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Abstract

Under most natural marine conditions, phytoplankton cells suspended in the water column

are too distantly spaced for direct competition for resources (i.e., overlapping cell boundary

layers) to be a routine occurrence. Accordingly, resource-based competitive exclusion

should be rare. In contrast, contemporary ecosystem models typically predict an exclusion

of larger phytoplankton size classes under low-nutrient conditions, an outcome interpreted

as reflecting the competitive advantage of small cells having much higher nutrient ‘affinities’

than larger cells. Here, we develop mechanistically-focused expressions for steady-state,

nutrient-limited phytoplankton growth that are consistent with the discrete, distantly-spaced

cells of natural populations. These expressions, when encompassed in a phytoplankton-

zooplankton model, yield sustained diversity across all size classes over the full range in

nutrient concentrations observed in the ocean. In other words, our model does not exhibit

resource-based competitive exclusion between size classes previously associated with

size-dependent differences in nutrient ‘affinities’.

Introduction

Our interpretation of observed ecological properties derives from our conceptions of the envi-

ronment experienced by organisms and their interactions with other individuals. These con-

ceptions are inevitably influenced by our own experiences, such that fundamental ecological

concepts originally formulated from observations of macro-organisms (birds, mammals, trees,

etc.) are often carried forward to very different systems (e.g., microbial communities). For

example, principles of resource-based competitive exclusion first deduced from terrestrial

communities [1] are commonly assumed equally valid for the phytoplankton [2]. At the other

end of the spectrum, principles of physical-chemistry can be used to formulate expressions for

biochemical reactions, such as the Michaelis-Menten equation for enzymatic reaction kinetics

[3]. The mathematical curve that the Michaelis-Menten equation represents often provides an
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excellent fit to observational data for far more complex systems (e.g., nutrient uptake in phyto-

plankton cells), but such results do not imply that associated equation variables carry a similar

physiological meaning as those for single enzyme reactions.

The conceptions we have regarding the plankton world are formalized and tested in ecosys-

tem models. For oligotrophic ocean regions, these models often predict the proliferation of

small phytoplankton species at the expense (i.e., exclusion) of larger species [e.g., 4–7]. This

outcome is interpreted as the consequence of resource-based competitive exclusion, where

smaller cells have a greater ‘affinity’ for nutrients and thus can draw nutrients down to a level

that will not sustain larger cells. These predictions of size-dependent exclusions are inconsis-

tent with observations. In the oligotrophic ocean, small species may be both numerically- and

biomass-dominant, but the phytoplankton size distribution is nevertheless a continuum,

where large cells persist at lower abundances [e.g., 8, 9]. This fundamental inconsistency,

which has been noted previously [e.g., 10], motivated the current exploration of how we might

better conceive of, and subsequently model, the growth environment experienced by phyto-

plankton and their interactions with other individuals.

In the narrative below, we begin with a depiction of aquatic ecosystems where individual

phytoplankton are distantly spaced across nearly the full range of naturally-occurring cell

abundances. In such seascapes, resource-based competitive exclusion is unlikely, which is at

odds with the above noted loss of species diversity in plankton ecosystem models under low-

nutrient conditions. This contradiction suggests that there is something fundamentally incor-

rect about the models. One possibility is that the problem lies with the model treatment of phy-

toplankton taxonomic groups simply as integrated nutrient (e.g., nitrogen) stocks sharing (i.e.,

competing for) common nutrient resources, rather than from the perspective of how individ-

ual cells experience their growth environment. To explore this possibility, we develop a diffu-

sion-based model framework that is consistent with the growth of distantly-spaced, non-

competing individuals and which derives from the mechanistic underpinnings of production-

resource relationships observed in laboratory populations under light-limiting and nutrient-

limiting conditions. A problem that arises from this approach is that the underlying physics

yield an untenable initial prediction of extreme size-dependent differences in phytoplankton

division rates. However, this issue is resolved when the model is applied to nutrient conditions

reflective of natural oceanographic settings. Interestingly, our diffusion-based expression can

be equated to a Michaelis-Menten functional form, implying that the apparent problem with

ecosystem models does not lie in the treatment of phytoplankton as fluid variables (i.e., uni-

formly distributed stocks of a chosen element). Given this finding, we modify a published

multi-species model to demonstrate how a simple revision to the model equations allows all

modeled phytoplankton size classes to be sustained across the full nutrient domain of ultra-oli-

gotrophic to eutrophic conditions. As you will discover at the end of this narrative, the com-

mon loss of species diversity in contemporary ecosystem models under low nutrient

conditions has nothing to do with resource-based competitive exclusion.

Cell spacing and resource competition

Edward Hulburt, using data collected during a series of field campaigns spanning from the

north Atlantic gyre to highly productive coastal waters, quantified the average spacing between

nutrient depletion zones (i.e., ‘boundary layers’) associated with neighboring phytoplankton

cells [11]. His analysis indicated that cell concentrations (of microphytoplankton and large

nanophytoplankton) greater than ~108 L-1 would be required for cell boundary layers to pre-

dominantly overlap and, thus, for direct resource competition to ensue. This requirement

exceeded observed cell concentrations by at least two orders of magnitude across all sampled
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environments, save two shallow coastal estuaries. Accordingly, he concluded that this spatial

separation implies that “no cell can affect any other, that no species can interact with another,
through competition for nutrients” in most natural environments and that this lack of resource-

based competition is the explanation for Evelyn Hutchinson’s [2] ‘Paradox of the Plankton’.

In 1998, David Siegel [12] greatly expanded upon Hulburt’s earlier work, quantitatively

evaluating the discreteness of phytoplankton across the cellular size domain. He introduced

two distribution variables (DV) to assess the likelihood of overlapping ‘spheres of influence’

(i.e., boundary layers). In the spatial domain, DVλ was defined as the ratio of the diameter of a

phytoplankton’s sphere of influence (dsoi) to the average distance between adjacent cells (λ):

DVl �
dsoi

l
; ð1AÞ

where DVλ > 1 indicates overlapping boundary layers and competition for resources, whereas

DVλ < 1 indicates that cells are too far apart to feel the effects of their neighbors (see Table 1

Table 1. Symbols/abbreviations, definitions, and units (in order of appearance in manuscript).

Symbol/

abbrev.

Definition Units

λ average distance between individual cells μm

dsoi diameter of cell boundary layer μm

τλ interaction time scale between cells s

τbio characteristic biological time scale s

n number of cells per unit water volume cells m-3

d cell diameter μm

d0 reference diameter μm

N0 particle differential number concentration at d0 ml μm-1

> absolute value of the size distribution slope unitless

Vol cell volume μm3

C phytoplankton cellular carbon content pg cell-1

Cphyto carbon mass of phytoplankton population ng C ml-1

Chl chlorophyll mass of phytoplankton population ng Chl ml-1

Volphyto total cell volume per unit water volume ml ml-1

S1 far-field nutrient concentration mmol m-3 or mM

Ꝑ phytoplankton biomass in nutrient units mmol m-3

V�m maximum specific nutrient uptake rate d-1

Km Michaelis-Menten half-saturation substrate concentration mmol m-3

m non-grazing specific death rate of phytoplankton d-1

Ig Light level to which phytoplankton are acclimated mol quanta m-2 d-1

P carbon–specific photosynthetic rate d-1

Pmax carbon–specific light-saturated photosynthetic rate d-1

μm maximum specific rate of cell division d-1

αP light-limited slope of P-I relationship m2 (mol quanta)-1

IP
K light-saturation index of P-I curve mol quanta m-2 d-1

μ specific rate of cell division d-1

αμ light-limited slope of division rate-irradiance (μ-Ig) relationship μmol C m2 (μmol

quanta)-1

Ir light level where primary production equals the maintenance respiration rate d-1

ImK light-saturation index of μ-Ig relationship μmol quanta m-2 d-1

v nutrient uptake rate mmol cell-1 d-1

(Continued)
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for summary of symbols and abbreviations). The second distribution variable (DVτ) was intro-

duced to account for interactions between cells over time:

DVt �
tbio

tl
; ð1BÞ

where τbio is a characteristic biological time scale (e.g., time between cell divisions) and τλ is

the time scale that a given phytoplankter will feel the effects of its neighbors. In the case of

nutrient competition, DVτ can be thought of as “the rate at which neighboring cells are inter-
cepting a given cell’s potential nutrient supply in relation to the cell’s intrinsic nutrient demand
over its division cycle” [12]. Here again, DVτ> 1 indicates that neighboring cells will influence

a given phytoplankter’s nutrient supply, while DVτ< 1 implies minimal competition for nutri-

ents between cells.

To illustrate the relationship between cell size, abundance, and the potential for resource

competition, Siegel [12] assumed spherical cells in a quiescent medium, that a given phyto-

plankton population is composed entirely of a single cell size, that a cell’s boundary layer is five

times larger than the cell’s diameter, and that τbio = 1 day [see Siegel [12] for details and discus-

sion on sensitivity of results to these assumptions]. For these assumptions, the threshold cell

abundances for direct resource competition can be found [i.e., solving Eqs 11 and 13 in Siegel

[12] for DVλ = 1 and DVτ = 1] and expressed as a function of cell diameter (Fig 1A). The salient

results here are that threshold abundances increase rapidly with decreasing cell size (note the

logarithmic scaling of the y-axis in Fig 1A) and that across the cell size domain of phytoplank-

ton these thresholds greatly exceed typical cell concentrations found in natural ocean waters.

Table 1. (Continued)

Symbol/

abbrev.

Definition Units

Vm maximum nutrient uptake rate mmol cell-1 d-1

αv initial slope of the relationship between v and S1 dm3 d-1

Q cellular requirement for limiting nutrient mmol cell-1

Kcell
m nutrient concentration where v = 0.5 Vm for cells acclimated to different S1 mM

S0 concentration of given nutrient at the cell surface mmol m-3 or mM

FD diffusional flux of nutrient to a stationary spherical cell mmol μm3 s-1 or

fg μm3 s-1

D diffusion coefficient μm2 s-1

F0D cell volume-specific diffusional flux of nutrient to a stationary spherical cell mmol μm s-1 or

fg μm s-1

Ʋ characteristic cell sinking or swimming velocity μm s-1

Pe Péclet number unitless

Sh Sherwood number unitless

AF Potential nutrient flux available for assimilation assuming 90% capture

efficiency and accounting for cell movement

mmol μm s-1 or

fg μm s-1

ꝐN
i total nitrogen inventory of the ith phytoplankton size class mmol m-3

ZN
i total nitrogen inventory of the ith zooplankton size class mmol m-3

fi feeding size range of grazers and carnivores with respect to mean prey size unitless

g1 zooplankton grazing rate m3 mmol-1 d-1

g2 zooplankton ingestion efficiency unitless

g3 zooplankton linear mortality rate d-1

g4 zooplankton density-dependent mortality rate m3 mmol-1 d-1

κ media outflow rate in the Ward et al. [10] chemostat model d-1

https://doi.org/10.1371/journal.pone.0274183.t001
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Fig 1. Conceiving the discreteness of phytoplankton communities. (A) Cell abundances for populations of a single

cell size required for the spatial (DVλ) and temporal (DVτ) distribution variables defined by Siegel [12] to have a value

of one, indicating direct competition for resources is prevalent. Note, these threshold values are notably larger than

most natural population abundances. (B) Average number of body lengths between individual phytoplankton cells (left

axis, solid line) and average population cell size (right axis, dashed line) for modeled phytoplankton communities with
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We can further develop our conception, or ‘intuition’, regarding resource competition

among phytoplankton by considering populations of a continuous size distribution. In stable

lower-latitude oligotrophic systems, phytoplankton abundance is dominated by Prochlorococ-
cus, with numbers typically ranging between 2 Η 104 and 2 Η 105 cells ml-1 [13, 14] and the

phytoplankton community generally exhibits a size distribution with a slope of approximately

-4.5 between the logarithm of cell number concentration per unit length and the logarithm of

cell diameter (d) [15–19]. As nutrient stocks in the environment increase, Prochlorococcus
abundances peak while the abundance of larger cells continues to increase, causing the size dis-

tribution slope to tilt upward toward -3 [19].

For the power-law size spectrum of phytoplankton communities [see Note 1 in S1 File], the

total number of individuals [n (cells ml-1)] between two limits in size [dmin, dmax (μm)] can be

calculated as:

n ¼
d0N0

1 � x

dmax

d0

� �1� x

�
dmin

d0

� �1� x
( )

ð2Þ

where> is the absolute value of the size distribution slope, d0 is a reference cell diameter (μm),

and N0 is the particle differential number concentration (ml μm-1) at d0. To demonstrate sepa-

ration distances between phytoplankton cells in nature, we assign d0 = 1 μm [see Note 2 in S1

File] and assume that > = 4.5 as available resources allow Prochlorococcus abundances to

increase from 2 Η 104 to 2 Η 105 cells ml-1. We further assume that additional increases in nutri-

ents do not affect Prochlorococcus concentrations (i.e., remain capped at 2 Η 105 cells ml-1) but

rather result in an increased abundance in larger cells such that> decreases from 4.5 to 3.3.

With these assumptions, the resultant total number of phytoplankton cells between dmin =

0.6 μm and dmax = 500 μm ranges from 3.2 Η 104 to 4.1 Η 105 cells ml-1 and the average cell size

of the population increases from 1.1 to 4.3 μm as> decreases from 4.5 to 3.3 (Fig 1B, dashed

line, right axis). Assuming spherical cells and a non-diatom cellular carbon (C, pg cell-1) to vol-

ume (Vol, μm3) relationship of C ¼ 10� 0:665þ0:939Log10ðVolÞ [20], the above defined phytoplankton

populations span a biomass (Cphyto) range of 6 to ~3700 ng ml-1 (lower axis in Fig 1B; noting

here that ng ml-1 = μg L-1), or a chlorophyll (Chl) range of approximately 0.03 to 60 ng ml-1

assuming an increase in Chl:Cphyto from 0.006 to 0.02 as biomass increases (due to self-shading).

Thus, the modeled phytoplankton populations span a range from highly oligotrophic to highly

eutrophic conditions, yet across this full range neighboring cells remain separated on average

by 380 to 130 body lengths (Fig 1B, solid line, left axis).

As a final illustration of the diluteness of phytoplankton in nature, we can calculate the total

cell volume per milliter of water (Volphyto) as:

Volphyto ¼
1

4� >

p

6
N0d

4

0

dmax

d0

� �4� x

�
dmin

d0

� �4� x
 !

; ð3Þ

which, for a size range of 0.6–500 μm diameter, yields the result that phytoplankton only

occupy 0.0000024% to 0.0017% of the volume in which they are suspended for the oligotrophic

to eutrophic conditions considered above.

size distributions reflective of natural populations (see text). Cell size is calculated as the cell diameter of the average

cell volume. Bottom and top axis give total phytoplankton carbon biomass (Cphyto) and approximate corresponding

chlorophyll concentrations. (C) Depiction of phytoplankton in natural waters where cells are distantly spaced and

resource acquisition is limited to discrete boundary layers around each cell (outer circles with inward pointing arrows)

and has no immediate impact on the far-field resource pool (S1) experienced by all cells.

https://doi.org/10.1371/journal.pone.0274183.g001
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The foregoing analyses provide a general ‘feel’ for the distantly-spaced growth conditions

experienced by phytoplankton in a steady-state environment, which is depicted schematically

in Fig 1C (‘schematically’ because in nature cells are much further apart than illustrated). Of

course, this schematic is incomplete and fails to recognize interactions that result from relative

movements among cells due, for example, to active swimming, differences in sinking rates,

small-scale turbulence, formation of thin layers of enhanced biomass, and other processes that

bring cells into close proximity (even colliding and forming aggregates). These interactions

can result in fleeting overlaps between cell boundary layers [quantified in 12 by the DVτ vari-

able] and, thus, direct competition for resources. In addition, the abundance of different phy-

toplankton groups also influences the far-field nutrient concentration (S1) experienced by all

individuals (much like a change in abundance influences the light field experienced by all

cells). For example, during the non-steady-state condition of a phytoplankton bloom, accumu-

lation of a blooming species reduces the value of S1 experienced by all species (because

resource is being drawn from the environment and sequestered into biomass). Likewise, in a

nutrient-limited steady-state system, the biomass of different size classes is determined by

predator-prey relationships that scale (not necessarily in a 1-to-1 fashion) with division rate.

We will return to this latter idea below, but for the moment the central message conveyed in

Fig 1 and above is that, to first order, phytoplankton experience their world as discrete entities

with boundary layers rarely (on a day-to-day basis) overlapping with those of other

individuals.

Given the above conception, the question arises whether discreteness of the phytoplankton

requires a modification in how we model aquatic ecosystems? Essentially this same question

was asked by David Siegel [12], who was considering the model construct:

dꝐ
dt
¼
Xi¼j

i¼1

V�imS1
S1 þ Ki

m

Ꝑ i � mꝐ i

� �

; ð4Þ

where V�im is the maximum specific uptake rate and Ki
m is substrate concentration at 1/2V�im for

the ith phytoplankton group (Ꝑi) and m is the specific loss rate. In this formulation where

growth rate is described in a Michaelis-Menten fashion, the phytoplankton community is sim-

ply expressed as the integrated stock of some nutrient element without explicit representation

of individuals, thus it was concluded that:

“Discreteness in phytoplankton. . .means that formulations of phytoplankton growth and
interaction based upon assuming that planktonic organisms are fluid variables [as in Eq 4

above] are inappropriate for modeling phytoplankton population variations in natural
waters. These models assume a priori that phytoplankton populations are distributed continu-
ously, where every cell will uniformly and instantaneously feel the effects of its neighbor.” [12]

The current authors have also voiced a similar concern [19, 21]. But, does the omission of

discreteness in Eq 4 actually imply ‘uniform and instantaneous’ interactions that lead to com-

petitive exclusion? We suggest below that, in fact, it does not. We build toward this conclusion

by considering in the next section fundamental properties of phytoplankton production-

resource relationships common to both light-limited and nutrient-limited growth.

Production-resource relationships

The relationship between phytoplankton production (e.g., photosynthesis, cell division) and

resource supply can be described by equations requiring only two parameters. For the familiar

Michaelis-Menten-type expression (e.g., Eq 4), these parameters are Vm and Km when
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describing nutrient-limited growth, with the latter term representing the fore-noted ‘affinity’

for a given resource. This interpretation of Km has been promoted by laboratory competition

experiments where species with lower Km (i.e., greater affinity) ultimately displace (i.e., com-

petitive exclusion) those with higher Km [e.g., 22]. However, employing Michaelis-Menten-

type expressions in ecosystem models raises a couple important issues. First, the Michaelis-

Menten equation [3] was developed to describe single substrate-enzyme-product systems and

is mechanistically grounded in physical-chemistry. When applied to whole-cell properties

(beyond simply the behavior of membrane transporters), this mechanistic basis for the equa-

tion (thus, interpretation of model variables) is compromised. Second, it is not immediately

clear whether expressions, such as Eq 4, provide robust predictions for populations of dis-

tantly-spaced phytoplankton cells, as noted in the previous section. In the following, we there-

fore consider a mechanistic interpretation of production-resource relationships that we

propose provides some insight on these apparent challenges with Michaelis-Menten-based for-

mulations. We begin by considering two fundamentally different light-limited experimental

conditions and then draw parallels between these responses and nutrient-limited experimental

data to ultimately build a diffusion-focused expression appropriate for describing phytoplank-

ton growth in natural communities.

Let us first consider the familiar experimental procedure of determining ‘Photosynthesis-

Irradiance’ relationships (i.e. a ‘P-I curves’), whereby samples from a phytoplankton popula-

tion acclimated to a given growth irradiance (Ig, mol quanta m-2 d-1) are exposed to a range of

light levels (IE, mol quanta m-2 d-1) for a sufficiently brief period that physiological acclima-

tions are negligible. Resultant P-I curves (e.g., Fig 2A) are characterized by an initial linear

increase in photosynthesis that is defined by photon flux, the number of absorbing (pigment)

targets, and the functional absorption cross-section per target. At higher light intensities, the

rate of photon capture begins to approach the cell’s capacity to utilize the light-driven produc-

tion of ATP (adenosine triphosphate) and reductant (nicotinamide adenine dinucleotide

phosphate, NADPH). This capacity, which defines the maximum (light-saturated) rate of pho-

tosynthesis (Pm), is ultimately determined (primarily) by turnover of the Calvin-Benson-Bas-

sham Cycle [23–28]. The value of Pm varies with growth conditions, but its maximum is an

evolutionarily-selected property aligned with a given species’ maximum division rate (μm).

Thus, P-I curves are defined by a physical process (photon capture) and a biological limit (Pm)

and, logically, traditional equations describing these curves are formulated in these terms, such

as [29]:

P ¼ Pm tanh
aPIE

Pm

� �

; ð5Þ

where the slope, αP, is the photon capture efficiency at low light [m2 (mol quanta)-1]. P-I
expressions, such as Eq 5, yield relatively abrupt transitions between light-limited and light-

saturated photosynthesis and commonly provide a suitable fit to observational data (e.g., Fig

2A). An ‘emergent property’ of P-I curves is the light saturation index, IP
K = Pm /αP. For the

hyperbolic tangent model (Eq 5), P = 0.76 Pm when Ig = IP
K .

In a similar manner to a P-I curve, cell division rates (μ, d-1) can be measured across popu-

lations acclimated to different growth irradiances (i.e., a ‘μ-Ig’ curve). Emergent μ-Ig curves are

again saturating functions of light level (Fig 2B), but these relationships differ significantly

from P-I curves because each population has had sufficient time to optimize its physiology

according to its growth conditions. This optimization involves the tuning of a plethora of cel-

lular properties, including investments in photosynthetic machinery, nutrient uptake systems,

and respiratory pathways. While generalized models of this acclimation process have been
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developed [e.g., 30], we currently do not have adequate knowledge on evolutionary histories

and life strategies to a priori predict the unique ‘solutions’ expressed by different species. What

we can say is that observed μ-Ig curves are again well described (solid black line Fig 2B) as func-

tions of the physical process of photon capture efficiency at low light [αμ, m2 (mol quanta)-1]

and a species-specific biological limit on μm (d-1) at high light. However, μ-Ig relationships gen-

erally follow a rectangular hyperbolic form that can be expressed as [modified from 31]:

m ¼
amðIg � IrÞmm

amðIg � IrÞþmm
; ð6Þ

where Ir (mol quanta m-2 d-1) is the light level at which primary production equals the

Fig 2. Short-term and acclimated production-resource relationships for light-limited and nutrient-limited phytoplankton populations. (A) Short-term

(20 minute) carbon-specific 14C uptake as measured by Fisher & Halsey [76] for Thalassiosira pseudonana (Hustedt) Hasle et Heimdal (CCMP 1355) cultures

acclimated to a light-limited growth rate of 0.85 d-1. Dashed line = fit of Eq 5. (B) Cell division rates observed by Laws & Bannister [54] for Thalassiosira
weissflogii (previously, Thalassiosira fluviatilis) acclimated to a range in growth irradiance (Ig, x-axis). Solid line = fit of Eq 6. Dashed line = application of Eq 5.

(C) Short-term (8 minute) PO4 uptake (atto-mol = 10−15 mmol) measured by Laws et al. [55] for Pavlova lutheri (Droop) J.C. Green maintained in chemostats

at a PO4-limited growth rate of 0.48 d-1 and then rapidly exposed to a range of concentrations (x-axis). Dashed line = fit of Eq 7. (D) Cell division rates

observed by Laws et al. [32] for Tetraselmis suecica (Kylin) Butcher in steady-state PO4-limited chemostat cultures. Solid line = fit of Eq 8. Dashed

line = application of Eq 7. (c,d) x-axis = measured far-field PO4 concentration (SP
1

).

https://doi.org/10.1371/journal.pone.0274183.g002
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maintenance respiration rate [see Note 3 in S1 File]. The significant influence of cellular opti-

mization on the μ-Ig relationship is reflected in Fig 2B by the poorness of fit when Eq 5 is

applied to the data (dashed line). For μ-Ig data, an ‘emergent’ light saturation index can again

be defined as ImK = μm/αμ, but in the case of the rectangular hyperbolic (Eq 6), μ = 0.5 μm when

Ig = ImK + Ir.
Production-resource relationships for nutrient-limited populations exhibit very similar

properties as light-limited systems. For example, Laws et al [32] exposed cells from a steady-

state phosphate-limited population of the haptophyte, Pavlova lutheri, growing at μ = 0.48 d-1

to a range of phosphate concentrations (SP
1

) and measured short-term (8 minute) uptake rates

(v, mmol cell-1 d-1). Analogous to Eq 5, the observed uptake-substrate (v-S1) curve is well

described by (Fig 2C):

v ¼ Vm tanh
avS1
Vm

� �

; ð7Þ

where αv (dm3 d-1 cell-1) is an initial slope (akin to αP) defined by the physical flux of nutrients

to the cell surface (i.e., diffusion through the cells boundary layer) and capture by membrane

transporters (the ‘targets’), while Vm is the nutrient-saturated maximum uptake rate (mmol

cell-1 d-1). As noted by Laws et al [32] and later by Flynn et al. [33] for nitrogen-limited cul-

tures of Emiliania huxleyi and Heterosigma carterae, v-S1 data are often not well fitted by a

rectangular hyperbolic function. Because such data are collected on time scales too short for

physiological acclimations, v-S1 curves reflect cell uptake capacities for essentially a fixed pop-

ulation of membrane transporters and, thus, can be mechanistically described by so-called ‘dif-

fusion-porter’ models [33–37].

Modeling steady-state nutrient-limited phytoplankton division rates, on the other hand,

requires a description of performance as a function of resource availability (S1) akin to a μ-Ig
relationship. Here again, optimization of growth results from tuning a plethora of cellular pro-

cesses (not simply those associated with nutrient uptake and assimilation) and observed rela-

tionships reflect evolved ‘solutions’ specific to each species that, again, we currently do not

have sufficient mechanistic understanding of to accurately predict a priori. Nevertheless, μ-S1
relationships commonly follow a saturating rectangular hyperbolic form [see Note 4 in S1 File]

(e.g., Fig 2D):

m ¼
avS1Vm

avS1þVm

� �
1

Q
¼ mm

avS1
avS1þVm

� �

; ð8Þ

where αv (dm3 d-1 cell-1) is, in this case, the slope of uptake versus substrate concentration

(mM) for populations acclimated to low nutrient levels, Q is the cellular requirement for limit-

ing nutrient (mmol cell-1), and mm ¼
Vm
Q . As in Fig 2B, Eq. 7 does not provide a suitable fit to μ-

S1 data (dashed line in Fig 2D), again illustrating the significant influence of cellular optimiza-

tion in acclimated populations.

A take-home message of the foregoing discussion is that short-term and acclimated produc-

tion-resource relationships for both light-limited and nutrient-limited conditions can be logi-

cally described as functions of a largely physically-defined flux-capture process (i.e., the α
terms) and an evolutionarily selected for, species-specific maximum division rate or related

biological property (i.e., Vm. Pm). However, the shapes of short-term and acclimated produc-

tion-resource relationships differ because of the many physiological ‘knobs’ cells can turn in

the process of optimization. The outcome of this optimization for nutrient-limiting conditions

is a production-resource response that typically follows a rectangular hyperbolic form where

the saturation index, Vm/αv, corresponds to the nutrient concentration where v = 0.5Vm =
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Kcell
m . Accordingly, the right hand side of Eq 8 can be reorganized by multiplying the numerator

and denominator by 1

av
and substituting Vm/αv = Kcell

m to give:

m ¼
avS1Vm

avS1þVm

� �
1

Q
¼

S1Vm

S1 þ
Vm
av

 !
1

Q
¼ mm

S1
S1 þ Kcell

m

� �

; ð9Þ

where the bracketed term of the right-most expression is now the Michaelis-Menten form

commonly employed in contemporary plankton ecosystem models (e.g., Eq 4). Here, we have

used the term, Kcell
m , to acknowledge that this evolved property of optimized whole-cell physiol-

ogy should not be mechanistically thought of as equivalent to the Km of a Michaelis-Menten

single enzyme-substrate-product reaction.

We propose that, when thinking about nutrient-limited phytoplankton growth in nature,

Eq 8 has a distinct advantage over its converted Michaelis-Menten form in Eq 9 (and similarly

Eq 4), despite their mathematical equivalence. Specifically, the Michaelis-Menten form is often

interpreted as specifying competitive advantages/disadvantages between phytoplankton spe-

cies because Vm and Kcell
m are both viewed as species-specific physiological ‘traits’. While this

certainly is the case for Vm and a high Vm can bestow an advantage under elevated resource

conditions, the limit on Kcell
m is primarily dictated by the physical process of diffusion. As such,

the common assignment of Kcell
m as a metric of nutrient ‘affinity’ [‘an attractive force between

substances or particles’ (Merriam-Webster, https://www.merriam-webster.com/dictionary/)] is

misleading, as cells cannot ‘attract’ resources beyond diffusional limits [for a given morphol-

ogy, relative motion, and assuming equal efficiency in capturing nutrients at the rate they

arrive at the cell surface (see below)]. When individuals are as distantly spaced as in natural

populations (Fig 1), their influence on the nutrient field is constrained to their respective

boundary layers (outer circles and red arrows in Fig 1C) and has no immediate impact on the

far-field (S1) experienced by neighboring cells. So long as the phytoplankton of such a com-

munity are consumed and their nutrients recycled at a rate equivalent to population uptake

(i.e., steady-state conditions), S1 remains unchanged and there is, on average, no direct com-

petition between cells, nor does the higher uptake per unit cell volume of smaller phytoplank-

ton directly diminish the uptake and growth of larger cells (we use the term ‘directly’ here

because the standing stock of a given phytoplankton type has an indirect influence on other

phytoplankton by influencing S1, as we previously discussed and expand upon below). The

key point is that, in nature, a species with a low Kcell
m does not have an ability to draw down S1

such that it can competitively exclude other species with higher Kcell
m . However, this is generally

not the case in laboratory competition experiments [e.g., 22] where high cell concentrations

result in frequently overlapping boundary layers, resulting in direct competition and subse-

quent exclusion [12].

In the previous section, we painted a picture of the phytoplankton world highlighting the

discreteness of individual cells. We then asked whether traditional formulations for phyto-

plankton growth (Eq 4) found in contemporary ecosystems models are flawed because they

treat phytoplankton populations as continuous fields of an elemental stock, rather than as dis-

crete entities [see also 12]. In the current section, we discuss the basis of observed production-

resource relationships and provide an expression (Eq 8) for nutrient-limited growth of dis-

tantly-spaced, non-competing phytoplankton. For a population of equally-sized cells, this

equation yields the same prediction for steady-state biomass when implemented at the individ-

ual level and then integrated over the population as when implemented at the integrated popu-

lation level. For a population of polydispersed cells, the outcome of Eq 8 is likewise the same

for these two implementation approaches so long as size-dependences in diffusion are
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accounted for. As Eq 8 is mathematically equivalent to a Michaelis-Menten form, our conclu-
sion is that there is nothing fundamentally incorrect about applying relationships such as Eq. 4
when modeling distantly spaced phytoplankton. Ironically, what may be missing from such

equations is, instead, a term accounting for competition under conditions when cells are in

close proximity.

If the fore-stated conclusion is valid, then where have previous interpretations gone wrong?

We propose that the answer to this question is two-fold. First and as noted above, the thought

of Kcell
m as a species-specific ‘affinity’ acting to deplete S1 is incorrect and should be replaced by

a view that Kcell
m is an ‘emergent property’ of size-dependent diffusion processes, species-spe-

cific μm, and evolved optimization strategies. Second, previous interpretations of Eq 4 are

incorrect; specifically, the conclusion that treating phytoplankton biomass as an integrated ele-

mental stock is equivalent to a continuously distributed fluid variable. The fact is that there is

nothing about Eq 4 that explicitly states how biomass is spatially distributed, only that it has an

integrated mass. If information on the size of cells within this mass is retained, then appropri-

ate diffusion rates can be applied in calculating growth rates, irrespective of the spacing

between individuals.

The above insights help reconcile earlier conceived issues, but they also make the original

problem motivating this study even more vexing. If current expressions in ecosystem models

are consistent with growth in a competition-neutral resource landscape [19, 21] (i.e., a land-

scape where resource attainment by some species does not lead to competitive exclusion of

others), then why do these models yield extinctions of most phytoplankton size groups under

oligotrophic conditions? As a first step toward answering this question, we will now explore

the size distribution of phytoplankton division rates from a diffusion-focused perspective.

Diffusion-supported phytoplankton division rates

The diffusional flux of nutrients to the surface of a phytoplankton cell is dependent on a variety

of factors, including cell size and shape, movement (e.g., sinking, swimming) relative to the

surrounding medium, and the efficiency with which transporter proteins translocate nutrients

across the cell membrane relative to the diffusive rate at which they arrive at the membrane

[this relative rate determines the concentration gradient between the cell surface (S0) and S1].

Here, we will forgo a detailed description of molecular diffusion and, instead, refer interested

readers to the rich literature that already exists describing solute flux across cell boundary lay-

ers [e.g., 38–42]. For simplicity, we will assume that phytoplankton are spherical cells, such

that the diffusional flux (FD) to the cell surface in the absence of relative motion is described

by:

FD ¼ 4p
d
2

� �

D S1 � S0ð Þ � 2pdDS1; ð10Þ

where d is cell diameter, D is the diffusion coefficient for a given nutrient type, and the right-

most expression assumes that the cell is a perfect absorber (i.e., S0 = 0). Eq 10 states that the

nutrient flux to a phytoplankton scales with cell diameter. Accordingly, the cell-volume-spe-

cific flux (F0D) for a spherical cell is:

F0D �
2pdDS1

4

3
p d

2

� �3
¼

3DS1
d
2

� �2
; ð11Þ

which predicts that, if growth rate is limited purely by diffusion, the size-distribution of divi-

sion rates will not scale in proportion to the surface:volume ratio (i.e., 1/d; upper heavy black

lines in Fig 3A, 3D) but rather with the inverse square of cell diameter (i.e., 1/d2; lower heavy
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black lines in Fig 3A, 3D) [41]. To place this initial prediction in context, it implies that a nutri-
ent-limited 1 μm cell will be dividing 10,000 times faster than a nutrient-limited 100 μm cell.
Clearly, this prediction is inconsistent with reasonable size-dependent changes in μ for natural

populations [43]. Nevertheless and as noted by Jumars et al. [39], even large cells are limited in

their ability to alleviate this strong constraint of diffusion through their relative motions or

morphological adaptations [see also 40].

Resolution of the above issue emerges by combining estimates of diffusional flux (Eq 10)

with a μ-S1 relationship (Eq 8) for nitrogen-limited growth. In oligotrophic ocean regions,

surface layer ammonium (NH4) concentrations commonly range from <3 nM (i.e., detection

limit) to 10’s of nM, while summed nitrate and nitrite levels range from undetectable to slightly

less than 10 nM [44–48, https://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html]. In

more productive ocean regions, available nitrogen sources can exceed μM concentrations [49].

We therefore consider here far-field nitrogen concentrations of 1 nM� SN
1
� 20 μM.

Cell division rates over our range in SN
1

were determined for diatoms of diameter 1 to

130 μm and for other phytoplankton over the size range 0.6 to 130 μm. The diffusional flux of

Fig 3. Diffusion-supported phytoplankton division rates as a function of cell size predicted for a range in far-field nutrient concentrations (S1)

reflective of highly oligotrophic to highly eutrophic natural waters. (A-C) Non-diatoms. (D-F) Diatoms. (A,D) Lower heavy black line = initial prediction

for diffusion-limited growth at all cell sizes. Upper heavy black line = division rate prediction if following cellular surface:volume ratios. Grey lines = size-

dependent division rates for S1 ranging from 1 nM to 3 μM (blue labeling). Red lines = division rates for biologically-available nitrogen concentrations of 3 nM

to 17 nM typical of S1 values in oligotrophic ocean gyres. (B,E) Same data as in left column but with normal y-axis and log-transformed x-axis to better reveal

size-dependent division rates of small cells. (C,F) Same data as in left column but with normal axes. Blue line = envelope in size-dependent maximum division

rates (μm) from Behrenfeld et al. [53].

https://doi.org/10.1371/journal.pone.0274183.g003
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nutrient was calculated from Eq 10 assuming S0 = 0 and a constant D = 1500 μm2 s-1 (i.e.,

ignoring, for example, effects of temperature). The influence of relative motion on FD was esti-

mated by first calculating a size-dependent characteristic velocity (Ʋ; μm s-1) for swimming by

non-diatoms (Ʋswimming) following [50, see Note 5 in S1 File]:

Ʋswimming ¼ ½93ðd=10000Þ
0:26
� 10000 ð12AÞ

and for sinking (Ʋsinking) in diatoms of d� 8 μm (i.e., Ʋsinking = 0 for d< 8 μm) based on data

from Waite et al. [51; their Fig 7A]:

Ʋsinking ¼ 0:0007 ln
d

20000

� �

þ 0056

� �

10000: ð12BÞ

Péclet numbers (Pe) for both phytoplankton groups were then calculated as:

Pe ¼
dƲ
D

ð13Þ

and used to assess Sherwood numbers (Sh) following [40]:

Sh ¼
1

2
1þ ð1þ 2PeÞ

1=
3

� �
; ð14Þ

where Sh quantifies the enhancement in diffusive flux relative to FD of a non-moving cell (Eq

10). Finally, Jumars et al. [39] evaluated the relationship between membrane transporter abun-

dance and the fraction of FD captured by a cell. Their analysis revealed a remarkable efficiency

[also see 52], such that less than 0.1% of a membrane needs to be occupied by transporters to

collect ~50% of the diffusive flux. Here, we will assume a 90% capture efficiency, which would

correspond to ~1% membrane coverage [39; their Fig 3]. The potential nutrient flux available

for assimilation (AF) is thus:

AF ¼ 0:9 Sh FD; ð15Þ

which can be substituted in Eq 8 as AF = avSN
1

.

To calculate division rate (Eq 8), a size dependent estimate of Vm is needed. In an earlier

study [53], we found that measured maximum division rates (cell doublings per day) reported

in the literature fall within an upper envelope that increases with cell size up to d ~ 7 μm and

then decreases with size in a manner following a power function at d� 15 μm. This envelope

is described by (upper blue curves in Fig 3C, 3F):

mm ¼ ½� 0:0555ðdÞ2 þ 0:789dþ 0:64� lnð2Þ ðfor d < 15 mmÞ ð16AÞ

and

mm ¼ ½9:29ðdÞ� 0:533
�lnð2Þ ðfor d � 15 mmÞ; ð16BÞ

where multiplication by ln(2) in each equation coverts maximum doublings per day [reported

in 52] to maximum specific division rates (μm, d-1). As Vm (fg N cell-1 d-1) is the rate of nutrient

uptake (in this case nitrogen) required to support μm, it can be estimated as the product of cel-

lular carbon and the nitrogen:carbon ratio at μm (N:Cm):

Vm ¼ 1000 N : CmCmm; ð17Þ

where C (pg C cell-1) was calculated following Menden-Deuer & Lessard [20] as stated above

for non-diatoms and as C ¼ 10� 0:541þ0:811Log10ðVolÞ for diatoms, N:Cm was estimated from N:

C = 0.0762μ + 0.0389 based on Laws & Bannister [54; their Table 1 for nutrient-limited
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cultures], and the scalar, 1000, converts C in pg C cell-1 to fg C cell-1. Application of Eqs 15 and

17 in the rectangular hyperbolic element of Eq 8 yields the nutrient assimilation rate for a

given cell size and SN
1

. Relating this rate to μ requires accounting for growth-rate-dependent

changes in nutrient requirements specified by our equation for N:C. Realized division rates for

each value of SN
1

were thus determined by first calculating the division rate that is supported

by a given assimilation rate, assuming N:C = N:Cm, and then iteratively adjusting N:C and μ
from this initial estimate until stable values were achieved. For all combinations of cell size and

SN
1

, this stabilization was achieved within 25 iterations.

The outcome of the above formulations is shown in Fig 3 for non-diatoms (top) and dia-

toms (bottom), where the left panels are plotted with a log-transformed y-axis, the center pan-

els with a log-transformed x-axis, the right panels with normal axes, and in all panels typical

oligotrophic conditions of 3 nM� SN
1
� 17 nM are indicated by red lines. A key finding here

is that size spectra for phytoplankton division rates fall far from a scaling with the square of

cell diameter (1/d2), as initially predicted, when based on diffusion for realistic SN
1

and they

even lie above a surface:volume dependence (1/d) for all but the lowest SN
1

. The reason for this

is that the diffusional potential (AF) for small cells is close to or exceeds that necessary to sup-

port μm even at very low SN
1

, such that any residual changes in μ with increasing nutrient sup-

ply simply reflect the slowly-saturating nature of evolutionarily-optimized μ-S1 relationships

(e.g., Fig 2D). Because the steady-state biomass of a given phytoplankton size class is deter-

mined by μ-dependent predator-prey relationships, expectations from these results when

applied to an ecosystem model are an even further dampening in the range of equilibrium bio-

masses across size classes (compared to the range in size-dependent μ) at low nutrients and a

much stronger potential for proliferation of large species with increasing SN
1

, which will tilt the

size distribution slope upward toward -3 [19].

In the next section, we will apply our diffusion-focused approach in a modified version of a

published ecosystem model, but before proceeding we conclude the current section with a

comparison of our modeled μ values and observational data from two chemostat-based studies

where measurements of S1 were reported [32, 55] to evaluate if our formulation provides rea-

sonable predictions. In the first of these studies, phosphate-limited cultures of the temperate

chlorophyte, Tetraselmis suecica, were maintained at steady-state division rates of ~0.16 to

~0.75 d-1, which corresponded to SP
1

concentrations ranging from ~0.7 to ~5.6 nM, respec-

tively. Applying our above-described diffusion-based approach for an average T. suecica cell

diameter of 12 μm, a cellular elemental nitrogen:phosphate ratio (N:P) of 16:1, and a μm of 1.2

d-1 [32] yields estimates of μ that are highly consistent (R2 = 0.96) with observed values (Fig

4A). This finding implies an optimization strategy in T. suecica aimed at fully utilizing the dif-

fusional flux of limiting nutrient to the cell surface. In the second study [55], phosphate-lim-

ited cultures of the temperate haptophyte, Pavlova lutheri, were maintained at steady-state

division rates ranging from ~0.13 to ~0.85 d-1, with corresponding SP
1

values of ~0.4 to ~17.5

nM, respectively. In this case, application of our diffusion-based approach for an average P.

lutheri cell diameter of 6 μm, a N:P of 16:1, and a μm of 1.0 d-1 [55] yields correlated (R2 = 0.97)

but somewhat overestimated values of μ compared to observations (Fig 4B) [note that these

same data are very well fitted by an empirically-parameterized version of Eq 8 (Fig 2D)]. Per-

haps the observed modest departure from pure diffusion limitation observed in P. lutheri
implies that the evolved life strategy of this species involves other tactics for success aside from

maximizing nutrient utilization. In this regard, it might be noted that the cultured isolate, P.

lutheri (Droop) Green, was originally obtained from an intertidal location of the Clyde Sea

where one might speculate that selection pressures may have been weak for success under low

nutrient conditions and perhaps more oriented toward defense (grazer or other) strategies.
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One-dimensional ecosystem model

Ecosystem modeling can be a bit of an ‘art form’ in terms of tuning parameters to achieve sta-

ble and reasonable results (i.e., when compared to observations) [12, 56] and as the complexity

of a model increases, understanding its behavior becomes more difficult [57, 58]. Given the

findings described in the previous sections, the intention of the following exercise was to

resolve our initial question regarding why contemporary ecosystem models often yield signifi-

cant extinctions of larger phytoplankton species under steady-state low-nutrient concentra-

tions, whereas field observations indicate the coexistence of a continuum in phytoplankton

sizes. Accordingly, we have chosen here to employ the following minimal equation set such

that a clear answer to this question emerges:

dꝐN

dt
¼
Xi¼j

i¼1

ðmiꝐ
N
i � g1fiZ

N
i Ꝑ

N
i Þ ð18AÞ

and

dZN

dt
¼
Xi¼j

i¼1

ðg1g2fiZ
N
i Ꝑ

N
i � g3Z

N
i � g4fiðZ

N
i Þ

2
Þ ð18BÞ

where ꝐN
i is the total nitrogen inventory (mmol m-3) of the ith phytoplankton size class, phyto-

plankton mortality is solely due to grazing, ZN
i is the nitrogen inventory of the zooplankton

population (mmol m-3) with a grazing range centered on the ith phytoplankton size class, μi is

the diffusion-supported division rate (d-1) for a given SN
1

(calculated as described in the previ-

ous section), and fi introduces flexible feeding by predators over a range of prey bin sizes

(defined below). Parameters g1 through g4 represent zooplankton grazing rate, ingestion effi-

ciency, non-grazing mortality rate, and density-dependent mortality rate, respectively, and are

assigned size-independent values of g1 = 3.24 m3 mmol-1 d-1, g2 = 0.5 (unitless), g3 = 0.06 d-1,

and g4 = 1.6 m3 mmol-1 d-1 [59].

Fig 4. Comparison of model-predicted phytoplankton division rates with measure steady-state rates in PO4-limited chemostat cultures. (A) Circles = cell

division rates observed by Laws et al. [32] for Tetraselmis suecica (Kylin) Butcher. Solid line = predicted division rates assuming an average cell size of 12 μm

and a maximum division rate (μm) of 1.19 d-1 [32]. (B) Circles = cell division rates observed by Laws et al. [55] for Pavlova lutheri (Droop) Green. Solid

line = predicted division rates assuming an average cell size of 6 μm and a μm of 0.98 d-1 [55].

https://doi.org/10.1371/journal.pone.0274183.g004
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The size structuring of our modeled ecosystem generally follows that described for the “ide-
alized food-chain model” developed by Ward et al. [10]. Our ‘baseline’ model is executed for

the nutrient-limited growth rates of either non-diatoms or diatoms and includes 25 phyto-

plankton size-classes with diameters ranging from 0.6 μm to 135 μm, where cells in a given

size class are 1.25 times larger than those in the class one size smaller (i.e., di = 0.6 x 1.25i-1).

The model also includes 25 zooplankton size classes that graze on a range of phytoplankton

sizes. The feeding size range consumed by predators of phytoplankton and zooplankton is

assumed proportional to (fi in Eqs 18A,18B) their mean prey size (e.g., in the current case we

define fi = ([di+0.5d]—[di-0.5d]) / 1 μm, meaning that a predator with a mean prey size of

100 μm will have a feeding range of 50–150 μm, while a predator with a mean prey size of

2 μm will have a feeding range of 1–3 μm) [10, 19, 60]. Because our focus is on phytoplankton

size composition under steady-state (in this case, nitrogen-limited) growth conditions, we do

not consider the role of environmental variability. For each model run, SN
1

is held constant at a

value between 1 nM and 20 μM (stepped every 7 nM between 1 and 35 nM and every 200 nM

thereafter) and light levels are assumed constant and saturating for growth. Because SN
1

is held

constant, phytoplankton nitrogen consumed but not assimilated by grazers and grazer nitro-

gen lost to linear and density-dependent predation are removed from the modeled system and

not recycled (as in [10]). Model runs for each SN
1

are initiated with ꝐN
i = 0.18 mmol N m-3 and

ZN
i = 0.04 mmmol N m-3 for all size classes and then executed for 3 years at ~15 minute time-

steps (noting that the 3-year time frame was conservative as actual times for all phytoplankton

size classes to reach equilibrium was only 30 days to ~1.5 years, with the longer times required

for lower values of SN
1

) [see Note 6 in S1 File]. Size diversity for the steady-state populations

was assessed as the number of ‘species’ (i.e., size-classes) remaining that contributed at least

0.0001% to total phytoplankton biomass [see Note 7 in S1 File].

The first and most important result from our ecosystem model is that all phytoplankton

size classes are retained under all values of SN
1

for both our non-diatom and diatom communi-

ties (Fig 5A, red & yellow line). This finding contrasts starkly with results from earlier ecosys-

tem models where only the smallest species persist at low SN
1

[e.g., 4–6]. This difference may

seem rather surprising given our earlier statement that the diffusion-focused expression for μ
(Eq 8) can be re-cast in a Michaelis-Menten form consistent with earlier ecosystems models

(Eq 9) and that our model equation set (Eqs 18A,18B) is little altered from even the pioneering

work of Riley [61] and Evans & Parslow [57]. The reason for our sustained biodiversity is

revealed below, but first it is useful to directly compare our findings with predictions from a

previously published and very similar ecosystem model (noting here that this comparison is

simply for illustrative purposes and is in no way intended to criticize the earlier model).

The Ward et al. [10] “idealized food-chain model” was developed as a simplistic model to

better understand the behavior of a more complex “global food-web model” [60]. The simpler

model (the code for which was kindly provided by B. Ward for developing our current model)

was intended to mimic a chemostat system [thus, it included terms for new media input, out-

flow of both culture media and associated phytoplankton, and did not recycle nutrients (as in

our model)] and, importantly, yields a prediction of phytoplankton diversity as a function of

nutrient availability that is fundamentally equivalent to the fully coupled global food-web
model [60]. The Ward et al. [10] plankton equations differ from our approach (Eqs 18A,18B)

in that they (1) include non-grazing phytoplankton mortality terms (cell death and culture

outflow = 0.03 d-1), (2) a light/temperature-limitation term, and (3) lack a density-dependent

zooplankton predation term. The Ward et al [10] model also assumes that all small cells are

non-diatoms and all large cells are diatoms. Each phytoplankton and zooplankton size class is

initiated with a biomass of 10−10 mmol N m-3, which may then increase as nutrients are added
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Fig 5. Properties of model-based steady state phytoplankton communities. (A) Phytoplankton diversity as a function of far-field

nutrient concentration (S1) for model runs initiated with 25 distinct ‘species’ (size classes). Heavy red line, thin yellow line = Non-

diatom and diatom diversity for ecosystem model developed herein, respectively. Blue line = Phytoplankton diversity predicted by the

Ward et al. [10] model. Green line = Diversity predicted by Ward et al. [10] model but with non-grazing loss terms (m, κ) omitted. (B)

Phytoplankton size distribution slopes (SDS) for the linear relationship between the logarithm of cell number concentration per unit

length and logarithm of cell diameter as a function of S1. Colors = Model runs for non-diatom, diatom, and mixed communities. (C)

Examples of the shift in dominance from small cells to large cells as the SDS increases with increasing S1 (labeled next to line). Data are

for non-diatom cell types where abundance and cell volume data values are converted to biomass following Menden-Deuer & Lessard

[20]. (D) Relationships between phytoplankton division rates and biomass for cell diameters ranging from 0.7 to 108 μm. Left

axis = Results for cell diameters ranging from 0.7 to 5 μm. Right axis = Results for cell diameters ranging from 23 to 108 μm. (E) Fraction

of total phytoplankton biomass from the multispecies model runs that is attributable to different size classes of non-diatoms and as a

function of S1. Modeled size classes ranged from 0.7 to 135 μm, but non-diatoms only contributed significantly to total biomass at cell

diameters below ~5 μm. (F) Same as in (E) except showing results for diatoms.

https://doi.org/10.1371/journal.pone.0274183.g005
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to the model system. For the current comparison, we executed the Ward et al. [10] model as

originally published except with the light/temperature-limitation term removed. Predicted

steady-state phytoplankton diversity from this model is shown by the blue line in Fig 5A,

which is essentially identical to the result presented in Fig 4A of Ward et al. [10]. The model

outcome is that only one or a few species (the very smallest size classes) are sustained at the

lowest values of SN
1

and then diversity slowly increases (additional larger species are retained)

with increasing nutrient inputs.

The loss of steady-state diversity at low SN
1

in the Ward et al. [10] simulations is consistent

with other fully-coupled ecosystem models [e.g., 4, 5], but it is not the consequence of

resource-based competitive exclusion, as our model employs essentially an equivalent func-

tional form for nutrient-limited phytoplankton division yet maintains all modeled species.

Instead, diversity loss in the earlier model is a consequence of the non-grazing phytoplankton

loss terms (cell death and chemostat outflow). Specifically, the Ward et al. [10] model is initi-

ated with low concentrations of phytoplankton and zooplankton in all size classes and subse-

quently the slow division rates of larger phytoplankton at low nutrient levels coupled with

constant cell death (m) and media outflow (κ) rates prevent these species from accumulating

to a sufficient extent that their biomass crosses even a conservative ‘extant versus extinct’

threshold (here, 0.0001% of total biomass). Indeed, at low nutrient levels, the non-grazing

mortality rates alone can exceed diffusion-limited division rates for species > 20 μm such that,

even in the absence of other losses, these phytoplankton groups decrease in biomass if not

repeatedly ‘restored’ to the initial 10−10 mmol N m-3. In contrast, nutrient concentrations in

our model begin at a predefined SN
1

and the non-grazing phytoplankton mortality terms are

excluded. The importance of non-grazing mortality as an agent for exclusion in earlier models

[4, 5, 10] is revealed when the Ward et al. [10] model is re-run without the m and κ terms,

which results in nearly full diversity being sustained at even the lowest SN
1

(Fig 5A, green line).

In addition to sustaining size diversity, our ‘baseline’ model predicts phytoplankton abun-

dances in the smallest size bin (equivalent to Prochlorococcus) of ~105 cells ml-1 and larger spe-

cies that follow a phytoplankton size distribution slope that tilts upward (i.e., become less

negative) as SN
1

increases from 1 nM and 20 μM (Fig 5B). The model range for the size distri-

bution slope and its behavior with SN
1

is broadly consistent with field observations [e.g., 15,

17–19] and corresponds to biomass dominance shifting between picophytoplankton and

microphytoplankton (Fig 5C). These shifts in community structure are driven by size-depen-

dent potentials for diffusion-driven increases in μ as SN
1

increases (Fig 5D), noting here that

these relationships are not 1:1 with biomass and reflect predator-prey balances between divi-

sion and loss rates at equilibrium [59, 62]. These predator-prey balancing points at very low

nutrient levels yield a biomass (thus, nutrient sequestration) dominance by very small species

because of strong size-dependent changes in μ, but do not result in exclusion of phytoplankton

size classes.

Results presented here indicate that our ‘baseline’ model yields properties of phytoplankton

communities reflective of field observations and provides an explanation for the loss of diver-

sity in previous modeling studies. While it is beyond the scope of the current study to fully

explore other model parameterizations or constructs, it is hard to resist the temptation to try at

least one modification. In particular, what happens when diatoms and non-diatoms are mod-

eled together across all size classes? To answer this question, we modified the baseline model

such that each of the 25 phytoplankton size classes had a diatom and non-diatom representa-

tive (each initiated with ꝐN
i = 0.18 mmol N m-3) and we assumed that zooplankton grazers in

each size class had no preference for phytoplankton prey types. All other aspects of the model

were unaltered. Steady-state size distribution slope solutions for this multispecies model are
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shown as a function of SN
1

in Fig 5B (green line), while the fractional contributions of non-dia-

toms and diatoms to total phytoplankton biomass in each size class are shown in Fig 5E and

5F, respectively. The multispecies size distribution slopes (Fig 5B, green line) reflect shifts in

community composition, with non-diatoms dominating at low SN
1

and diatoms dominating at

high SN
1

. The reason for this shift is that swimming by non-diatoms proffers a minor advantage

over diatoms in terms of diffusive nutrient flux at the smallest cell sizes. In contrast, sinking

and cell vacuolation (accounted for in the Menden-Deuer & Lessard [20] relationship) slightly

improve nutrient acquisition relative to requirements in large diatoms compared to swimming

in unvacuolated non-diatoms. While these differences in diffusive flux are small, they are asso-

ciated with slight changes in division rate that, when played out over time, result in resounding

size-dependent shifts in species dominance (Fig 5E, 5F), a reflection of the ‘trophic exclusion

principle’ discussed in Behrenfeld et al. [21] that can impose strong selective pressure in plank-

ton communities in the absence of resource-based competitive exclusion.

Synthesis

The realm of the phytoplankton can be non-intuitive to large-bodied terrestrial organisms

such as ourselves. The number of individual phytoplankton in a waterbody may be astronomi-

cal, but from a body-length perspective they are distantly spaced. The tempo of phytoplankton

division and death is unfamiliar to us, yet it is of fundamental importance to community struc-

turing and succession. A limiting nutrient may be only a short distance from a cell, but access-

ing this resource can be challenging because most phytoplankton have a limited capacity to

move relative to the water molecules surrounding them. In three previous studies [19, 21, 53],

we grappled with developing an understanding of diversity and succession in this foreign

world experienced by phytoplankton, and it seemed to us then that a key in doing so would be

to explicitly account for the discreteness of individual cells. With this in mind, we undertook

the current investigation to model phytoplankton populations from the ‘perspective’ of a cell,

albeit not by modeling individual cells per se. Within this perspective, phytoplankton are

immersed in a medium where far-field limiting nutrient concentrations are a constant (i.e.,

assimilation and remineralization rates are balanced), there is no direct resource competition

between neighboring cells, and performance of a given species (cell size) is defined by nutrient

diffusion across a boundary layer and a physiological optimization strategy that, at sufficient

resource supply, supports an evolutionarily-selected maximum growth rate. Our hope was that

this approach might help illuminate why extreme competitive exclusion appears to be a com-

mon behavior in contemporary ecosystem models.

One of our initial concerns with constraining phytoplankton growth strictly through diffu-

sion limitation was that resultant division rates would unrealistically vary inversely with cell

diameter squared [41]. It was therefore satisfying when size distributions in division rate

emerged from our semi-empirical model that varied by even less than the surface:volume ratio

for nutrient concentrations representative of nearly all natural waters (Fig 3). The reason for

this outcome is that, over much of the phytoplankton size domain, realized division rate is gov-

erned more by the optimization of cellular machinery than diffusional flux, even at the lowest

nutrient levels. In other words, smaller cells are operating in the slowly-saturating region of

their μ-S1 relationships (Fig 2D) where diffusion potential exceeds utilization [34]. It is note-

worthy, here, that our modeled division rates essentially represent an upper limit on growth (if

not supplemented by other nutrient sources; e.g., mixotrophy) at low nutrient concentrations

that, apparently, some species have evolved to take full advantage of (Fig 4A) and others have

not (Fig 4B).
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In Behrenfeld et al. [19, 21], we expressed a concern that contemporary ecosystem models

encompass an unrealistic degree of resource-based competition between phytoplankton clas-

ses, a view earlier shared in Siegel [12]. Our mistake was in envisioning that the modeling of

phytoplankton groups simply as integrated elemental stocks was equivalent to treating them as

diffuse overlapping fields (i.e., ‘fluid variables’) where direct competition is continuous. By for-

mulating growth herein as a function of boundary layer diffusion, it seemed to us that a model

could be developed that is completely compatible with phytoplankton being discrete entities in

a competition-neutral resource landscape. However, in the process of developing this model,

we realized that our diffusion-focused equation could be transformed into a mathematically-

equivalent Michaelis-Menten form consistent with earlier model formulations. This insight (at

least for us) made it clear that direct resource competition is not inherently implied by treating

phytoplankton biomass as a fluid variable and that observed extinctions of phytoplankton size

classes in ecosystem models cannot simply be interpreted as competitive exclusion by smaller

cells with higher nutrient ‘affinities’. Indeed, we propose that the common association of nutri-

ent half-saturation values (Kcell
m ) with ‘affinity’ has misguided earlier interpretations and that

Kcell
m is better viewed, going forward, as simply an emergent trait reflecting a size-dependent

diffusion constraint and evolved strategies for up-regulating cellular capacities with increasing

resource availability. In the discrete world of the phytoplankton, there is rather little a cell can

do beyond sinking and swimming to enhance diffusive potential and, even if it could, it gener-

ally would have little impact on the far-field nutrient environment experienced by neighbors.

With the above realizations, it became even more intriguing why ecosystem models gener-

ally predict low phytoplankton biodiversity in nutrient impoverished regions, a prediction

opposite that of observations [63]. By employing our diffusion-governed growth equations in

a phytoplankton-zooplankton equation set, we find that the entire size-diversity included in

our ‘baseline’ model at initiation is sustained within the emergent steady-state populations for

all far-field nutrient concentrations. Instead of nutrient competition being the cause of exclu-

sions in models, we find that species losses in earlier models for low nutrient conditions are

largely attributable to the inclusion of a constant non-grazing phytoplankton mortality rate (d-

1) that, as we argue below, is difficult to justify.

There are many facets of plankton ecology that our simple ecosystem model fails to capture.

For example, it does not account for competition between individuals when relative motions

cause boundary layers to transiently overlap and we don’t explicitly account for phytoplankton

losses to viral lysis (although, if this process is density-dependent, it might be envisioned as

included in the grazing term of Eq 18A). Additionally, our model fails to address the impor-

tance of mixotrophy in phytoplankton growth rates [e.g., 33, 64], we do not account for the

roles of selective feeding or grazer defense strategies, and we only consider the condition of

uniform nitrogen limitation, ignoring the effects of nutrient patchiness [65], potential unique

aspects of phosphate, iron, or light limitation, and potential advantages of hosting endosymbi-

onts [66–68]. The benefit of our model equation set is that it is sufficiently simple that predic-

tions can be robustly interpreted, thus following the philosophy of Evans and Parslow [57] and

Ward et al. [10]. In the latter study, the simplified equations were not intended to capture the

complexities of plankton food webs, but had the important feature of reproducing the loss of

species diversity at low nutrient levels exhibited in a fully-coupled global model. Accordingly,

we used a similar set of equations to diagnose that the basis for this diversity loss is rooted in

non-grazing mortality terms commonly employed in ecosystem models.

An important question that emerges from our study is, if a fixed non-grazing mortality rate

for phytoplankton is inappropriate, then how should models capture these phytoplankton

losses in the future? The fact is that phytoplankton do die in nature from processes other than
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being eaten. For example, stress can lead to programmed cell death [69], viral lysis can behave

in a manner that is not density-dependent [70], and other forms of disease and life cycle transi-

tions can result in phytoplankton loss [71, 72]. However, without a mechanistic understanding

on how to predict when, where, and to what extent these mortality processes occur, it is diffi-

cult to accurately represent them in models [5]. Accounting for these losses by treating them

as a constant daily loss rate seems unrealistic and has catastrophic impacts on modeled com-

munity diversity [as shown herein and also see 5, 73, 74]. For the model results shown in Fig 5,

we omitted the non-grazing mortality term typically found in ecosystem models and this single

change allowed all phytoplankton size classes to be sustained at all nutrient levels, however

other approaches may also be taken that achieve the same result. As a simple example, if we

retain the non-grazing mortality term in our model but assume that this loss rate is a constant

per generation rather than per day, then we again sustain the full diversity in phytoplankton

sizes at all nutrient levels (i.e., the result is exactly the same as the orange and yellow lines in

Fig 5A). Clearly, a fuller understanding of non-grazing mortality rates and their mechanistic

relationships to environmental variability are needed to advance ecosystem modeling going

forward.

Throughout this manuscript, we have emphasized the role that spatial distancing between

phytoplankton cells plays in diminishing potentials for direct resource-based competition. It is

important to understand, however, that we are not suggesting that the plankton world is free

of competition. Rather, we envision it as a landscape of extreme competition, but one that is

largely not based on resource acquisition. Instead, this competition plays out through the

interactions of predators and prey. The average life expectancy of an individual phytoplankton

in the global ocean is on the order of a day to weeks [75]. Under this rapid tempo of turnover,

minor differences in fitness between species result in selection of a finely tuned biodiversity, a

process we earlier referred to as the ‘trophic exclusion principle’ [21]. An example of this prin-

ciple is illustrated in Fig 5E and 5F, where minor differences in division rates between phyto-

plankton groups (in this case, relative advantages of swimming versus sinking and

vacuolation) led to a size-dependent selection for non-diatoms or diatoms. Thus, while our

model sustains size diversity across all nutrient levels, it does not address the issue of species

diversity within size classes. If in our combined-species model scenario the diffusion-based dif-

ferences in division rate were countered by reduced grazing in small diatoms (e.g., owing to

protection by frustule) and mixotrophy in larger non-diatoms, then perhaps one can imagine

how a re-parameterized model could yield a sustained coexistence of both phytoplankton

groups within size classes. The key point here is that ‘fitness’ in the plankton world is defined

by any adaptation that allows persistence of a given species within a community (including

beneficial and detrimental interactions between individuals), not simply acquisition of growth

limiting resources. Importantly, the time-scale over which fitness is selected can be very long

(years), causing shorter-term species-specific advantages to be averaged out, enabling greater

sustained diversity within functional size classes [21].
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