
There is increasing evidence that a chronic inflammatory
response in the brain in Alzheimer’s disease (AD) ultimately
leads to neuronal injury and cognitive decline. Microglia,
the primary immune effector cells of the brain, are thought
to be key to this process. This paper discusses the evidence
for inflammation in AD, and describes the mechanism
whereby microglia generate neurotoxic cytokines, reactive
oxygen species, and nitric oxide. Evidence that the cytokine
macrophage colony-stimulating factor (M-CSF) is an impor-
tant cofactor in microglial activation in AD is presented.
Ongoing work using organotypic hippocampal explant cul-
tures to model the inflammatory process in the AD brain is
also discussed. Potential avenues for therapeutic interven-
tion are outlined. 

lzheimer’s disease (AD) is the most common
cause of dementia in the elderly, accounting for up to
70% of all cases.1 Many potential causes of neuronal
injury in AD have been identified, including neurotoxic
effects of the beta-amyloid peptide (β-AP),2 hyperphos-
phorylation of microtubule-associated protein tau,3 the
effects of the apolipoprotein E4 isoform,4 and expression

of mutant presenilin proteins.5 In addition, there is a
chronic inflammatory response in the AD brain that has
recently received increased attention as a potential cause
of neuronal injury in AD, and as a potential therapeutic
target. This paper will review the evidence for inflam-
matory injury to neurons in AD, focusing particularly
on the role of microglial cells.

Cerebral inflammation in AD: 
microglial cells and β-AP

According to the inflammatory hypothesis of AD,
chronic cerebral inflammation results in injury to neu-
rons, contributing over time to cognitive decline. Neu-
ronal injury is hypothesized to result from the direct
effects of inflammatory effectors, such as cytokines or
activated complement, or indirect effects, such as
increased production of neurotoxic β-AP in response to
cytokines or other inflammatory stimuli.6,7 Originally
based on the presence of markers for inflammation in
and around neuritic plaques,8,9 this hypothesis has gen-
erated a large volume of in vitro cellular and molecular
data indicating a variety of possible mechanisms for
inflammatory injury to the AD brain. Further, a number
of epidemiologic studies indicate that anti-inflammatory
medications may protect against AD.10-13

The inflammatory hypothesis of AD has developed in
parallel with the oxidative injury hypothesis of AD, which
states that oxidation of macromolecules by oxygen free
radicals in AD results in neuronal injury and death.14-17

Good evidence now exists for oxidative damage to the
AD brain.18-21 A corollary to the oxidative injury hypoth-
esis is that nitric oxide (NO) and/or its highly reactive
derivative peroxynitrite also play a role in cell injury or
death in AD.22,23 Peroxynitrite is currently thought to be a
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principal means whereby NO expression can result in
cytotoxicity.24 Evidence for peroxynitrite-induced nitra-
tion of neuronal proteins has been found in the AD
brain.25,26 Reactive oxygen species (ROS) and reactive
nitrogen species are hypothesized in AD to be both
extrinsic to neurons (generated by glial cells)27 and intrin-
sic (generated by neurons themselves under conditions of
oxidative stress, such as β-AP toxicity).28

Microglia, which are found in and around neuritic
plaques in AD, have pivotal roles in the inflammatory,
oxidative, and reactive nitrogen hypotheses of neuronal
injury in AD. As intrinsic immune effector cells of the
brain, in a variety of diseases or disease models microglia
secrete and respond to inflammatory cytokines, present
antigen, secrete complement and express complement
receptors, are phagocytic, show a respiratory burst result-
ing in production of oxygen free radicals, produce large
amounts of reactive nitrogen species, and have a variety
of other immune-related functions.29,30 β-AP is thought
to be neurotoxic and to play a key role in the patho-
physiology of AD.31-33 Significantly, β-AP induces cultured
microglia to produce many agents with the potential to
directly or indirectly injure neurons, including inflam-
matory and chemotactic cytokines,34,35 NO,27,36,37 and
ROS.36,38 However, β-AP-induced increases in microglial
production of these factors have been disappointingly
modest, on the order of only two to three times control
levels. Studies using microglial-neuronal cocultures sug-
gest that microglial activity may be important in 
β-AP-mediated neurotoxicity in AD, but data are con-
flicting as to the mechanism. Endotoxin-, cytokine-, or
phorbol-ester-stimulated rodent microglia have been
convincingly shown to be neurotoxic through NO or
ROS mechanisms.39-42 More relevant to AD, Meda27 found

that β-AP 25-35 induced neurotoxicity in microglial-neu-
ronal cocultures, which was attributed to microglial 
TNF-α and reactive nitrogen intermediates. McMillian43

used β-AP-stimulated mixed astrocyte/microglial/neu-
ronal cultures and found that a nonspecific nitric oxide
synthase (NOS) inhibitor blocked neurotoxicity; Ii et al
obtained similar results.44 In contrast, Giulian45 also
induced neurotoxicity with β-AP in microglial-neuronal
cocultures, but found no evidence of involvement of NO
or other free radicals.Van Muiswinkel38 found that β-AP
increased superoxide production by phorbol-ester-
primed microglia, but had no effect on NO production
(neurotoxicity was not tested). Incomplete understanding
of this basic pathophysiology hinders the development of
drugs targeting glial neurotoxicity.

Synergistic effects of cytokines on β-AP-
induced microglial neurotoxicity

One reason for conflicting results may be that prior stud-
ies of β-AP-induced microglial neurotoxicity largely
ignored important costimulatory agents present in the
AD brain. The extracellular environment surrounding
neuritic plaques in the AD brain is rich in a variety of
proinflammatory agents including cytokines,6 which are
likely to augment the effects of β-AP on microglia.
It has been reported that interferon-γ, phorbol ester,
and lipopolysaccharide (LPS) all augment the effects of
β-AP on microglia and monocytic cells.27,38,46 However,
none of these augmenting stimuli have a physiologic
role in AD. Our group has focused on two cytokines
known to be increased in the central nervous system
(CNS) in AD, macrophage colony-stimulating factor 
(M-CSF) and interleukin-1 (IL-1), both of which are
microglial activators.
M-CSF (produced by neurons, astrocytes, and endothe-
lial cells)47-52 induces proliferation, migration, and acti-
vation of microglia.53-56 After traumatic brain injury,
microglial expression of the M-CSF receptor (c-fms) is
greatly increased.57 M-CSF treatment of microglia
induces increased expression of macrophage scavenger
receptors (MSRs).52 Microglial adhesion to β-AP, inter-
nalization of β-AP, and possibly β-AP-induced microglial
activation may be mediated by MSR class A.58,59 β-AP
also interacts with neuronal receptors for advanced gly-
cation end products (RAGEs) to increase neuronal M-
CSF expression,52 which causes further microglial acti-
vation. Neuropathologic studies show increased
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immunoreactivity for the M-CSF receptor (c-fms) on
microglia in AD brain,60 and M-CSF-labeled neurons
colocalize with β-AP deposits. M-CSF levels in AD cere-
brospinal fluid are five times greater than in controls.52

We found that cerebrospinal fluid tau, a marker for neu-
rodegeneration in AD, is positively correlated with cere-
brospinal fluid M-CSF in AD (Figure 1). This may indi-
cate that higher CNS M-CSF levels are related to
neurodegeneration. Granulocyte-macrophage colony-
stimulating factor (GM-CSF), another astrocyte product,
also induces proliferation of microglia.54 However, GM-
CSF does not have effects identical to those of M-CSF.
For example, GM-CSF can paradoxically induce ramifi-
cation of cultured microglia, whereas M-CSF does not.61

The proinflammatory cytokine IL-1 is thought to play a
key role in neuronal injury in AD. IL-1 is increased in the
brain in AD,62 and is associated mainly with activated,
phagocytic microglia near plaques.63 IL-1 immunoreactive
microglia are found near diffuse as well as neuritic
plaques, suggesting that IL-1 is important in the early

stages of plaque formation.64 IL-1 affects expression and
processing of beta-amyloid precursor protein.65,66 In the
AD brain, the regional distribution of IL-1 immunore-
activity strongly parallels β-AP deposition.67 Because IL-
1 (principally from microglia in the CNS)68 increases β-
AP, then β-AP could induce additional IL-1 expression
via autocrine or paracrine effects,34 resulting in a posi-
tive feedback loop.7 IL-1 potentiates β-AP-induced
inflammatory cytokine release by glial cells,69 and may
potentiate β-AP toxicity.70 IL-1 also induces astrocyte
and microglial proliferation.71 Although astrocytes have
neuroprotective functions, extensive astrocytic prolifera-
tion can inhibit neurite growth,72 whereas microglial pro-
liferation is associated with cytotoxic activity.73 Finally,
IL-1 induces microglial inducible macrophage nitric
oxide synthase (iNOS)74 and the release of ROS.75

Because of these multiple pathophysiologic actions, IL-1
is fundamental to the cerebral inflammatory state in AD.
Although under some conditions IL-1 may be neuro-
protective,76 existing evidence strongly suggests a nega-
tive role for IL-1 in AD.
We investigated the roles of M-CSF and IL-1 in β-AP-
induced activation of microglia and β-AP neurotoxic-
ity.77 Treatment of BV-2 microglia with β-AP 1-40 alone
induces a small increase in the expression of IL-1 by
BV-2 microglia, as previously reported in primary
microglia.34,78 However, cotreatment of BV-2 cells with 
β-AP 1-40 and M-CSF results in a dramatic increase in
IL-1 secretion by these cells (almost 70 times greater
than control). Compare this with the 1.5 times increase
in IL-1 expression reported by Araujo and Cotman34

using β-AP 1-42 alone at a similar concentration.
M-CSF also significantly augments β-AP 1-40-induced
NO (nitrite) production and iNOS mRNA expression
by BV-2 cells. M-CSF augmentation of β-AP induction
of IL-6, a cytokine that promotes astrogliosis and acti-
vates microglia,79,80 is even more dramatic: over 200 times
control values. Through proinflammatory effects, IL-6
is thought to contribute to neurodegeneration in AD.81

Our results suggest that β-AP, M-CSF, IL-1, and IL-6
form a self-perpetuating neurotoxic cascade in AD.77 We
hypothesize that in AD, β-AP (via microglial RAGE
and MSR class II) induces microglia to secrete small
amounts of IL-1, as our results and the results of others
indicate.34,46,78 IL-1 then induces astrocytes to express M-
CSF,49 which augments (via c-fms receptors on
microglia) β-AP-induced expression of IL-1 by
microglia, resulting in further M-CSF expression by
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Figure 1. M-CSF and tau levels are correlated in cerebrospinal
fluid from patients with Alzheimer’s disease.
Cerebrospinal fluid (CSF) was obtained from 17 patients
with probable AD, according to National Institute of
Neurological and Communicative Disorders and Stroke
(NINCDS) criteria, from the Stanford Alzheimer’s Center,
who had given informed consent. M-CSF in CSF was
quantified using ELISA for human M-CSF (R & D),
whereas tau was quantified with the Innotest hTAU
ELISA (Innogenetics). There was a significant correla-
tion between CSF tau and M-CSF levels. Because tau is
an established marker for neurodegeneration, these
data suggest that increased M-CSF may be associated
with neuronal injury in AD.
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astrocytes. In addition, microglial IL-1 self-activates
microglia via autocrine and paracrine effects. Neurons
themselves may also secrete M-CSF in response to 
β-AP,52 which may further activate microglia. Meanwhile,
microglia activated by β-AP and M-CSF would continue
to generate high levels of NO and ROS, injuring neu-
rons. Our results suggest that M-CSF and β-AP also
induce microglial IL-6 production. IL-6 promotes
astrogliosis79 and activates microglia.80 Increased IL-6
found in the AD brain could come from either microglia
or astrocytes, or both. As we have shown, β-AP induces
β-AP secretion by microglia,82 so local levels of this stim-
ulus would also increase, leading to further microglia
secretion of IL-1, and to additional neuronal M-CSF
expression. In this way, a self-perpetuating pathophysi-
ologic cascade is initiated. It is important that the aug-
menting effect of M-CSF is specific. Our results show
that costimulation of BV-2 cells with β-AP 1-40 and
GM-CSF, another colony-stimulating factor produced
by astrocytes that activates microglia,54 does not aug-
ment IL-1 or NO (nitrite) production.
Many features of this model could be tested. In our cur-
rent experiments, we are focusing on microglial produc-
tion of NO, IL-1, IL-6, and ROS in response to β-AP, IL-
1, and M-CSF stimulation, and on how these events
affect neurons in organotypic hippocampal cultures.
Organotypic hippocampal cultures contain the full com-
plement of cerebral cell types including neurons, astro-

cytes, and microglia. Hence, they more closely model the
intact brain than do monotypic cultures of neurons or
glia.83 Using the reverse transcriptase polymerase chain
reaction (RT-PCR), we have found that treatment of
organotypic hippocampal cultures with β-AP (22 µM, 24
hours’ treatment) and M-CSF results in a larger increase
in the mRNA for IL-1 and iNOS than either agent
alone. M-CSF augmentation of β-AP-induced IL-1
expression can also be detected in conditioned media
from organotypic cultures using enzyme-linked
immunosorbent assay (ELISA). Note that there is no
toxicity after 24 hours’ treatment, as assessed by lactic
dehydrogenase (LDH) in conditioned media. We are
currently using immunohistochemical techniques with
organotypic cultures to identify the cell type(s) that
show increased synthesis of IL-1 and NO after treat-
ment with β-AP and M-CSF. Organotypic cultures may
also be useful in modeling inflammation-mediated neu-
rotoxicity in AD. β-AP at a dose of 47 µM induces a sig-
nificant increase in LDH in slice culture medium after
72 hours of treatment. M-CSF synergistically augments
this toxicity (Figure 2).
We are also examining expression of M-CSF and its
receptor in transgenic animal models for AD. In these
models, mutant human beta-amyloid precursor protein
transgenes result in deposition of β-AP in the brain, and
a robust glial reaction surrounding these deposits.84,85

Our hypothesis is that increased β-AP deposition in

B a s i c  r e s e a r c h

Figure 2. M-CSF augments �-AP-induced toxicity in hippocampal slice cultures. Rat organotypic hippocampal cultures were treated for
72 hours with medium, β-AP 40-1 (inactive control peptide), β-AP 1-40, M-CSF 50 ng/mL, or β-AP 1-40 plus M-CSF. Conditioned
medium was assayed for LDH (toxicity indicator). M-CSF was found to augment β-AP 1-40 toxicity after 72 hours of treatment. 
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these animals should lead to increased expression of 
M-CSF and possibly its receptor. If our hypothesis is
correct, agents that block the effects of M-CSF on
microglial cells could represent important therapeutic
tools for AD.

Conclusions

There is substantial evidence that the chronic inflam-
matory reaction in AD results in neuronal injury, ulti-
mately leading to cognitive decline. Microglia activated
by β-AP and cofactors such as M-CSF are likely to play
a major role in generating neurotoxic agents in and
around the neuritic plaque lesion. Many potential ther-
apeutic agents that could ameliorate the inflammatory
reaction in AD are available, including NOS inhibitors,
agents that block the actions of proinflammatory
cytokines, and antioxidants. NOS inhibitors with isoform
specificity are currently under development and should

soon be available for testing. Likewise, many anti-
cytokine reagents are currently available, including older
agents such as glucocorticoids, nonspecific nonsteroidal
agents, and cytokine receptor antagonists, as well as
newer agents such as low-molecular-weight cytokine
inhibitors, convertase inhibitors, and highly specific
cyclooxygenase inhibitors. However, recent evidence
using β-AP immunizations and transgenic animals indi-
cates that the inflammatory response may also have a
beneficial response in AD, possibly through catabolism
of β-AP and other abnormal protein products.86 Thera-
peutic approaches to attenuating inflammation in AD
may need to be precisely targeted to disrupt deleteri-
ous aspects of the inflammatory response, while pre-
serving beneficial effects. ❑

Drs Barbara Cordell, Philipp Kahle, Jared Tinklenberg, and Jerome Yesavage
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Inflamación y fisiopatología de la
enfermedad de Alzheimer 

Existen evidencias crecientes a favor de que la
respuesta inflamatoria crónica del cerebro en
la enfermedad de Alzheimer (EA) finalmente
conduce al daño neuronal y al deterioro cog-
nitivo. Se piensa que la microglía, que repre-
senta el conjunto de células inmunes efectoras
primarias del cerebro, sería clave en este pro-
ceso. Este artículo discute las evidencias de
inflamación en la EA y describe los mecanismos
a través de los cuales la microglía genera cito-
quinas neurotóxicas, compuestos de oxígeno
reactivo y oxido nitroso. Se presenta la evi-
dencia que el factor estimulante de las colo-
nias de macrófagos productores de citoquinas
(M-CSF) es un cofactor importante en la acti-
vación de la microglía en la EA. También se dis-
cute el trabajo actual que utiliza cultivos de
hipocampo organotípico explantados como
modelo del proceso inflamatorio en el cerebro
de la EA. Se enuncian potenciales caminos
para intervenciones terapéuticas. 

Inflammation et physiopathologie
de la maladie d’Alzheimer

De plus en plus d’éléments nous amènent à
penser que la réponse inflammatoire chro-
nique observée au niveau du cerveau dans la
maladie d’Alzheimer (MA) contribue à l’appa-
rition des lésions neurologiques et du déficit
cognitif. La microglie, constituée des princi-
pales cellules immunocompétentes effectrices
du cerveau, semble être au cœur de ce proces-
sus. Cet article rapporte les preuves de l’exis-
tence d’une inflammation dans la MA et décrit
les mécanismes de production de cytokines
neurotoxiques, de radicaux libres oxygénés et
de monoxyde d’azote par la microglie. Le rôle
du M-CSF (macrophage colony-stimulating fac-
tor) en tant que cofacteur important de l’acti-
vation microgliale est ici démontré. Les travaux
en cours sur des cultures d’explants d’hippo-
campe organotypiques, pris comme modèles
du processus inflammatoire cérébral dans la
MA, sont également présentés. Les voies thé-
rapeutiques potentielles qui en découlent sont
exposées dans leurs grandes lignes.
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