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Innovative advances in stem cell research have resulted in the development of organoids, which are widely used as 
in vitro models of human organ development and for disease. The long-term goals of scientists include the generation 
of high-quality organoids with properties like those of native organs, and to expand their use to a variety of applications 
such as drug discovery and organoid-based cell therapy. In particular, the combination of human induced pluripotent 
stem cell (iPSC)-derived organoids with the recently developed genome engineering, biotechnology serve as an attractive 
platform in precision medicine. This review briefly summarizes the generation of organoids derived mostly from iPSCs 
without ethical issues, and describes the applications and technological advances of organoids under their differentiation 
and culture conditions. We also discuss the approaches to improve the organoid models, and how organoids can re-
capitulate mature organ systems of the human body for regenerative medicine. Finally, the future perspectives and 
remaining challenges in the field have been discussed to provide a better understanding of the potential applications 
of organoids.
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Introduction 

  For several decades, developmental biologists have stud-
ied aspects that can control stem cell behavior, such as 

differentiation and self-renewal, along with certain tissue 
lineages. To understand human biology, researchers have 
attempted to create models of the human developmental 
stages in vitro using human pluripotent stem cells (hPSCs), 
including human embryonic stem cells (hESCs) and in-
duced pluripotent stem cells (iPSCs), even though estab-
lished animal models such as fruit flies and mice already 
exist. The concepts and insights gained from the model 
organism systems have resulted in a significant shift from 
the use of stem cell models to three-dimensional (3D) 
structural organoids with organ-like properties, which 
serve as an ideal platform for studying stem cell develop-
ment, tissue regeneration, and diseases in humans (1-3). 
However, generating perfect organs in vitro has been chal-
lenging, and scientists are trying to optimize this process.
  As one of the promising hPSCs for organ formation, dis-
ease modeling, and applications in vitro, hESCs are un-
fortunately ethically controversial and limited in supply 
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Fig. 1. Summary of the generation of 
iPSC-derived multilineage organoids.
The generation of human iPSCs is de-
picted, and several organoid systems 
are listed along with their representa-
tive published protocols for genera-
tion. This figure was created using 
BioRender (https://biorender.com/).

(4). On the other hand, human iPSC-derived organoids 
have overcome the limitations associated with using hu-
man tissue samples, and they maintain the unique cell 
types found in the long-term environment in vivo. 
Advances in extracellular matrix (ECM) biology (5, 6) 
have made it possible to observe in vitro morphology in 
a 3D laminin-rich matrix (7). Using this culture method, 
various organ systems have been generated by growing hu-
man iPSCs on an ECM-based hydrogel (8). Since the pub-
lication of this strategy, representative methods for devel-
oping of intestinal organoids (9), optic-cups (10), liver 
buds (11), cerebral organoids (12), gastric organoids (13), 
lung organoids (14), nephron organoids (15), ductal orga-
noids (16), inner ear organoids (17), cardiac organoids (18), 

skin organoids (19), blood vessel organoids (20), and mod-
els of other organs have been established (Fig. 1).
  Organoids have been acknowledged as an important 
platform for drug screening (21) and have the potential 
to be used for studying the effect of long-term alternative 
therapies in regenerative medicine (22). Additionally, or-
ganoid technology can be used for numerous purposes by 
coupling it with the following: genome editing with clus-
tered regularly interspaced short palindromic repeats 
(CRISPR-Cas9) tools to obtain important insights into ge-
netic disorders (23); co-culturing with pathogens for study-
ing infectious diseases (24); and cancer modeling to under-
stand cancer pathogenesis, development, and progression 
(25, 26). Principally, organoids serve as exploration tools 
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for understanding the processes underlying human devel-
opment and diseases (13). However, despite the advances 
made, most of the human iPSC-derived organoids remain 
immature in cultures owing to the absence of important 
features found in adult tissues (27). Therefore, robust in 
vitro maturation methods that provide the required cel-
lular and environmental constituents for producing func-
tional and mature organoids are needed.
  This review will explain the recent efforts at increasing 
the complexity of organoids and describe the current po-
tential of using mature organoids in applications as di-
verse as bioengineering, disease modeling, drug discovery 
and regenerative medicine. We discuss the approaches to 
build the next-generation organoid, platform and high-
light the challenges that need to be addressed for the orga-
noid technology to reach its full potential in the field of 
regenerative medicine (28).

Generation of Organoids

  Organoids are generated by leveraging the self-organiz-
ing and self-patterning properties of homogeneous cell 
populations (3). They are ex vivo “mini-organs” that con-
tain fully differentiated cell types in the same spatial or-
ganization, as in the native organ. For the successful pro-
duction of organoids, factors such as organ/tissue-specific 
cell types, proper culture conditions, signaling pathways 
responsible for regulating differentiation, and ECM (that 
influences the final properties of the organoids) must be 
considered.

Initial stem cell types 
  Adult stem cells (ASCs) (24, 29) and tissue-specific stem 
cells derived from hPSCs (9, 10, 12, 13) differ in their de-
velopmental potential, and thus follow their respective dif-
ferentiation pathways in vitro. Therefore, depending on 
the purpose for which organoids are used, such as cell 
therapy, drug screening, or in studies of the basis of organ 
formation, the starting cell population is important (30). 
Additional areas that require further study include cell in-
teractions during development, tissue biology, and transla-
tional medicine (1, 2). ASC-derived organoids are useful 
for research on the epithelial lining of the small intestine 
(29), large intestine (31) or stomach (32) which undergoes 
rapid regeneration, because these organoids exhibit char-
acteristic intestinal epithelial regeneration and homeo-
stasis even when cultured in vitro. However, there are 
practical limitations associated with obtaining enough 
ASCs. In contrast, iPSC-derived organoids have been gen-
erated by modulating various differentiation pathways in-

volved in organ and tissue development, therefore iPSCs 
are usually used in studies that involve the recapitulation 
of processes associated with organ/tissue development in 
vitro. However, there have been hurdles in obtaining ma-
ture, “adult-like” cell types in hPSC-derived organoids (9). 
Additionally, co-culture of organoids with other cell types 
is required such as immune cells, nerve cells, and endothe-
lial cells to improve the functional maturity and complex-
ity of organoids (11, 33). 

Signaling pathways involved in organoid differentiation
  Most organoids are derived from a population of start-
ing cells exposed to a particular morphogen at a defined 
point of time, resulting in the activation of the desired de-
velopmental signaling pathway. Notably, iPSC-derived or-
ganoids require exposure to specific growth factors at a 
precise time for differentiation into the target organs. 
Each organ is derived from three germ layers formed dur-
ing embryonic development that undergo particular differ-
entiation pathways. Diverse organs are formed from the 
same germ layer depending on the inductive signal. 
Precisely using these pathways to form organoids, along 
with the various combinations and concentrations of fac-
tors, and timing can cause different outcomes. Typically 
with intestinal organoids, the hindgut is formed from the 
posterior endoderm in response to induction by fibroblast 
growth factor (FGF)/Wnt (9). Gastric organoids induce 
foregut formation by inhibiting bone morphogenetic pro-
tein (BMP) signaling and generate the posterior foregut 
via retinoic acid signaling (13). Subsequently, the epi-
dermal growth factor promotes the development of antral 
gastric organoids. Organoids can differentiate into fundic 
gastric organoids in response to continuous exposure to 
these conditions–activation of Wnt signaling; mitogen-ac-
tivated protein kinase inhibition; BMP activation (34). 
Human colonic organoids (hCOs) can be produced by reg-
ulating BMP signaling after the formation of hindgut 
spheroids (35). iPSC-derived retinal organoids can be 
driven to differentiate into retinal tissue in vitro by modu-
lating signaling pathways involving BMP4 and insulin-like 
growth factor 1 (36). FGF and sonic hedgehog proteins are 
required to promote the formation of lung organoids (14).

ECM for 3D culture
  Currently, organoids are cultured using an ECM to 
build 3D culture environments. In many reports, the ECM 
from Engelbreth-Holm-Swarm murine sarcoma, Matrigel, 
has been mainly used for culturing cells (11, 17). Matrigel 
has been widely used in epithelial cell culture, but batch- 
to-batch variability impedes reproducible in vitro studies, 
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and its use in regenerative medicine is limited due to 
mouse tumor cell origins (5, 7). Therefore, strategies for 
3D cultures that use synthetic hydrogels (37) and Type 
I Collagen gel (38) as alternatives have been reported. 
Moreover, tissue-specific ECMs were produced using ex-
tracellular matrix hydrogels derived from decellularized 
tissues, increasing the possibility of using organoids clin-
ically (39). In contrast, 3D suspension cultures without 
solid scaffolds are used to culture renal (40), retinal (41), 
and cerebral organoids (42). The generation and character-
ization of cerebral (43), lung (44), and renal organoids (45) 
using an air-liquid interface method has been demonstrated. 

Development of iPSC-Derived Organoids

  Since 2010, numerous papers have described the gen-
eration of various iPSC-derived organoids that represent 
human tissues. These organoids can be divided into ecto-
derm, mesoderm, and endoderm according to the line-
age-specific differentiation process to describe organoid 
formation. Brain, eye, inner ear, and skin organoid repre-
sent the ectoderm. The Lancaster group first developed 
the iPSC-derived cerebral organoid culture system, which 
has shown it can reproduce brain development (12). 
Models in which cerebral organoids containing neurons 
and glial cell types, including oligodendrocytes, have been 
created offer new opportunities to examine processes asso-
ciated with early neuronal development and diseases 
(46-48). Even more, to predict the central nervous system 
permeability of drug compounds, a human choroidal 
plexus organoid with cerebrospinal fluid secretion was es-
tablished and could be used in brain homeostasis studies 
(49). Similarly, retinal and corneal organoids have been 
generated that contain photoreceptor cells that respond to 
light stimulus; positive results have been reported follow-
ing their use in cell therapy (10, 36, 50). Ear organoids 
that contain sensory neurons and cochlear hair cells have 
recently been developed (17). Further, skin organoids that 
simulate the complex structure of human skin have been 
created (19). In mesoderm, one of the three germ layers, 
kidney, heart and recently blood vessels were developed. 
Renal organoids containing nephrons have been estab-
lished which have recently been vascularized using ECM 
and suspension culture methods (15, 23, 40, 45, 51). Blood 
vessel organoids, including epithelial cells and pericytes 
have been generated; the organoids exhibit self-assembly 
and vascular tree formation when implanted into mice 
(20). Importantly, cardiac organoids were developed by 
forced fusion via a biotechnology approach, and are being 
actively used in drug screening (18). In endoderm, in-

testinal organoids were produced and developed in the 
early stages of organoid advancement (9). Progress has 
been made in developing mature human intestinal organo-
ids (hIOs) and hCOs by employing various technologies 
(33, 35, 52-54). Pancreatic organoids can secrete insulin 
and are evolving as an important model for the treatment 
of diabetes (16, 55). As reported, mesenchymal stem cells 
and umbilical vein endothelial cells are used to establish 
liver organoids, and albumin is produced from vascular-
ized liver organoids are used in drug metabolism studies 
(11, 56). Lung organoids that constitute the basic bron-
chiole-like structure and alveoli have been developed (14, 
57). Additionally, gastric organoids containing antral or 
fundic organoids, which differ in the structural location 
and function of the stomach, have been generated (13). 
Taken together, organoids of various tissues have been 
produced, and their number is growing rapidly (Fig. 1). 
Furthermore, novel multi-organoid systems (boundary-or-
ganoid, hepato-biliary-pancreatic) have been reported (58), 
and mesenchyme-free organoids generated using iPSC-de-
rived hIOs have also been developed (54).

Enhancement of the Organoid Maturity

Co-culture of various cells 
  By stimulating cells with human developmental signals, 
it is possible to generate a variety of cell types present in 
vivo, such as neurons, vascular cells, and cells of the im-
mune system (9). Recent studies have shown that hIOs are 
altered due to the enteric nervous system (ENS) when 
co-cultured with vagal neural crest cells (52). The co-cul-
tured hIOs exhibited ENS integration effects regarding 
epithelial development; they also increased intestinal stem 
cell and transit-amplifying cell counts, and reduced the 
number of the differentiated absorptive and secretory in-
testinal cell types. This suggests that ENS could influence 
the differentiation trajectory of the hIOs. Furthermore, 
hIOs co-cultured with ENS may experience contractions 
like the peristaltic motion of the small intestine after im-
plantation under the kidney capsule in vivo. It has been 
reported that intestinal cell-specific marker expression 
and functionality have improved in co-culture conditions 
with stimulated Jurkat cells or in response to treatment 
with interleukin-2 (IL-2), a major cytokine secreted by T 
lymphocytes (33). IL-2 was also found to maintain the hIO 
maturation effect when transplanted under renal capsules. 
Recently, the hIO maturation factor, IL-2, was reported to 
exhibit therapeutic effects on dextran sulfate sodium-in-
duced ulcerative colitis (59). Co-culturing with endothelial 
cells and mesenchymal stem cells was attempted to im-
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Fig. 2. The various applications of 
organoids. The scope of organoids 
in respective applications such as 
areas of human biology studies, dis-
ease modeling, regenerative medi-
cine, drug development, and bioen-
gineering has been illustrated. This 
figure was created using BioRender 
(https://biorender.com/).

prove the functions of human iPSC-derived hepatocytes in 
liver organoid models (11, 56). Mature organoids can be 
generated by introducing various cell types, such as nerve 
cells, immune cells, endothelial cells, and mesenchyme, 
i.e., cells surrounding the organ in vivo, besides improving 
the functional maturity and complexity of organoids (Fig. 
2). In addition to using co-culture with organoids and oth-
er cell types to establish multilineage assembloids, it is al-
so possible to create mutiregion assembloids model by fus-
ing region-specific organoids of the same organ and con-
trolling polarity or signal. This approach can explain fun-
damental questions about the actual organ formation proc-
ess and disease mechanisms (60).

In vivo transplantation into mammalian hosts
  In many studies, organoids have been transplanted into 
immunodeficient mice to enable maturation in vivo (Fig. 
2). There are two approaches to organoid implantation; 
these include ectopic and orthotopic transplantation. 
Ectopic transplantations have been performed in the kid-

ney capsule (35, 61), epididymal fat pad (57), and in-
testinal mesentery (62), which are highly vascularized sites 
that have access to nutrients in vivo. A hIO has shown sig-
nificant maturation after transplantation under the kidney 
capsule for several weeks (61). The transplanted hIO gen-
erated a crypt-villus structure similar to that in adult tis-
sues, and the mesenchymal lineage cells were differ-
entiated to form smooth muscle layers. With orthotopic 
transplantation, the microenvironment of the native tissue 
and the therapeutic potential can be studied. For example, 
an implanted cerebral organoid was maintained for the 
long term (∼8 months) after in vivo transplantation by in-
tracerebral implantation, following which extensive axonal 
growth was observed (63). In addition, it has been con-
firmed that apoptosis decreases in the graft as vasculariza-
tion takes place (64). Neuronal activities have been also 
recorded owing to the connection between the graft and 
the host. Collectively, the transplantation approaches 
could produce mature organoids and provide critical in 
vivo environments that influence the enhanced organoids. 
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Although additional efforts are required to define the es-
sential factors for further maturity, this approach made it 
possible to identify their potential in translational medicine.

Organoid Applications

  Organoids have great potential for drug development 
and cell-based therapies, which are further combined with 
various applications, such as genome editing tools and or-
gans-on-a-chip technologies. Moreover, new applications 
allow creating advanced organoids, which could have tre-
mendous potential in translational and regenerative 
medicine.

In vitro model for developmental study, disease 
modeling and testing 
  In principle, the generation of iPSC-derived organoids 
needs to strictly mimic human organ development. 
Therefore, the process should be required precise spatio-
temporal signals and correct concentrations essential for 
cell differentiation and tissue assembly (14, 35, 57). 
Organoids as 3D models have contributed to an in-depth 
understanding of human tissue/organ biology; this ap-
proach is more realistic than two-dimensional (2D) cul-
tures and mammalian models (65). Moreover, organoids 
have provided an easily accessible system for identifying 
organ formation and have opened new avenues for study-
ing human developmental biology (Fig. 2).
  Compared to the conventional 2D model, the organoid 
systems can better simulate histopathological character-
istics by assembling various cells. In addition, genetic dis-
orders can be recapitulated using genome editing technol-
ogy, and in the case of infectious diseases, organoids can 
be directly co-cultured with pathogens, providing models 
for disease mechanisms and pathophysiology. Based on 
these advantages of organoid systems, certain diseases 
have been studied, such as genetic disorders (12, 21), host- 
pathogen diseases (13, 24), and cancers (25, 26). Organoids 
generated from patient-derived iPSCs should clearly re-
capitulate human pathophysiology to better predict the ef-
ficacy and toxicity of drugs at a tissue/organ level by re-
flecting unique clinical responses to drugs in individual 
patients. Disease-specific biobanks can be used as a source 
of samples to test powerful alternative tools for drug 
screening and precision medicine approaches (66) (Fig. 2). 
In particular, organoids have been used in a system to test 
drugs to treat of Zika virus infection (46), and to develop 
personalized medicine for cystic fibrosis (21) and color-
ectal cancer (67). 

Improvement of organoid systems via bioengineering 
approaches
  Human iPSC-derived organoids are generated by simu-
lating a human developmental process, but their structure 
differs from that of real organs. In addition, since it is dif-
ficult to deliver growth factors that induce the in vitro ma-
turation into 3D structured organoids, except for in vivo 
transplantation, there are challenges in the continuous 
culture process of expandable and organ-mimicking 
organoids. Therefore, to address these limitations, novel 
biotechnology approaches, including genome engineering, 
organ-on-a-chip platforms, and ECM-based scaffolds, have 
been proposed (37, 55, 68) (Fig. 2). A fluorescent reporter 
iPSC was created using CRISPR-Cas9 to expand the utiliza-
tion of organoids, and the fluorescence of specific cell mark-
ers was observed during differentiation (53). Furthermore, 
LGR5-CreER knock-in colon organoids were generated for 
lineage tracing of LGR5＋ intestinal stem cells (ISCs), and 
were transplanted into immunocompromised mice to ob-
serve the differences in stem cell cycling between species 
(28).
  Organ-like bioengineered scaffolds are required for the 
cellular differentiation, organization, and activity, and 
they can also enhance the continuous culture process of 
organoids, to simulate the size and shape of actual organs 
by providing their physiological environment. For exam-
ple, ISC cultures have maintained the shape of native 
small intestine with a crypt-villus structure when grown 
on a scaffold (69, 70). Besides, several studies have re-
ported the use of chemically defined hydrogels (37) and 
collagen I (38) instead of Matrigel, to improve the growth 
of organoids and demonstrate clinical use. Applying hy-
drogels has led to developing photodegradable systems, 
whereby poly (ethylene glycol) hydrogels can also encapsu-
late embryonic stem cell-derived motor neurons and use 
infrared radiation for three-dimensional control. For phys-
ical micropatterning on the 3D tissue engineering scaffold, 
the structure within the hydrogel can be created using 
pulsed lasers and precisely controlled to enable the devel-
opment of 3D cultured neural networks as well (71, 72). 
Alternatively, 3D bioprinting approaches that uniformly 
assemble cells in structures similar to those of adult or-
gans, may decrease the variability of the organoid pheno-
types and may be highly reproducible (73). The generation 
of organoids can be improved by growing microtubules on 
chips that mimic the scaffold and blood vessels, reproduc-
ing the required gradient of signal molecules (74). Organ- 
on-a-chip manufactured for organ-specific cell types can 
simulate a circulatory system with a microfluidic channel 
and has high reproducibility as an automated system. 
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Organ-on-a-chip based on microfluidic technology allows 
cells to adapt to the culture environment of the chip sys-
tem in which the medium is circulated within hollow mi-
crochannels (75). These devices can culture and maintain 
various types of cells simultaneously and predict drug re-
sponse and toxicity at the organ- or body-levels, even as 
a multi-organ-on-a-chip. A multi-organ-on-a-chip, also 
known as a human-on-a-chip, contains various cell lines, 
including liver, lung, kidney, and adipose tissues, and a 
multi-channel 3D microfluidic system (76). Furthermore, 
an organ-on-a-chip is suitable for high-throughput systems 
including the drug or toxin screening, growth factor 
and/or signal identification, and may additionally study 
organ-organ and organ-vessel interaction (77).

Host-microbial communications in organoid culture
  The human intestinal mucosal barrier and immune sys-
tem definitively develop during late gestation and infancy 
periods, which are associated with the first exposure of 
commensal and pathogenic microorganisms in vivo (78). 
The interactions between organoids with commensal and 
pathogenic microbes and viruses play important roles in 
the physiology and function of the human body. Intestinal 
ecology affects important features such as digestion (79), 
metabolism (80), immune function (81) and brain devel-
opment (82) through microbial colonization in early 
childhood. Therefore, introducing microbes into hIOs is 
necessary to understand colonization of various micro-
organisms in the human gut and their impact on early in-
testinal development. Especially gastrointestinal organoids 
which have niche components such as mucus layers will 
provide new insights into gastroenterological health and 
disease mechanisms. Several microbes have been micro-
injected into the lumen of closed hIOs to mimic intestinal 
host-microbial communications (83, 84) (Fig. 2). It was 
possible to observe the structural and functional changes 
in hIOs due to microbial colonization and confirm the in-
teraction with microorganisms. Further research will 
broaden our understanding of the interactions of balanced 
microbiota with organs during human development (85), 
and to demonstrate the mechanisms of pathogenic micro-
bial infection (86).

Potential applications of organoids in cell therapy
  Organoids are an important component of cell therapy 
in regenerative medicine, and the implantation of organo-
ids in animal models has been demonstrated with various 
approaches. For example, hIOs were transplanted into co-
lonic injuries in mice, following which the colonic mu-
cosal damage was regenerated after 4 weeks (28). In addi-

tion, human iPSC-derived liver (11), kidney (87), and lung 
bud tips (14) were transplanted into each of the chemi-
cally induced damaged organs. An optic-cup was also 
transplanted in a mouse model with retinal degeneration 
to induce the photoreceptors and restore the synaptic con-
nection to recover function (88). Human iPSC-derived 
brain organoids have been successfully implanted into the 
brains of adult mice, increasing the production of mature 
neuronal cells and the formation of synapses with host 
neurons (63). Overall, using orthotopic transplantation, it 
is possible to study the environment during the engraft-
ment of organoids in vivo and confirm the application 
prospects of organoids in cell therapy (Fig. 2).

Future Directions for Organoids in Regenerative 
Medicine

  Several studies have demonstrated rapid progress in or-
ganoid application, suggesting that organoids are a prom-
ising source for disease modeling, tissue engineering, and 
cell-based therapy in regenerative medicine. The pro-
duction of mature organoids combined with challengeable 
applications can aid in the clinical treatment of tissues. 
Despite the aforementioned potential of organoids, nu-
merous hurdles remain for achieving successful drug dis-
covery and cell-based therapy. Ideally, protocols for differ-
entiation of iPSC-derived organoids should be stand-
ardized for reproducibility and mass-production. Presently, 
iPSC-derived organoid systems are difficult to homogenize 
and lack scalability for high-throughput screens and 
large-scale cell therapy. Improving culture methods, in-
cluding defined ECMs and multiscale micropatterning, 
may facilitate the production of more reproducible 
organoids. Additionally, for cell transplantation therapy, a 
defined ECM with excellent biocompatibility should be 
developed to replace Matrigel, and a scaffold that mimics 
real organ structure could be established. Conventional or-
ganoid differentiation protocols can generate a population 
of diverse cell types that occur spontaneously, but re-
ducing their variability is a major challenge. Organoids 
with different characteristics are produced depending on 
the culture protocol, and specific mutations have been re-
ported in patient-specific iPSC-derived organoids accord-
ing to genetic background (12, 89). The introduction of 
gene editing technology can help generate new isogenic or-
ganoids that reduce background-related variability. 
  Based on the development methods of organoids men-
tioned in this review, organoids with stable scale-up capa-
bilities and reproducibility should undergo three examina-
tions before they are industrially produced as therapeutics. 
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Fig. 3. Overview of the scale-up 
process for organoid applications 
covering iPSC generation to regene-
rative medicine. Developing a safe 
and cost-effective treatment based 
on a standardized protocol for orga-
noid generation and scale-up of the 
culture process is depicted. This fig-
ure was created using BioRender 
(https://biorender.com/).

The first is to ensure a pathogen-free state that is directly 
linked to safety throughout the entire process from cell 
production to validation. Second, the use of advanced or-
ganoids in the industrial pharmaceutical pipeline requires 
the development of a storage or delivery method for orga-
noids to optimize manufacturing costs. Finally, objective 
validation techniques for measuring the safety and efficacy 
of therapeutics in vivo should be established (90). These 
criteria must be met for organoids to work as drugs and 
some progress is already being made. Ultimately, mul-
ti-lineage organoid models can help reduce our reliance 
on animal models and provide new tools to treat human 
diseases. The various applications of the human iPSC-de-
rived organoid systems presented here will play an im-
portant role in the future of regenerative medicine (Fig. 
3).

Conclusions

  Human iPSC-derived organoids are an accessible and 
physiologically relevant model system that can mimic the 
functions of human organs without ethical concerns re-
garding human embryos and interspecies differences. 

Notably, organoids have tremendous potential in tissue bi-
ology research, disease modeling and alternative cell-based 
therapy. Moreover, in recent years, rapid progress has 
been made on the bioengineering aspects of ECM scaf-
folds, genome editing and organ-on-a-chip approaches to 
improve organoid functionality. Therefore, advanced orga-
noid systems combined with various applications will un-
doubtedly expand the scope of regenerative medicine.
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