically significant difference between the older
group and the young group (HR� 0.181; p � 0.0289). )e
estimated hazard ratio of 0.181 indicates that older subjects
return to baseline at less than one-fifth the rate of younger
subjects. Luminance (p � 0.2093) and frequency
(p � 0.3665) of the stimulus were not statistically significant
and were removed from the model. )e hazards ratio
remained statistically significant after adjusting for visual
acuity (HR� 0.093; p � 0.0424). In the all qualified eyes
analysis, the estimated hazard ratio was HR� 0.134
(p � 0.0046) and HR� 0.032 (p � 0.0022) after adjusting for
visual acuity.

4. Discussion

Previous visual psychophysical-based studies of photostress
recovery in both normal and AMD subjects have primarily
used visual acuity recovery as an endpoint [17–26]. Various
approaches have been used to apply photostress to the
subject’s visual system which has been identified as a sig-
nificant factor in test variability [21]. )e most important
differentiator between these approaches has been bleaches
using a photoflash stimulus of duration of several milli-
seconds and long-duration “equilibrium” bleach of several
seconds or more [33, 34]. For bleaching cone photorecep-
tors, an equilibrium bleach has been shown to be preferable
in order to deplete local stores of photopigment derived
from the retinoid present in the Müller cells [35]. Our
approach follows this methodology using a custom-designed
light source (Ora Lux) to provide a bleach of at least 84% of
cone photoreceptors while maintaining safe levels of ex-
posure [31, 36].

Results of at least eight previous studies of healthy
subjects over a broad range of age, based on visual psy-
chophysical outcomes, have been published [19–26]. Six of
these studies found a significantly longer mean recovery
time in older subjects [19–24]. Reported recovery time of
oldest to youngest subjects varied considerably from as little
as 15% to over 90%. Since these studies used a recovery
endpoint of visual acuity, one must be cautious in a direct
comparison to the results presented here.

In early age-related macular degeneration, outer retinal
metabolism is known to be compromised [37]. Since the
detection of a flickering stimulus imposes a higher meta-
bolic requirement than does a static stimulus, flicker
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Figure 1: Kaplan–Meier recovery curves for the older group (blue)
and the younger group (red).
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detects functional change at an earlier stage of the disease
[38]. )e variable contrast flickering stimulus investigated
here was selected based on the effectiveness of showing
group differences between normal and AMD subject
groupings [9, 27, 28]. Based on previous results from the
literature [27, 28], we have investigated several target
frequencies and luminance levels. )ese changes are
designed to provide optimal differentiation between nor-
mal and AMD groups as well as improve reliability. Sen-
sitivity to foveal flickering stimuli has been shown to
decrease with age [9]. However, in this study, mean
baseline sensitivity between young and old was not found
to be statistically different. Nevertheless, the addition of
photostress to the baseline stimulus resulted in an in-
creased separation between groups which was found to be
significant. Since retinal changes in AMD appear to share
some similarities to age-related changes, we would expect
that young normal and older normal subjects should show
easily detectable differences. )e differences found here in
this study suggest that this is the case.

5. Conclusion

In contrast to previous studies on photostress in normal
subjects, in which recovery endpoints based on visual
acuity were used, the recovery endpoint used here is a
flickering foveal blob presented on a computer screen with
mesopic luminance background. Unlike visual acuity, this
endpoint is particularly useful for assessing the health of
the aging retina due to its relative insensitivity to defects in
the ocular media. )e combination of photostress and
flicker constitute a retinal stress test which also stresses the
visual cycle and retinal metabolism. We find that using a
mesopic flicker recovery target followed by our high bleach
photostress system strongly differentiates aging macular
function. Inconsistent and nonstandardization of the
bleach process used in previous studies has been found to
result in high variability in outcomes [21]. )e use of a
consistent bleaching process in this study, bleaching a high
percentage of cone photoreceptors (84%), should allow for
reduced variability and more efficient clinical trials.
Moreover, the flicker endpoint described here extends
previous work by incorporating reduced luminance
background. )is is in accord with well-known difficulties
reported by both AMD and older normal subjects under
mesopic luminance levels. )is study shows that a flicker
target with high bleach photostress methodology is sen-
sitive to the retina/macular changes that occur as a result of
age. Perhaps this same methodology would differentiate
between age-related retinal changes and retinal changes
due to AMD. In clinical trials, visual function endpoints,
such as the variable contrast flickering endpoint may
provide a useful supplement to current endpoints in studies
of early AMD.
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Supplementary Materials

)e data used in this study are contained in the supple-
mentary data file. )e data are organized with one subject
eye per row. )e columns are as follows: ID: subject ID
number; age: subject age in years; age group: young for age
<31.0 and older for age ≥60.0; gender: F for female andM for
male, SEYE: subject study eye; OD or OS QEYE: subject
qualifying eye(s); OD, OS, or OU EYE: subject eye tested;
OD or OS lum: luminance of stimulus; 30 or 60 freq: fre-
quency of stimulus; 4, 14, or 30Hz base)r: nonnormalized
baseline threshold; baseline_Fflicker: normalized baseline
threshold; return_time: time to return to baseline; blank for
eyes that do not return to baseline within the allotted time;
time_last: last stimulus time; ETDRS: ETDRS (logMAR).
(Supplementary Materials)
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