
RESEARCH ARTICLE

LiveCellMiner: A new tool to analyze mitotic

progression

Daniel Moreno-AndrésID
1☯*, Anuk BhattacharyyaID

2, Anja Scheufen1,

Johannes StegmaierID
2☯*

1 Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen,

Germany, 2 Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany

☯ These authors contributed equally to this work.

* dmoreno@ukaachen.de (DMA), johannes.stegmaier@lfb.rwth-aachen.de (JS)

Abstract

Live-cell imaging has become state of the art to accurately identify the nature of mitotic and

cell cycle defects. Low- and high-throughput microscopy setups have yield huge data

amounts of cells recorded in different experimental and pathological conditions. Tailored

semi-automated and automated image analysis approaches allow the analysis of high-

content screening data sets, saving time and avoiding bias. However, they were mostly

designed for very specific experimental setups, which restricts their flexibility and usability.

The general need for dedicated experiment-specific user-annotated training sets and exper-

iment-specific user-defined segmentation parameters remains a major bottleneck for fully

automating the analysis process. In this work we present LiveCellMiner, a highly flexible

open-source software tool to automatically extract, analyze and visualize both aggregated

and time-resolved image features with potential biological relevance. The software tool

allows analysis across high-content data sets obtained in different platforms, in a quantita-

tive and unbiased manner. As proof of principle application, we analyze here the dynamic

chromatin and tubulin cytoskeleton features in human cells passing through mitosis

highlighting the versatile and flexible potential of this tool set.

Introduction

State of the art cell cycle and mitosis research strongly relies on advanced live-cell microscopy

for recording cells in model organisms and tissue cultures. With the help of different labeling

techniques (target protein fusion with fluorescent proteins, direct fluorescent labeling of cellu-

lar targets, organelle specific fluorescent probes) subcellular structures and cell cycle markers

can be followed by high-content screening (HCS) approaches. This allows investigating the

different steps of life and fate of single cells and cell populations. Such experiments generate

massive amounts of data, which help to pinpoint the nature of mitotic and cell cycle defects

and to accurately identify and characterize key molecular factors in different experimental

conditions and clinically relevant situations (for review, see [1–4]).
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Analyzing high-content data sets is a formidable task where supervised machine learning

methods have been so far crucial [5–12]. More recently, convolutional neural networks (CNN)

further improved the possibilities for automatic detection, segmentation and classification

tasks [13–16]. Supervised machine learning approaches, however, are still time-consuming

because they rely on user-curated phenotype definitions and analysis. To overcome the limita-

tions, unsupervised machine learning without the need of manually-annotated morphology

and phenotype-based classifications recently demonstrated first promising results [17–20].

Supervised and unsupervised phenotypic profiling of live-cell microscopy data is emerging

as a powerful tool for clinicians, pharmaceutical industry and biology research in general. Mul-

tiparametric data analysis at single-cell level allows the integration of up to hundreds of quanti-

tative features to describe and distinguish phenotypes going far beyond traditional approaches

based on the analysis of one or a few features in single-cell images. Phenotypic classifiers are

extraordinarily useful for analyzing complex populations. But because classes are categorical

entities, they cannot accurately quantify continuous time-dependent gradual changes, as usu-

ally assumed in existing tools [10]. Moreover, in most of the cases where numerous features

are measured and integrated to generate high-dimensional phenotypic profiles, it is unclear

whether all of them are required for describing the phenotypic classes. However, the quantifi-

cation of simple morphological and shape parameters, e.g., of the cell nucleus, has potential

diagnostic value [21, 22]. In this regard, most available tools are able to measure health-related

morphology profiles of tuneable complexity in static images of fixed cell samples ([23]; for

review, see [3]). Moreover, general-purpose visual analytics tools like [24] allow a versatile

analysis of HCS-derived features but are unsuitable for modeling temporal object dependen-

cies and lack dedicated single-cell synchronization. Therefore, tools for unbiased and compre-

hensive analysis of image features directly reflecting time-dependent live-cell shape and

morphology are urgently needed both in basic and translational research [25].

Another common limitation in the available HCS tools is the lack of user-independent seg-

mentation settings. The selection of a significant number of object detection parameters

depends on user choices. This could ultimately introduce bias into phenotype classifiers

because class-determining algorithms (whether supervised or unsupervised) learn from image

features that can be modulated by the segmentation process. As first step, automated cell iden-

tification has recently been achieved using deep learning, where CNNs are particularly applica-

ble for the instance segmentation task [16, 26, 27]. These tools perform well when being

trained with sufficiently different modalities [16]. However, they tend to behave unpredictably

when being applied to data that significantly deviates from images seen during the training

phase, and importantly, lack of integrated tools to subsequently analyze quantitatively the fea-

tures and/or phenotypic profiles of live-cell image data sets.

Here, we introduce LiveCellMiner, a new open-source fully-automated software tool for

the quantitative analysis and comparison of 2D+t microscopy images of fluorescently-labeled

cells. The software allows automatic segmentation and tracking and extracts quantitative fea-

tures for all tracked objects. It enables automatic temporal synchronization of extracted tracks

and offers comprehensive data visualization and selection possibilities. LiveCellMiner was pri-

marily developed to analyze mitotic phenotypes in cells but can be easily extended to other sce-

narios. Since mitosis is characterized by a succession of distinctive chromatin morphologies,

prophase, prometaphase, metaphase, early anaphase, late anaphase and telophase, it offers an

excellent multi-level benchmark for the study of cytologic and temporal phenotypes. In early

mitosis, the nuclear envelope breaks down and the chromatin condenses generating individu-

alized and rod-shaped chromosomes, which are captured by the mitotic spindle and segre-

gated to sister chromatin masses during anaphase (for review, see [28, 29]). During telophase

and early G1, the chromatin masses decondense allowing the reassembly of functional nuclei
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able of gene transcription and genome replication (for review, see [30–32]). Here, we reanalyze

published and unpublished data sets of human tissue culture cells passing mitosis generated

with different live-cell imaging platforms showing high reproducibility between the systems.

We confirm previously described mitotic alterations after downregulation of the Lysine Spe-

cific Demethylase (LSD1), RecQ-like Helicase 4 (RecQL4) and the Protein Phosphate PP2A-

complex but identify also phenotypes that so far escaped our attention. We also reanalyzed

some available data [33] from open repositories to demonstrate the suitability of LiveCellMi-

ner as a powerful tool to investigate high-throughput screening studies.

Design and implementation

We developed LiveCellMiner, a new open-source software tool for studying the cytology of

cell division under different experimental conditions. LiveCellMiner is an extension package

for the general-purpose data mining MATLAB toolbox SciXMiner [34] and makes use of

some existing tools for object detection and segmentation [16, 35, 36] (see S7 Table for a

detailed list of dependencies). In the following sections, we present the individual modules of

LiveCellMiner and show how they are used for data import, feature extraction, cell trajectory

synchronization, data selection and visualization. The presented proof of principle applica-

tions are based on existing data sets from previous publications [37–39] where image data

were acquired using 2D+t widefield and confocal microscopy in different platforms (see S1

Text for details on the experimental setup).

Data import

LiveCellMiner expects time series of 2D images (2D+t) of cells with chromatin-labeled nuclei

as the primary and required input. For two-channel experiments, LiveCellMiner can option-

ally extract additional intensity-related features based on the nucleus segmentation. Both chan-

nels need to have the same number of frames, the same image dimensions and need to be

aligned properly. The first step comprises the detection, segmentation and tracking of all cell

nuclei. We adapted the Laplacian-of-Gaussian-based object detection method implemented in

XPIWIT [35, 36] to perform automatic detection of nuclei centroids using a set of predefined

processing pipelines adjusted for various image resolutions. Detected centroids are tracked

using the methods described in [40]. Briefly, tracking is performed in a time-reversed manner

starting with the last frame and by sequentially linking objects to their predecessors using hier-

archical clustering with Ward’s linkage criterion [41]. The cluster cut-off can either be explic-

itly specified based on prior knowledge or it can be determined heuristically as half the average

distance of each object to its eight spatially nearest neighbors (default setting). If two objects

with a different tracking id end up in the same cluster, a cell division event is annotated. After

tracking is performed, mitotic trajectories are extracted that fulfil user-defined constraints like

a minimum number of successfully tracked frames before and after the cell division occurred

(by default we set this parameters to 30 and 60 frames before and after the cell division, respec-

tively, which corresponds to 90 minutes and 180 minutes with the 3 minutes sampling inter-

vals used in all our experiments). All detected centroids are then used to initialize the

automatic segmentation of the cells. We provide both a classical and a deep learning-based

solution to the segmentation. The classical segmentation method crops a square region sur-

rounding the current detection. First, the image is median filtered for noise reduction (5 × 5

window size) and then binarized using the arithmetic mean of a threshold identified by Otsu’s

method [42] and the minimum intensity observed in the center part of the patch. The modified

version of Otsu’s threshold is used to avoid degenerate segmentations where a dim cell residing

in the center of the patch could potentially be removed if it is surrounded by more bright
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objects. As the cell of interest is located in the center of the image patch, we initialize a seeded

watershed with two seeds, one for the center cell and another one for the background and

neighboring cells. The seeded watershed is applied on an inverted Euclidean distance map

with intensity minima located in the centers of the nuclei. As an alternative to the classical seg-

mentation pipeline, we integrated an interface to the recently published Cellpose algorithm

[16]. Cellpose is automatically started and parameterized to extract all segments in each of the

images. We then use the centroids of successfully tracked objects and crop the results of the

Cellpose segmentation using the same region size as for the classical approach. In each patch,

we only keep the single central cell to constrain the feature extraction to this region. Although

Cellpose generally provides highly accurate segmentation results for the majority of the cells,

we found that directly using Cellpose to replace the LoG-based object detection yielded less

reliable tracking results. In some cases, Cellpose failed to properly segment rarely occurring

cell shapes observed in meta- and anaphase. Thus, we additionally included a fallback option

for cases where segmentations provided by Cellpose were missing and in these cases occasion-

ally switch back to the classical segmentation method for individual cells. A quantitative assess-

ment of the segmentation and tracking quality is provided in S1 Table and a qualitative

demonstration of the detection and segmentation accuracy as well as exemplary erroneous

detections are depicted in S11 Fig.

Extraction of quantitative features and project fusion

The segmented image patches are subsequently used for feature extraction. In addition to clas-

sical 2D features like area, centroid, major and minor axes, orientation, circularity and inten-

sity statistics, we extracted a set of Haralick texture features from the gray level co-occurrence

matrix [43] (see S2 and S3 Tables for an overview of all available features). We empirically set

the number of gray levels to 64, removed the background to foreground transitions from the

co-occurrence matrices and computed average values obtained for the neighbor relations

[0, 1], [1, 0], [1, 1], [−1, 1]. Among others, the Haralick features comprise measures of texture

entropy, correlation, contrast and variance (we refer to [43] for a complete definition and

explanation of the individual features). Finally, we apply a GoogLeNet pretrained on ImageNet

database on each image patch to obtain CNN-features that are used for automatic synchroni-

zation of the cell trajectories [44]. In addition to the raw image snippets of all available chan-

nels, the corresponding segmentations, GoogLeNet features and feature time series of all valid

trajectories are stored in a SciXMiner-compatible format. Additional meta information like

microscope, experiment ID, plate number and experimental conditions are saved as well and

can later be used by the flexible and powerful data selection possibilities of SciXMiner. Individ-

ual projects obtained for different positions can be fused to a single SciXMiner project, to ana-

lyze even large projects in a single and consistent project file. After projects have been

imported to the SciXMiner format, additional features can be derived from the time series and

single features. In addition to all available feature transformations that are available by default

in SciXMiner [34, 45], we incorporated dedicated features for the analysis of cell behavior.

Time series can be smoothed with a variable window size using any of the methods imple-

mented in MATLAB’s smooth function to remove small deviations in the extracted feature val-

ues. Moreover, absolute feature values can be normalized to predefined events of the cell cycle,

such as the average interphase feature value or the feature value of the first late anaphase

frame. As different microscopes or acquisition settings produce notably different absolute fea-

ture values, these normalization procedures are beneficial to make time series comparable

among different experiments and to compute relative recovery time series of cell properties

like fluorescence intensity after mitosis. The rate of change for selected features at a particular
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time point (e.g., to estimate the initial recovery rate of time series features immediately after

cell division) can be approximated by a linear regression of the feature values in a small tempo-

ral window. The slope of these regression curves is stored as a single feature for each cell.

Finally, to obtain a proxy for interphase recovery, we added a dedicated recovery feature that

measures the absolute percentage deviation of one or more features to their respective inter-

phase mean value with 100% indicating full recovery (average percentage deviation if multiple

features are selected). While arbitrary features can be combined to a custom recovery feature,

we used the features area, minor axis length, mean intensity, intensity standard deviation for

all figures in this paper.

Cell trajectory synchronization

To compensate for different duration of pro-, prometa- and metaphase, as observed also in

our data sets, synchronization can be adapted to every particular cell cycle event under study.

The LiveCellMiner toolbox provides different ways of synchronizing the individual trajecto-

ries. We chose two characteristic events as the synchronization anchors, to obtain properly

aligned time series for quantitative comparisons. To this end, we identify interphase to pro-

phase transition (IP) or metaphase/early anaphase to late anaphase transition (MA) as refer-

ence mark for alignment of interphase or postmitotic frames, respectively. There are currently

three options for automatic alignment. The first approach uses the classical object features

area, circularity, mean intensity and intensity std. dev. to identify the IP transition by searching

for two clusters that minimize the within-class variance in the frames before the chromatin

masses separate using the temporally constrained combinatorial clustering (TC3) method

[17]. If the division time point that was identified during tracking corresponds to early ana-

phase, the software can automatically reposition the MA transition. Detecting early anaphase

is accomplished by a heuristic that checks if the centroid distance of the chromatin masses of

both daughter cells exceeds a user-defined threshold. As the classical method is originally

applied to all trajectories, it may happen that the project still contains invalid trajectories. The

second method is similar to the first method, but uses an additional auto-rejection of errone-

ous tracks. This is accomplished with a trainable LSTM network [46] that assesses the validity

of each trajectory as a whole. The third method uses another LSTM network that was trained

on sequences of CNN features that were obtained from the pretrained GoogLeNet to predict

the state sequence for all-time points, as well as identifying which of the cell tracks are valid/

invalid. The predicted synchronization time points are post-processed with a Hidden Markov

Model (HMM) that only allows valid state transitions (e.g., state sequences 1! 2! 3 for a

valid track or 0 for an invalid track) [47]. Transition probabilities are manually specified and

based on the predicted states of the LSTM, and we use the Viterbi algorithm to identify the

most likely hidden state sequence [48].

To inspect and optionally correct the automatic synchronization results, we provide a sim-

ple graphical user interface to manually identify the state transitions (Fig 1). This facilitates

man-machine feedback, decreasing the size of the classifiers, and training time, if needed. It

displays a set of cells, where two cells above one another are daughters and image snippets are

preloaded to smoothly interact with the GUI. A manual annotation of two daughter cells can

be accomplished with two clicks by identifying the last frame considered as interphase to mark

the IP transition and the early anaphase frame to mark the MA transition. All intermediate

frames are classified accordingly, and the annotations of one of the daughter cells are directly

copied to the other daughter to have a consistent alignment. The GUI also allows rejecting

entire trajectories, e.g., if no mitotic event is present or due to erroneous tracking. The manu-

ally synchronized cells can additionally be used for retraining the LSTMs of the automatic
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synchronization methods, and it is possible to specify separate models for different experimen-

tal conditions. We provide thorough validation of the different synchronization possibilities in

S1–S5 Figs and in S4 Table. Once all cells are properly aligned, both qualitative and quantita-

tive comparisons between different experiments can be performed, as detailed in the next

sections.

Data selection and visualization capabilities

An important aspect for the analysis of a particular subset of cells is data selection. This can be

accomplished by using class-based selection procedures that allow to group the data according

to imported metadata. For instance, it is possible to select experiments that were acquired with

a particular microscope, a subset of treatments, a specific experiment or individual positions.

It is also possible to use multiple properties in combination, to specify a feature range for selec-

tion, and to use the basic functionality of SciXMiner to add additional groupings derived from

the individual or time series features [34]. Subsequent visualization, quantification and manual

corrections are then automatically constrained to the selected cells.

In addition to the standard visualizations available in SciXMiner, we provide dedicated

visualizations for the LiveCellMiner toolbox. Time series can be visualized as heatmaps, mean

time series and combined line plots (Fig 2A–2C). In the heatmap visualization, each line repre-

sents a feature time series of a single cell, with feature values indicated by the color code. The

identified synchronization time points are used to properly align the cell tracks below each

other. Rather than displaying each cell separately, the mean ± std. dev. plots average the results

of a particular position, experiment or microscope (Fig 2B). Averaging is performed on the

aligned tracks to ensure that only corresponding mitotic stages are compared. In addition to

presenting a single plot per selected group, it is also possible to combine all line plots including

error bars in a single plot for better comparison (Fig 2C). Extracted single features can be visu-

alized as box or violin plots (Fig 2D) and as histograms (Fig 2E).

All visualizations and subplots can be adjusted according to the selected grouping of the

data. Aside from plotting all individual results in separate subplots, this allows combining

Fig 1. Graphical user interface for trajectory synchronization. Using an intuitive annotation scheme, users can verify and potentially correct the cell

synchronization. Moreover, erroneous tracks that do not contain a mitotic event can be discarded. An initial synchronization can be automatically

obtained using both classical and machine learning-based synchronization methods as detailed in the main text. Colors indicate interphase frames

(green), pro-, prometa-, meta- and early anaphase frames (magenta), late ana- and telophase (cyan) and erroneous trajectories (red).

https://doi.org/10.1371/journal.pone.0270923.g001
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related experiments, e.g., visualizing the average response of a particular treatment across

experiments, summarizing different repetitions of the same experiment or averaging responses

across experiments. An example of three possible grouping scenarios is depicted in Fig 3.

Although it is good to have a variety of features that users can freely select from, not all fea-

tures are necessarily relevant for characterizing a specific phenotype of interest. In addition to

the targeted visualizations, LiveCellMiner thus also provides an easy way to obtain a ranked

overview of all extracted features including statistical readouts like minimum, maximum,

mean, standard deviation and median in table form as well as graphically using heat maps and

combined line plots for all features. To identify which features are potentially suitable for char-

acterizing phenotypic differences, we compute the n-fold change of each feature from the

interphase average to the average of the first two prophase frames and the first two anaphase

frames (window for averaging can be changed by the user). The generated report is exported

in HTML format and can be conveniently displayed with any conventional internet browser

(see S1 and S2 Files for a demonstration of automatically generated reports). Last but not least,

LiveCellMiner can be used for statistical analysis of selected cells based on the single features

Fig 2. Visualization options of LiveCellMiner. The LiveCellMiner extension provides multiple ways of data visualization. (A) Temporally aligned

heatmaps of feature time series (color encodes the feature value, e.g., the area in numbers of pixels as in this example), (B) mean ± std. dev. curves

summarizing all trajectories of a particular position or experiment in a separate subplot, (C) mean curves of multiple experiments with error bars

plotted in a single axis for better comparability, (D) violin or box plots of single feature values and (E) histograms of individual data points grouped

according to the current selection. See S12 Fig for more information about the time axis used for plotting temporal features.

https://doi.org/10.1371/journal.pone.0270923.g002

Fig 3. Grouped data visualizations. The three panels illustrate the different grouped visualization possibilities and were obtained using four

experiments showing the normalized mean intensity for two oligos (Scrambled, PP2A). Exp. 1, Rep. 1–3 are three repetitions of the same experiment

and Exp. 2, Rep. 1 is one separate experiment that was acquired using a different modality (confocal instead of a widefield microscope). The settings for

combining the experiments (from left to right) are: (A) average time series of all experiments and repeats, (B) time series averaged over the repeats with

separate plots per experiment and (C) individual plots for all experiments and repeats. Error bars indicate one standard deviation and the vertical bars

represent the IP and the MA transitions.

https://doi.org/10.1371/journal.pone.0270923.g003
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or based on time series features of each cell. The methods for comparing single features across

different groups comprise both parametric (two-sample t-test, ANOVA) and non-parametric

tests (Wilcoxon, Kruskal-Wallis) as well as a two-way ANOVA (treatment × time) to be

applied on selected time series. Results are exported as easily accessible spreadsheet files

including the test results and the p-values of the performed tests.

Results

Cross-platform reproducibility of LiveCellMiner readouts

To test the capabilities of LiveCellMiner on the output of common light microscopy systems,

we have reexamined the mitotic progression of cells after RNAi-mediated downregulation

with negative and positive controls from previously published [37–39] and unpublished data

sets (LSM710 confocal, see S1 Text). Our routine positive control is the RNAi-mediated down-

regulation of three subunits of the heterotrimeric PP2A complex: PPP2CA (catalytic subunit

alpha), PPP2R1A (scaffold subunit alpha) and PPP2R2A (a regulatory subunit B55 alpha).

This PP2A complex is involved in the control of mitotic spindle assembly [49], and the spindle

assembly checkpoint [50] promotes mitotic exit, disassembly of the spindle-pole associated

microtubules in anaphase, resumption of nucleo-cytoplasmic transport, reclustering Golgi

apparatus and chromatin decondensation ([51]; see [52, 53] for review).

When this specific PP2A complex is downregulated, various defects of mitotic progression

are observed: prolongation of early mitosis (prophase, prometaphase and metaphase), partial

late anaphase arrest and delayed reestablishment of nucleo-cytoplasmic transport [51]. In

addition, PP2A downregulation leads to faulty chromatin decondensation and results in a par-

tial telophase arrest [38]. The analysis of phenotypes using LiveCellMiner demonstrates that

the biological effects of a given treatment can be quantitatively extracted by measuring a basic

set of image features (Fig 4), without the need for extensive training of phenotypic classifiers.

This is done in a reproducible manner across different live-cell microscopy platforms. In this

case, area and intensity measures were used as proxy for chromatin decondensation (Fig 4A–

4C), which is, as reported, delayed upon PP2A knockdown. In a similar way, deviations from

control values in nuclear geometrical descriptors, i.e., major and minor axes (Fig 4D), might

indicate deformations and irregularities due to altered cytoskeleton or chromatin regulation

[54]. LiveCellMiner automatically detects interphase to prophase and metaphase to anaphase

transitions as well as the degree of rotation of the chromatin mass (Fig 4F and 4G). These read-

outs allow detecting important errors in early mitotic progression. Delayed anaphase onset

might arise from persistent chromosome misalignment and/or deficient spindle function as

well as spindle misorientation, which often lead to chromosomal instability (CIN), a common

feature in many pathologies including cancer ([55, 56], for review see [57, 58]).

However, HeLa cells do not move much and display relatively stable morphology with

clearly distinguishable cytological changes, which facilitates segmentation and tracking in

time-lapse imaging experiments. As this is not necessarily common to other cell types, we have

challenged LiveCellMiner to compare the phenotype after PP2A downregulation in RPE cells,

which move much more than HeLa and have more heterogeneous and changing nuclear mor-

phologies. Applying the same segmentation and tracking algorithms like for HeLa, LiveCell-

Miner performed reasonably good in segmentation, tracking and synchronization (S4 Fig, S4

Table). The results shown in (S9 Fig) are in line with what was shown in HeLa cells above, sup-

porting the functions of PP2A across cell lines and the usability of LiveCellMiner with different

cell types regardless of cell morphology or mobility. We noticed an increased number of falsely

detected cell divisions that were successfully suppressed after training a synchronization classi-

fier (S4 Fig, S4 Table). In future versions, we could potentially extend the tracking algorithm of
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Fig 4. Platform comparison. Reproducibility study with different microscope systems. The columns show exemplary quantifications of the same

experiment conducted on different microscopy platforms. We compare Scrambled (control, blue) vs. PP2A knockdown cells (orange). The time

series features involve the chromatin area (μm2) (A), the chromatin mean intensity (a.u.) (B), the normalized mean intensity (absolute intensity

values divided by the interphase mean intensity of each cell, a.u.) (C), the minor axis vs. major axis ratio (D) and interphase-recovery feature as

detailed in S2 Table (E). The violin plots show the duration between interphase-prophase and meta-anaphase transition in minutes (F) and the

sum of the absolute angular changes in degrees (G). Widefield 10×: NScrambled = 1262, NPP2A = 1198; Confocal 10×: NScrambled = 2830, NPP2A =

1008; Confocal 20×: NScrambled = 792, NPP2A = 668.

https://doi.org/10.1371/journal.pone.0270923.g004
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LiveCellMiner with a more complex division detection module to decrease the fraction of

invalid tracks.

Quantitative characterization of multiple mitotic phenotypes

To test LiveCellMiner for the quantitative study of a broad spectrum of mitotic phenotypes, we

reanalyzed changes of chromatin and tubulin cytoskeleton appearance after LSD1 and

RecQL4 RNAi-mediated downregulation in human cells using this tool.

We have previously described the Lysine Specific Demethylase, LSD1 (also known as

KDM1A), as a crucial factor for reassembly of a functional nucleus at the end of mitosis [38].

Our recent work has shown that RecQ-like helicase 4 (RecQL4), whose mutations are causative

of the Rothmund–Thomson syndrome, is important for stable chromosome alignment during

mitosis [37]. These live-cell imaging experiments (S1 Text) were carried out in HeLa cells sta-

bly expressing H2B-mCherry, as chromatin marker, and eGFP-Tubulin for the spindle appara-

tus, which is the molecular machinery in charge of organizing and exerting the necessary

forces to segregate chromatin.

Without the need of training experiment-specific phenotypic classifiers for the chromatin

morphology or spindle apparatus, LiveCellMiner corroborates reduced chromatin deconden-

sation rates, as area, mean intensity and interphase recovery in LSD1 downregulated cells (Fig

5A–5C and 5E). In turn, these image features that describe chromatin compaction state are

unaffected by the RecQL4 downregulation (S8A–S8C Figs). The nuclear morphology can be

also analyzed. In LSD1 and PP2A downregulated cells, after cell division, the nuclei become

rounder (Fig 5D), as indicated by minor vs. major axis ratios. By contrast, after RecQL4 down-

regulation, elongated nuclear shape is evident (Fig 5J). These anomalies might indicate an

unbalance in the plethora of dynamic processes, factors and structures that reform the nuclear

compartment during late mitosis (see [32, 59] for review). The molecular reasons and conse-

quences of these, previously unnoticed, alterations in the nuclear morphology are not clear yet.

However, abnormalities in the nuclear shape and architecture are widely observed in patholog-

ical conditions and ageing ([60] for review), which hint new paths for biomedical research

regarding these protein targets. A manual confirmation of the observed phenotypes detected

by LiveCellMiner is provided in S13 Fig and the same effects were observed in an independent

experiment with RPE cells as shown in S9 Fig.

Previous work indicate that downregulation of PP2A, LSD1 or RecQL4 delays early mitotic

progression. LiveCellMiner analysis shows the expected increase in the average time spent

from prophase to anaphase onset after RNAi mediated downregulation of these targets

(Fig 5G, 5H, 5M and 5N). However, a high degree of metaphase plate rotation is only observed

in PP2A-downregulated cells, as the mean angle difference follows the axis of cell division

(Figs 4G, 5I and 5O). This points to the different roles of PP2A and LSD1/RecQL4 in the con-

trol of the spindle apparatus during mitosis, consistent with current knowledge. The early

mitotic delay after PP2A downregulation reflects broad defects in spindle function at the level

of microtubule–kinetochore attachment [50] and bipolar spindle formation [49]. In turn, the

abnormal fluctuations in the orientation of metaphase chromatin indicates faulty function of

the cortical network and/or defective astral microtubules emanating from the spindle poles

([55, 56]; see [61] for review). In the case of LSD1 downregulation, where no metaphase chro-

matin rotation is observed, the early mitotic delay might arise from defects in chromatin meth-

ylation impairing correct chromosome segregation ([62]; see [63] for review), and might

reflect unbalances in the expression of three major players of the mitotic control: PLK1[64],

BUBR1 and MAD2[65], whose transcriptional regulation is influenced by LSD1. Likewise, the

absence of rotation of the metaphase plate in RecQL4-downregulated cells suggests that the
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Fig 5. Analysis of PP2A (Positive control), LSD1 and RecQL4 knockdowns. Panels (A)-(I) show control (Scrambled) vs. LSD1–1,

LSD1–2 and PP2A, whereas panels (J)-(O) show control (Scrambled) vs. RecQL4–1, RecQL4–2 and RecQL4–3 knockdown cells.

The features involve the normalized area (A), the mean intensity (B), the normalized mean intensity (absolute intensity values

divided by the interphase mean intensity of each cell, C), the minor axis vs. major axis ratio (D, J), the interphase recovery ratio (E,

K), distance between sister chromatin masses (F, L) and cumulative histograms for the time in early mitotic progression until

anaphase onset (G, M). The violin plots show the duration between interphase-prophase and meta-anaphase transition in minutes

(H, N) and the mean angular difference in degrees (I, O). Images of panels (A)-(I) were acquired with a confocal microscope

(LSM5L, 10×, 0.656μm/pixel). The plots combine extracted trajectories from three independent repeats with a total number of

NScrambled = 1262, NLSD1-2 = 970, NLSD1-6 = 1332, NPP2A = 1198 cells. Images of panels (J)-(O) below the dashed line were acquired
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delay in early mitotic progression is not due to malfunction of the astral microtubules and/or

cortical network.

LiveCellMiner is able to measure the time-dependent distancing of daughter chromatin

masses after anaphase onset. This readout is a proxy for chromosome and spindle dynamics

during later mitotic stages. Consistent with known alterations in spindle dynamics during

mitotic exit upon PP2A downregulation, delayed chromatin masses separation is observed

early after anaphase onset (Fig 5F, S7D Fig). In turn, RecQL4 downregulated cells follow simi-

lar kinetics than control cells right after anaphase onset but decelerate the separation of the

daughter nuclei later (Fig 5F and 5L). This might indicate that RecQL4 is involved in the com-

plex regulation of cytoskeleton dynamics during mitotic exit and cytokinesis (see [66–68] for

review), and opens a new research avenue.

Expressing fluorescent reporters in cells could perturb the phenomena under study. For

example, overexpression of highly charged core histones can replace the surfactant effect that

Ki-67 exerts in prometaphase in order to avoid excessive chromosome clustering [69]. Addi-

tionally, cell-to-cell variability can introduce artefacts affecting the dynamic range of the mea-

sure and preventing the detection of anomalies. To overcome these problems, LiveCellMiner

permits single-cell temporal normalization of the extracted features. This allows extracting

rates of change in comparable conditions (Fig 5B and 5C, Mean Int. vs. Mean Int. Norm, see

also S8B and S8C Fig). Furthermore, to avoid or minimize the impact of cell-to-cell differences

in expression of the reporters, LiveCellMiner includes a module to select cell sub-populations

fulfilling certain criteria, e.g., a limited intensity range of the H2B-mCherry chromatin marker

in a given part of the cell cycle. For example, within the LSD1 data set, the oligo LSD1–1, but

not the LSD1–2, increases considerably the amount of cells with extremely high H2B-mCherry

signals (Fig 5A, Mean Int.). LiveCellMiner enables us to discard effects from the unequal

reporter expression by confining the analysis, i.e., to cells with low chromatin intensity values

before entry into mitosis (S7 Fig).

The use of various fluorescent markers with different spectral properties is particularly use-

ful for studying complex phenotypes. For mitosis-related events, studying the mitotic spindle

by fluorescent labeling of different tubulin isoforms, e.g., stable expression of eGFP-alpha-

Tubulin, helps unraveling whether formation and/or function of the spindle apparatus is

affected. Here, LiveCellMiner can extract spindle dynamics data by morphological dilation of

the primary segmentation from the chromatin channel with a disk-shaped structuring element

with a 15 pixel radius (see S3 Table for available features). PP2A but not RecQL4 or LSD1

RNAi-treated cells show a reliable increase of the spindle intensity staining during mitotic exit

(S8D and S8G Fig) as well as a delayed disappearance of the astral spindle signal (detected as

radial displacement of the intensity maximums in the GFP channel towards the polar regions)

(S8E and S8F Fig). These measurements are consistent with previous findings which suggest

that the PP2A-B55 holoenzyme regulates spindle-pole associated microtubules disassembly in

late anaphase [51]. Furthermore, LSD1 but not PP2A (S8D and S8F Fig) or RecQL4 (S8G and

S8I Fig) RNAi-treated cells show stronger spindle intensity during early mitotic progression.

This previously unnoticed phenotype could hint to additional roles of LSD1 in spindle stabil-

ity, finding that needs to be confirmed in the future.

with a confocal microscope (LSM5L, 20X, 0.328μm/pixel). The plots combine extracted trajectories from three independent repeats

with a total number of NScrambled = 1094, NRecQL4-1 = 814, NRecQL4-3 = 842, NRecQL4-4 = 786 cells. See S2 and S3 Tables for details on

the depicted features.

https://doi.org/10.1371/journal.pone.0270923.g005

PLOS ONE LiveCellMiner: A new tool to analyze mitotic progression

PLOS ONE | https://doi.org/10.1371/journal.pone.0270923 July 7, 2022 12 / 24

https://doi.org/10.1371/journal.pone.0270923.g005
https://doi.org/10.1371/journal.pone.0270923


Reanalysis of mitotic phenotypes mediated by siRNA against VPS72, H2A.

Z and the ATPase subunits from the chromatin remodeling complexes

EP400, SRCAP and Ino80

We have recently shown that downregulation of VPS72, also referred to as YL-1, extends telo-

phase in cells [39] by using live cell imaging combined with CecogAnalyzer 1.5.2. [10] analysis.

VPS72 is part of the EP400 and the Snf2-related CBP-activator protein (SRCAP) chromatin

remodeling complexes, where it works as a chaperon for H2A.Z. We also screened for telo-

phase phenotypes after siRNA-mediated downregulation of EP400, SRCAP and H2A.Z,

including as control the chromatin remodeling complex INO80, which does not contain

VPS72. Here, we use the published data set to demonstrate the flexibility and suitability of

LiveCellMiner for the analysis of high-content screening (HCS) data sets (S1 Text). Box-and-

whisker or violin plots allow for comprehensive visualization of biologically relevant image fea-

tures grouped by treatment, replicate number, etc. to enable direct comparison between doz-

ens of experiments and allowing identification of samples with phenotypic deviations from a

huge data set.

Reanalysis of the data set with LiveCellMiner revealed, for example, that downregulation of

INO80, SRCAP, EP400 and H2A.Z consistently lengthens early mitotic progression compared

to the scramble control, similar to the PP2A positive control (S6A Fig). In contrast, this is not

observed upon VPS72 downregulation. These observations support previous findings where

INO80 [70] and SRCAP [71] associate with the spindle apparatus and are required for proper

mitotic progression. To our knowledge EP400 has not been linked to spindle function yet.

However, our reanalysis raises the possibility that the EP400 chromatin remodeling complex is

also involved in mitotic processes. Furthermore, the slight extension of early mitosis in H2A.Z

depleted cells might indicate defective chromosome capture by the spindle apparatus due to

chromosome centromeres alteration, where H2A.Z acts as organizer [72].

In a similar way, the detailed analysis of single features like chromatin area at different

times (here, 21 and 42 min after anaphase onset) reveals that in PP2A- and VPS72-downregu-

lated cells, nuclei at the end of mitosis are consistently smaller than in control cells (S6B and

S6C Fig). In turn, PP2A siRNA-treated cells show additionally a delay in the rate of recovery of

interphase average area (S6D and S6E Fig). This is consistent with the function of PP2A in the

disassembly of spindle-pole associated microtubules and the reinitiation of nucleo-cytoplasmic

transport in anaphase [51].

With this comprehensive display, intra- and inter-experimental variability can be analyzed

(S6 Fig). For example, inter-experimental variability (for EXP1 and EXP2; see (S6D and S6E

Fig) legend) for chromatin area and area recovery rates at 21 and 41 min are observed for the

treatments with the PP2A-siRNA but not for scramble and the other siRNAs.

The concept of high-content screening implies that thousands of targets are tested in paral-

lel. Often these setups require imaging for more than three days and slower frame frequency

(i.e., 5 to 8 min), which is needed to avoid phototoxicity and to provide enough time for the

imaging loop through hundreds of positions. Longer times between frames might negatively

impact segmentation and tracking performance resulting in inefficient phenotype recognition.

Thus, we sought to test how LiveCellMiner performs with very large data sets of live-cell image

sequences. For this, we took advantage of an original data set where they screened for genes

involved in chromosome condensation at the beginning of mitosis in HeLa cells recorded

every 8.5 min [33]. Constrained by our computing capacity, we reanalyzed only 76 positions of

this HCS data set corresponding to solid-phase transfection of siRNA against scramble con-

trols and two well-known mitotic regulators: CDC20 and Aurora Kinase A (AurKA). LiveCell-

Miner performed reasonably well in segmentation and tracking (S5 and S12 Figs, S4 Table),
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accomplishing full analysis of each position in about 30 min with a single workstation. Process-

ing time could be considerably reduced by data-parallel computing, e.g., by distributing the

positions of a screen to separate nodes of a computing cluster. In line with available knowl-

edge, LiveCellMiner detects a delay in the early mitotic progression for siRNA mediated down-

regulation of CDC20 [73] and AurKA [74] (S10C Fig). Our analysis also reflects the known

role of CDC20 during mitosis exit [10] as a delay in chromatin expansion after anaphase onset

in CDC20 downregulated cells (S10A, S10B, S10D and S10E Fig). These results, along with

those in S9 Fig, demonstrate the ability of LiveCellMiner to successfully and rapidly analyze

data, across a range of cell types and frame frequencies, including those from HCS.

In the future, we will validate the hypotheses formulated here and investigate the molecular

mechanisms behind the newly described early mitotic phenotypes. In essence, the reevaluation

of the live cell imaging data sets confirmed previous findings regarding late mitotic pheno-

types. These examples illustrate the power of LiveCellMiner to screen complex phenotypes in a

quantitative manner using simple to complex live-cell imaging experiments. Our examples

focus on mitotic chromatin, but with modest modifications, LiveCellMiner would also be

applicable to other fluoresently labeled subcellular structures.

Availability and future directions

The LiveCellMiner extension package can be obtained from the following repository https://

github.com/stegmaierj/LiveCellMiner. We provide detailed installation instructions and an

overview of all LiveCellMiner-specific functions on the landing page of the repository. As

potential improvements will be made available via the repository, a snapshot of the latest ver-

sion upon the submission time point can be obtained here https://zenodo.org/badge/latestdoi/

269630703.

While LiveCellMiner provides already all tools to perform in-depth analyses of high-con-

tent screens, there are a few points we will address in future versions of the software. In the

current implementation, LiveCellMiner searches for mitotic events and uses the anaphase

onset as a reference for extracting the remaining frames for the analysis. In future versions, we

will also add the possibility to analyze non-mitotic tracks and adapt the synchronization tools

to other scenarios as well. Although LiveCellMiner’s synchronization tools were developed for

recognizing mitotic morphologies of mammalian cells, the recognition of mitotic transitions

in other organisms is possible. For instance, the analysis of mitotic progression of yeast could

be easily implemented in the code, given that the shape of the chromatin mass is very particu-

lar at anaphase and could be supported by measurements of the position of the nucleus with

respect to the yeast walls. The current detection and segmentation methods sequentially pro-

cess individual images one at a time. To speedup processing for larger screens these steps

could potentially be parallelized to fully exploit multicore CPUs and GPUs as available in the

respective system. As a temporary workaround, one can run multiple instances of LiveCellMi-

ner and thereby distribute the processing of independent projects, e.g., on different cluster

nodes. The deep learning-based segmentation relies currently on the external pretrained soft-

ware tool Cellpose [16]. The advanced segmentation methods could be implemented directly

in MATLAB to streamline the processing with as little additional dependencies as possible.

Finally, the trajectory synchronization module of LiveCellMiner currently involves a few semi-

automatic steps that can become time-consuming for very large and highly diverse screens. A

future avenue of research will thus be improving the reliability of unsupervised approaches

like [17] to ultimately analyze high-content screens in a fully-automatic fashion.
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Supporting information

S1 Text. Experimental details.

(PDF)

S1 Fig. Validation of the synchronization performance for a confocal data set. The manu-

ally annotated data comprise three experiments with two positions each (20× objective, physi-

cal spacing 0.415μm, 3 minute time intervals and N = 832 trajectories in total). Columns show

the results of the three different synchronization methods (Classical, Classical+Auto Rejection

and LSTM+HMM+Auto Rejection) as described in the main text. The first two rows show his-

tograms of the frame offset of the automatically identified synchronization time points with

respect to a manually annotated ground truth (IP: interphase to prophase transition and MA:

metaphase to anaphase transition). For instance, a value of 1 indicates that the synchronization

time point is set one frame too late and 0 indicates a perfect match. The last row quantifies pre-

cision, recall, f-score and accuracy of the auto rejection module that is intended to discard

erroneous tracks. Validation was performed using a 6-fold cross validation by retraining the

LSTM-based classifier on each split and testing the classifier on each of the remaining test

data.

(TIF)

S2 Fig. Validation of the synchronization performance for a widefield data set. The manu-

ally annotated data comprise three experiments with two positions each (10× objective, physi-

cal spacing 0.65μm, 3 minute time intervals and N = 832 trajectories in total). Columns show

the results of the three different synchronization methods (Classical, Classical+Auto Rejection

and LSTM+HMM+Auto Rejection) as described in the main text. The first two rows show his-

tograms of the frame offset of the automatically identified synchronization time points with

respect to a manually annotated ground truth (IP: interphase to prophase transition and MA:

metaphase to anaphase transition). For instance, a value of 1 indicates that the synchronization

time point is set one frame too late and 0 indicates a perfect match. The last row quantifies pre-

cision, recall, f-score and accuracy of the auto rejection module that is intended to discard

erroneous tracks. Validation was performed using a 6-fold cross validation by retraining the

LSTM-based classifier on each split and testing the classifier on each of the remaining test

data.

(TIF)

S3 Fig. Validation of the synchronization performance for the LSD1 data set. The manually

annotated data comprise three experiments with 16 positions each (10× objective, physical

spacing 0.656μm, 3 minute time intervals and N = 5878 trajectories in total). Columns show

the results of the three different synchronization methods (Classical, Classical+Auto Rejection

and LSTM+HMM+Auto Rejection) as described in the main text. The first two rows show his-

tograms of the frame offset of the automatically identified synchronization time points with

respect to a manually annotated ground truth (IP: interphase to prophase transition and MA:

metaphase to anaphase transition). For instance, a value of 1 indicates that the synchronization

time point is set one frame too late and 0 indicates a perfect match. The last row quantifies pre-

cision, recall, f-score and accuracy of the auto rejection module that is intended to discard

erroneous tracks. Validation was performed by training on 1328 trajectories that were evenly

distributed among all positions and by applying it to a remaining set of 2990 trajectories.

(TIF)

S4 Fig. Validation of the synchronization performance for the RPE data set. The manually

annotated data comprise one experiment with 6 positions (Nikon microscope, 20x objective,
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physical spacing 0.33μm, 3 minute time intervals and N = 388 trajectories in total). Columns

show the results of the three different synchronization methods (Classical, Classical+Auto

Rejection and LSTM+HMM+Auto Rejection) as described in the main text. The first two rows

show histograms of the frame offset of the automatically identified synchronization time

points with respect to a manually annotated ground truth (IP: interphase to prophase transi-

tion and MA: metaphase to anaphase transition). For instance, a value of 1 indicates that the

synchronization time point is set one frame too late and 0 indicates a perfect match. The last

row quantifies precision, recall, f-score and accuracy of the auto rejection module that is

intended to discard erroneous tracks. Validation was performed using a 6-fold cross validation

by retraining the LSTM-based classifier on each split and testing the classifier on each of the

remaining test data.

(TIF)

S5 Fig. Validation of the synchronization performance for the public data set by Hériché

et al.[33]. The manually annotated data comprise twelve experiments with 4 positions each

(automated epifluorescence microscope, 20× objective, physical spacing 0.32μm, 8.5 minute

time intervals and N = 2200 trajectories in total). Columns show the results of the three differ-

ent synchronization methods (Classical, Classical+Auto Rejection and LSTM+HMM+Auto

Rejection) as described in the main text. The first two rows show histograms of the frame offset

of the automatically identified synchronization time points with respect to a manually anno-

tated ground truth (IP: interphase to prophase transition and MA: metaphase to anaphase

transition). For instance, a value of 1 indicates that the synchronization time point is set one

frame too late and 0 indicates a perfect match. The last row quantifies precision, recall, f-score

and accuracy of the auto rejection module that is intended to discard erroneous tracks. Valida-

tion was performed using a 6-fold cross validation by retraining the LSTM-based classifier on

each split and testing the classifier on each of the remaining test data.

(TIF)

S6 Fig. Exemplary readouts from a high-content screen. The different panels show violin

plots of the IP to MA duration in minutes (A), the area at 21 and 42 minutes after anaphase

onset (B, C), the area recovery compared to the level at interphase in % at 21 and 42 minutes

after the anaphase onset (D, E) as well as a combined recovery measure comprised of area,

minor axis length, mean intensity and intensity standard deviation at 60 minutes after ana-

phase onset (F). See S2 Table for a more detailed description of the individual features. Num-

bers above each violin are the respective median values.

(TIF)

S7 Fig. Analysis of LSD1 with constrained intensity range (40-46). Images were acquired

with a confocal microscope (LSM5L, 10×, 0.656μm/pixel). We compare control (Scrambled),

LSD1-1, LSD1-2 and PP2A knockdown cells. The basic features involve the normalized area

(A), the mean intensity (B), the normalized mean intensity (C) and the sister cell displacement

(D). The violin plots show the duration between interphase-prophase and metaphase-ana-

phase transition in minutes (E) and the mean orientation angle difference in degrees (F). The

selection was constrained to cells exhibiting an interphase mean intensity in the range of 40

−46, which yielded a set of NScrambled = 84, NLSD1-1 = 18, NLSD1-2 = 190, NPP2A = 106 cells.

(TIF)

S8 Fig. Analysis of LSD1 and RecQL4 knockdowns (Additional features). Panels (A)-(F)

show control (Scrambled) vs. RecQL4-1, RecQL4-2 and RecQL4-3, whereas panels (G)—(I)

show control (Scrambled) vs. LSD1-1, LSD1-2 and PP2A knockdown cells. The features

involve the normalized area (A), the mean intensity (B), the normalized mean intensity
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(absolute intensity values divided by the interphase mean intensity of each cell, C). Panels

(D-I) exemplify features that were extracted from the second fluorescence channel and include

the normalized mean intensity (D,G), the distance of the intensity maximum to the segmenta-

tion centroid (E,H) and the average mean intensity between the IP and MA transitions (F,I).

Images of panels (A)-(F) above the dashed line were acquired with a confocal microscope

(LSM5L, 20X, 0.656μm/pixel). The plots combine extracted trajectories from three indepen-

dent repeats with a total number of Nscrambled = 1094, NRecQL4-1 = 814, NRecQL4-3 = 842,

NRecQL4-4 = 786 cells. Images of panels (G)-(I) below the dashed line were acquired with a con-

focal microscope (LSM5L, 10×, 0.656μm/pixel). The plots combine extracted trajectories from

three independent repeats with a total number of NScrambled = 1262, NLSD1-2 = 970, NLSD1-6 =

1332, NPP2A = 1198 cells. See S2 and S3 Tables for details on the depicted features.

(TIF)

S9 Fig. Analysis of PP2A knockdowns in RPE cells. Images were acquired 48 h post transfec-

tion with with 20nM siRNA by the widefield module of a Ti2 Eclipse (Nikon) equipped with a

LED light engine SpectraX (Lumecor) and GFP/mCherry filter sets, a Plan-Apochromat 20x

NA 0.75 and scaling 0.33μm/pixel. We compare the quantitation of features as in Fig 5 for con-

trol (Scrambled) and PP2A knockdown. The plots combine extracted trajectories from

NScrambled = 104 and NPP2A = 20 cells. See S2 and S3 Tables for details on the depicted features.

(TIF)

S10 Fig. Analysis of CDC20 and Aurora Kinase A knockdowns in HeLa cells from the HCS

data set published by Hériché et al.[33]. This data set is publicly available at Image Data

Resource (IDR) (https://idr.openmicroscopy.org/webclient/?show=screen-102). There, HeLa

cells stably expressing HIST1H2BJ-mCherry and LMNA-eGFP were cultured in siRNA-coated

96-well plates. The images were acquired with an Olympus IX-81 automated epifluorescence

microscope with a 20× objective, physical spacing 0.32μm and a time interval of 8.5 min for 44

h. Four independent replicates were acquired for each siRNA treatment. The plots show

pooled measures from 48 scrambled-, 24 siCDC20- and 4 AurKA-1- siRNA treated positions

(NScrambled = 668, NCDC20 = 32, NAurKA-1 = 86). See S2 and S3 Tables for details on the depicted

features.

(TIF)

S11 Fig. Illustration of the LoG-based nucleus detection and cellpose segmentation. Cell-

pose provides highly accurate nuclei segmentation for most of the cells. However, in some rare

cases (e.g., in late anaphase), cells tend to flicker and remain undetected for one or more

frames. To prevent interrupted tracks for such misdetections, LiveCellMiner provides a fall-

back option on classical image analysis methods and uses a LoG-based nucleus detection cou-

pled with a classical binary threshold and watershed-based segmentation as detailed in the

main text. The depicted examples qualitatively demonstrate the accurate segmentation perfor-

mance of Cellpose and a few examples where detections were missed that are successfully iden-

tified by the classical LoG-based detection method. We found that using both approaches in

combination resulted in complementary results and effectively in more complete tracks as

quantitatively demonstrated in S1 Table. The average diameter of all cells and across all time

points in this example is 40.79 pixels and the Cellpose diameter parameter was set to the

default value of 30 pixels, to allow segmenting smaller objects like cells in meta- and anaphase

as well.

(TIF)

S12 Fig. Examples of temporally aligned cells from different experiments and time line

explanations. (A) Each row shows a single cell of different experiments (see legend in the
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figure for imaging details). Images were scaled to a consistent size, temporally aligned and con-

trast was adapted for better visibility. (B) In all temporal plots of the manuscript, we group the

visualization into three different phases, (1) interphase, (2) pro-, prometa-, meta- and early

anaphase and (3) late ana- and telophase. The dashed lines indicate the interphase to prophase

transition (IP) and the metaphase to anaphase transition/anaphase onset (MA). For better visi-

bility and to be able to visualize cells with different IP to MA duration, the frames between IP

and MA are evenly distributed to the left and right. Time stamps are in minutes and display

the relative timing with respect to the transition time points.

(TIF)

S13 Fig. Manual validation of unexpected phenotypes in LSD1 and PP2A depleted cells. To

confirm the unexpected nuclear morphology phenotypes in LSD1 and PP2A in late mitosis

detected by LiveCellMiner, we manually measured the major/minor axes (A, C), circularity

(B) and the mean intensity of cells (D) from the original LSD1 data set records 45h post trans-

fection. Using Fiji [75], 10 random daughter cells 30 min after anaphase onset per condition

per experiment (three independent experiments indicated in colored data points) were manu-

ally segmented with the Wand tool in legacy mode, and the values were extracted using the

ROI manager. The data were organized in excel tables and plots (box and whisker min to max)

and statistical analysis were done using GraphPath (D’Agostino-Pearson normality test and

parametric one-way ANOVA).

(TIF)

S1 Table. Quantification of the detection, segmentation and tracking performance. Mea-

surements were performed on two manually annotated time series of the Fluo-N2DL-HeLa
data set that is part of the Cell Tracking Challenge [76] and was most similar to our application

scenario (acquisition was performed with an Olympus IX81 microscope using a 10×/0.4 objec-

tive lens, a physical spacing of 0.645×0.645μm and 30 minute time intervals). The used metrics

are DET (detection score), SEG (segmentation score), TRA (tracking score), OPCTB (average

of SEG and TRA) and OPCSB (average of DET and SEG). All metrics have a value range

between 0 and 1 with 1 being the optimum (see [76] for details on the measures). While Cell-

pose [16] yields better segmentation scores, it misses cells occasionally. On the other hand, our

classical approach based on multi-scale Laplacian-of-Gaussian blob detection is able to find

most cells with a slightly worse segmentation accuracy. Combining both approaches, i.e., com-

plementing the Cellpose segmentation with additional cells that were only found by the classi-

cal method, yielded consistently the best results (highlighted in bold face letters). The

experiments described in the main paper were consistently acquired with 3 minute time inter-

vals, which further improves the tracking performance. Please note that neither parameter tun-

ing of the classical method nor any retraining of Cellpose was performed. Thus, the top-

scoring methods listed on the Cell Tracking Challenge leader board are still slightly higher but

we expect our method to generalize better to unseen data sets.

(XLSX)

S2 Table. Description of the relevant time series (TS) and single features (SF) used for

characterizing cell behavior based on the chromatin channel. We used MATLAB’s

regionprops function for basic morphological features [77]. Moreover, a detailed description

of the Haralick features can be found in [43] and we used the implementation described in [78].

(XLSX)

S3 Table. Description of the relevant time series (TS) and single features (SF) that can be

extracted from the second channel (optionally, if available). Note that all features men-

tioned in S2 Table can also be extracted for the secondary channel and are not listed here.
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Moreover, each of the listed features can be computed on a grown/shrunk/toroidal region

obtained via morphological dilation/erosion of the chromatin mass segmentation with a user-

defined radius and structuring element.

(XLSX)

S4 Table. Quantification of the synchronization performance. Measurements were per-

formed on a confocal data set (LSM710, 20× objective, physical spacing 0.415μm, 3 minute time

intervals and N = 1606 trajectories in total), a widefield data set (NikonXLight, 10× objective,

physical spacing 0.65μm, 3 minute time intervals and N = 5248 trajectories in total), a confocal

data set (LSM5L, 10× objective, physical spacing 0.656μm, 3 minute time intervals and

N = 2990 trajectories in total), the RPE data set (Nikon microscope, 20x objective, physical spac-

ing 0.33μm, 3 minute time intervals and N = 388 trajectories in total) and the public data set by

Hériché et al. [33] (automated epifluorescence microscope, 20× objective, physical spacing

0.32μm, 8.5 minute time intervals and N = 2200 trajectories in total). True positives (TP), true

negatives (TN), false positives (FP) and false negative (FN) are summed over all folds of the

6-fold cross-validation. Precision, recall, accuracy and F-Score were computed individually on

each fold and the displayed values are the mean ± SD. The last two columns contain the

mean ± SD values of the synchronization time point offsets for the interphase prophase transi-

tion (IP) and the metaphase to anaphase transition (MA) measured in frames (a deviation of 1

frame corresponds to 3 minutes for both data sets). Bold-face letters indicate the best values for

each measure and data set.

(XLSX)

S5 Table. Statistical analysis. Statistical test results for the violin plots of Figs 4 and 5 and S6–

S8 Figs summarized in a supplementary spreadsheet file.

(XLSX)

S6 Table. Statistical analysis. Statistical test results for the time series plots of Figs 4 and 5 and

S6–S8 Figs summarized in a supplementary spreadsheet file.

(XLSX)

S7 Table. LiveCellMiner dependencies. LiveCellMiner uses the previously published tools

XPIWIT [36], Cellpose [16] and SciXMiner [34] for object detection, segmentation, project

organization and GUI development, respectively. This table lists the third party dependencies

of LiveCellMiner.

(XLSX)

S1 File. Generated report for the LSD1 data set. All existing single features and time series

features are contained and accessible from an HTML-based overview file. Extract the archive

to a folder of your choice and open the HTML file in the root directory using any web

browser.

(ZIP)

S2 File. Generated report for the RecQL4 data set. All existing single features and time series

features are contained and accessible from an HTML-based overview file. Extract the archive

to a folder of your choice and open the HTML file in the root directory using any web

browser.

(ZIP)
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