
Identification and functional characterization of p130Cas as a 
substrate of protein tyrosine phosphatase non-receptor 14

Peng Zhang1,2, Ailan Guo3, Anthony Possemato3, Chao Wang1,2, Lydia Beard2,4, Cathleen 
Carlin5, Sanford D. Markowitz2,4, Roberto D. Polakiewicz3, and Zhenghe Wang1,4,*

1Department of Genetics, School of Medicine, Case Western Reserve University, 10900 Euclid 
Avenue, Cleveland, Ohio 44106

2Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 
10900 Euclid Avenue, Cleveland, Ohio 44106

3Cell Signaling Technology Inc., 3 Trask Lane, Danvers, MA 01923

4Department of Medicine, Case Medical Center, School of Medicine, Case Western Reserve 
University, 10900 Euclid Avenue, Cleveland, Ohio 44106

5Department of Microbiology and Molecular Biology, School of Medicine, Case Western Reserve 
University, 10900 Euclid Avenue, Cleveland, Ohio 44106

4Genomic Medicine Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 
44195

Abstract

Protein tyrosine phosphatase non-receptor type 14 (PTPN14) is frequently mutated in a variety of 

human cancers. However, the cell signaling pathways regulated by PTPN14 largely remain to be 

elucidated. Here, we identify a list of potential substrates of PTPN14 using a phospho-proteomic 

approach. We show that p130Cas is a direct substrate of PTPN14 and that PTPN14 specifically 

regulates p130Cas phosphorylation at tyrosine residue 128 (Y128) in colorectal cancer (CRC) 

cells. We engineered CRC cells homozygous for a p130Cas Y128F knock-in mutant and found 

that these cells exhibit significantly reduced migration and colony formation, impaired anchorage-

independent growth, slower xenograft tumor growth in nude mice, and have decreased 

phosphorylation of AKT. Furthermore, we demonstrate that SRC phosphorylates p130Cas Y128 

and that CRC cell lines harboring high levels of pY128 Cas are more sensitive to SRC family 

kinase inhibitor Dasatinib. These findings suggest that p130Cas Y128 phosphorylation may be 

exploited as a predictive marker for Dasatinib response in cancer patients. In aggregate, our 

studies reveal a novel signaling pathway that plays an important role in colorectal tumorigenesis.
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Introduction

Reversible tyrosine phosphorylation governs numerous signaling pathways that regulate cell 

proliferation, apoptosis, adhesion and migration (1). Protein tyrosine phosphorylation is 

coordinately controlled by protein tyrosine kinases (PTKs) and protein tyrosine 

phosphatases (PTPs) (1). Many PTKs have been identified to be oncogenes that are crucial 

to tumorigenic processes (2). Increasing evidence indicates that PTPs also play important 

roles in tumorigenesis (3). In a systematic mutational analysis of the PTP gene family in 

colorectal cancers (CRCs), protein tyrosine phosphatase non-receptor type 14 (PTPN14) was 

identified as one of the six PTPs that are mutated in CRCs (4). Recent studies revealed that 

PTPN14 is also mutated in breast, head and neck, kidney, liver, ovarian and skin cancers (5–

10), suggesting that PTPN14 may play an important role in tumorigenesis of multiple types 

of cancers.

PTPN14, also known as Pez, PTP36 and PTPD2, consists of an N-terminal FERM (four-

point-one, ezrin, radixin, moesin) domain and a C-terminal phosphatase domain (11). It has 

been shown that PTPN14 may regulate cell-cell adhesion, cell-matrix adhesion, cell 

migration and cell growth (12–14). Interestingly, a recent study indicates that PTPN14 also 

regulates TGFβ gene expression, thereby modulating epithelial-mesenchymal transition (15). 

Knockdown of the PTPN14 homolog in zebrafish results in developmental defects (15). 

Although PTPN14 was shown to regulate tyrosine phosphorylation of β-catenin (12), it 

remains to be determined how this regulation impacts tumorigenesis. Given that PTPN14 is 

mutated in various cancers including CRCs, it is important to identify more substrates of 

PTPN14 in CRC cells. In this study, we identified a list of putative substrates of PTPN14 

using a phospho-proteomic approach. We further validated p130 Crk-associated substrate 

(p130Cas) as a critical PTPN14 substrate.

p130Cas was originally identified as a Crk-associated protein (16, 17). It is also known as 

breast-cancer anti-estrogen resistance protein 1 (BCAR1), because p130Cas overexpression 

renders breast cancer cells resistant to Tamoxifen treatment (18). Moreover, p130Cas is 

overexpressed in a subset of breast cancers (19). Transgenic mice overexpressing p130Cas 

shorten the latency of Her2/neu-induced breast cancer development (19). Furthermore, 

p130Cas is required for SRC-mediated transformation (20, 21). Together, these studies 

suggest that p130Cas is a key player in tumorigenesis. p130Cas is an adaptor protein that 

mediates integrin and growth factor signaling (22). It contains several conserved domains 

for protein-protein interactions. At the N-terminus, there is a substrate domain with 15 

YXXP repeats which can be heavily phosphorylated (22). Here, we report that PTPN14 

dephosphorylates the tyrosine 128 (Y128) residue, one of the YXXP repeats, on p130Cas. 

We further demonstrated that regulation of Y128 p130Cas phosphorylation plays a critical 

role in CRC tumorigenesis.
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Results

Identification of p130Cas as a substrate of PTPN14 using a phospho-proteomic approach

To identify potential substrates of PTPN14, we constructed two stable SW480 CRC cell 

lines expressing either a wild-type (WT) PTPN14 PTP domain or a PTPN14 D1079A 

trapping mutant PTP domain. It is well documented that PTP trapping mutants can trap 

phospho-substrates in their catalytic pockets and protect the substrates from 

dephosphorylation, thereby potentially enriching the phospho-substrates (23, 24). Proteins 

were extracted from these cell lines as well as the parental SW480 cells and digested with 

trypsin. Phospho-tyrosine (pY) containing peptides were enriched using anti-pY antibody 

columns. Peptides from each cell line were profiled by mass spectrometry analyses (Fig 1A). 

pY peptides were quantified as described by Rush at al (25). Those pY containing peptides 

that were either down-regulated in the cell lines overexpressing the WT phosphatase or up-

regulated in the cell line overexpressing the trapping mutant compared to the parental cells 

are potential candidate substrates (Fig. 1B and Table S1). Of these candidate substrates, we 

chose to further characterize p130Cas because the pY128 containing peptides of p130Cas 

were enriched over 150 fold in the cell line overexpressing the PTPN14 trapping mutant 

phosphatase (Fig. 1B).

PTPN14 regulates phosphorylation of p130 at the tyrosine 128 residue in CRC cells

We set out to determine if PTPN14 indeed regulates p130Cas Y128 phosphorylation. To this 

end, we first generated a pY128 p130Cas specific antibody. As shown in Fig. S1, the 

antibody recognized a phospho-signal on the wild-type p130Cas. In contrast, it failed to 

detect any signal on p130Cas Y128F mutant protein (Fig. S1), indicating that this antibody 

specifically recognizes phosphorylated Y128 of p130Cas. We then performed Western blot 

analyses on the aforementioned SW480 CRC cell lines using this antibody. Consistent with 

the proteomic data, compared to parental cells, overexpression of WT PTPN14 phosphatase 

resulted in reduced levels of pY128 p130Cas (Fig. 2A), whereas overexpression of the 

trapping mutant led to increased levels of this phosphorylation (Fig. 2A). Conversely, 

knockdown of PTPN14 by two independent shRNAs resulted in increased levels of pY128 

p130Cas in a genetically engineered DLD1 CRC cell line (Fig. 2B), in which the 

endogenous PTPN14 proteins are epitope-tagged with 3xFLAG (26). Taken together, these 

data demonstrated that PTPN14 regulates phosphorylation of p130Cas Y128 in CRC cells.

PTPN14 directly dephosphorylates p130Cas

To determine whether PTPN14 directly regulates p130Cas Y128 phosphorylation, we first 

employed a substrate trapping assay developed by Flint et al. (23). WT or substrate trapping 

mutant (D1079A) of PTPN14 phosphatase domain was fused to GST and expressed in E. 

coli. GST fusion proteins were purified and attached on Glutathione beads. Equal amounts 

of WT and mutant GST-fusion proteins were used for a trapping assay (Fig. 2C). As shown 

in Fig. 2C and Fig S2, the trapping mutant fusion proteins pulled down p130Cas abundantly 

from cell lysates made from two different CRC cell lines DLD1 and SW480. In contrast, the 

WT GST-fusion proteins only pulled down minimal amount of p130Cas, whereas GST 

alone did not bind to p130Cas. Secondly, when mixed with phosphorylated p130cas 

substrates in vitro, the WT PTPN14 GST fusion proteins dephosphorylated p130Cas at the 
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Y128 site in comparison with controls with equal amounts of GST or the enzymatically 

inactive mutant proteins (trapping mutant) (Fig. 2D). In aggregate, our results showed 

unequivocally that p130Cas is a direct substrate of PTPN14. However, we failed to detect 

protein-protein interaction between PTPN14 and p130Cas in DLD1 cell lysates by a co-

immunoprecipitation assay (data not shown), suggesting that the two proteins only interact 

transiently when the enzymatic reaction occurs.

SRC phosphorylates p130Cas at Tyr128

Having demonstrated that PTPN14 dephosphorylates Y128 of p130Cas, we set out to 

identify the kinase that phosphorylates this site. Because SRC kinase has been shown to 

phosphorylate p130Cas at several tyrosine residues other than Y128, we elected to test 

whether SRC could also phosphorylate Y128 on p130Cas. Three lines of evidence indicated 

that SRC indeed phosphorylates this site: (1) Treatment of DLD1 cells with a SRC inhibitor 

AZD0530 led to dephosphorylation of pY128 p130Cas (Fig. 3A); (2) Knockdown of SRC 

by two independent shRNAs also resulted in reduced levels of pY128 p130Cas in DLD1 

cells (Fig. 3B); (3) Overexpression of SRC led to increased levels of pY128 on p130Cas 

(Fig. 3C).

Colon cancer cell lines harboring higher levels of pY128 p130Cas are more sensitive to the 
killing by SRC family kinase inhibitor Dasatinib

SRC family kinase inhibitor Dasatinib is used in clinic to treat chronic myelogenous 

leukemia and there are several ongoing clinical trials using Dasatinib in combination with 

other drugs to treat colon cancers (27). To test if p130Cas Y128 phosphorylation associates 

with Dasatinib inhibition, we treated six colon cancer cell lines with various doses of 

Dasatinib and the IC50s of these cell lines were shown in up panel of Fig. 3D. Remarkably, 

colon cancer cell lines harboring higher levels of pY128 p130Cas were more sensitive to 

growth inhibition by Dasatinib (Fig. 3D).

Phosphorylation of p130Cas Y128 can be stimulated by EGF

Given that we have identified the kinase and phosphatase that regulate p130Cas Y128 

phosphorylation, it is of interest to identify stimuli that may activate this phosphorylation in 

CRC cells. To this end, we treated DLD1 cells with various growth factors and cytokines 

including EGF, FGF, PDGF-AA, Il-6, and VEGF. Among them, EGF could robustly 

stimulate p130Cas Y128 phosphorylation after 30 minute treatment (Fig S3A). In contrast, 

other growth factors and cytokines, including PDGF-AA, failed to activate p130Cas Y128 

phosphorylation, although PDGF was able to activate ERK1/2 (Fig S3B). Furthermore, EGF 

also induced phosphorylation of p130Cas Y128 in multiple CRC cells including RKO cells 

(Fig. S3A). Given that EGF signaling plays a critical role in CRC tumorigenesis and that 

anti-EGFR antibodies are approved by the FDA to treat CRC patients (28), we chose to 

study p130Cas Y128 phosphorylation in the context of EGF stimulation.

Engineering p130Cas Y128F mutant knock-in (KI) CRC cells

To rigorously test whether regulation of p130Cas Y128 phosphorylation is critical to 

colorectal tumorigenesis, we set out to engineer p130Cas Y128F knock-in (KI CRC) cell 
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lines. The adeno-associated virus (AAV) targeting system was used to engineer the knock-in 

cell lines because of its high homologous recombination frequency in somatic cells (26, 29, 

30). We first chose to knock in the p130Cas Y128F mutant allele into the human colon 

cancer cell line RKO, because we had shown that p130Cas Y128 phosphorylation can be 

activated by EGF in RKO cells as described above and that RKO cells are widely used for 

gene targeting (31). The targeting strategy is outlined in the schematic diagram in Fig 4A. 

After the first round of gene targeting, 7 targeted clones were identified out of 96 geneticin 

resistant clones screened. To ensure the presence of the mutant allele, genomic PCR 

products of exon 3, which encodes the Y128 residue, from the targeted clones were 

sequenced. Five of the 7 targeted clones harbored p130Cas Y128F mutant allele. Two clones 

were infected with adenovirus expressing Cre-recombinase to excise the neomycin 

resistance gene (Fig. 4A) and targeted for the second allele to generate homozygous KI 

clones. To confirm that there was no WT p130Cas allele expression in the homozygous 

p130Cas Y128F mutant clones, the genomic PCR products of p130Cas were sequenced. As 

expected, both WT p130Cas alleles were replaced by the p130Cas Y128F mutants in the 

homozygous KI clones (Fig 4B). Furthermore, Western blot analyses showed that p130Cas 

proteins were expressed in the homozygous KI cells but they remained unphosphorylated at 

residue 128 after EGF stimulation, while p130Cas proteins in the parental cells were heavily 

phosphorylated at Y128 post EGF stimulation (Fig. 4C). These data indicated that we had 

successfully engineered p130Cas Y128F mutant KI cells. We chose two independently 

derived heterozygous and homozygous KI clones for in-depth analyses and both clones 

behaved similarly in all the studies described below. To ensure that what we observe with 

RKO cells is not cell line specific, we used the same method to generate p130Cas Y128F 

mutant DLD1 cells (Fig. 4).

In vitro, p130Cas Y128F mutant CRC cells are reduced in properties predicative of in vivo 
tumorigenicity

When grown under normal tissue culture conditions (McCoy’s 5A supplemented with 

10%FBS), the average doubling times of the DLD1 p130Cas Y128F mutant clones 

increased by 1.5 hours in comparison to the parental cells (Fig. S4), whereas no doubling 

time difference was observed between RKO parental and the mutant clones (Fig. S4). Cell 

cycle profiling showed slightly increased G1 populations in the p130Cas Y128F 

homozygous KI clones derived from both DLD1 and RKO cells (Fig S5).

To test whether p130Cas Y128F mutant affects tumorigenicity correlated responses in vitro, 

we performed colony formation and soft agar assays with the p130Cas mutant KI cells. 

Compared to the parental cells, homozygous p130Cas Y128F KI RKO and DLD1 cells 

exhibited 3–6 fold (p < 0.001) reduced abilities to form colonies in colony-formation assays 

(Fig. 5A). Similarly, homozygous p130Cas mutant CRC cell clones formed ~25 fold (p < 

0.001) less foci in soft agar assay than their wild-type counterparts (Fig. 5B). Interestingly, 

the RKO heterozygous KI clones, but not these of DLD1 heterozygous KI clones, displayed 

significant (p < 0.001) reduction in colony numbers and soft-agar foci with respect to wild-

type cells (Fig. 5A and B).
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The p130Cas mutant RKO cells were less tumorigenic in vivo

Tumorigenicity of the KI cells was also tested in a more stringent in vivo model. For these 

studies, p130Cas Y128F homozygous, heterozygous clones or the parental RKO and DLD1 

cells were injected subcutaneously into nude mice. After 35 days of growth, wild-type cells 

formed tumors in all mice injected, whereas the p130Cas Y128F homozygous RKO KI 

clones failed to form tumors in two of the five mice injected (Fig. 6A). The average tumor 

volumes of p130Cas Y128F homozygous RKO KI clones were 30-fold smaller than those 

produced by the parental cells (p < 0.001) (Fig. 6B). However, no significant difference in 

xenograft tumor growth was observed between the DLD1 homozygous KI clones and the 

parental (Fig. S6). Both RKO and DLD1 heterozygous KI clones formed similar sizes of 

tumors to those of parental cells (Fig. 6A and B, and Fig. S6).

The p130Cas Y128F mutant CRC cells display defects in cell spreading and migration

Given that both PTPN14 and p130Cas are involved in cell adhesion and migration (11, 22), 

we set out to determine how p130Cas Y128 phosphorylation impacts cancer cell adhesion 

and migration. Boyden chamber cell migration assay showed that the p130Cas Y128F 

mutant cells exhibited significantly reduced ability in cell migration (Fig. S7). When grown 

on cover slips coated with fibronectin, the majority of parental RKO and DLD1 cells spread 

fully and displayed a fibroblast-like morphology (Fig. S8 A and B). In contrast, most of the 

p130Cas Y128F DLD1 mutant cells were not fully-spreading (Fig. 7A and B). The 

percentages of fully-spreading mutant RKO cells were also significantly reduced, although 

not as dramatic as the mutant DLD1 cells. However, no apparent focal adhesion defect was 

observed with the mutant cells (Fig. S8A).

AKT signaling is impaired in the p130Cas Y128F mutant KI cells

We demonstrated that phosphorylation of the p130Cas Y128 residue plays an important role 

in colorectal tumorigenesis. To gain insights into the effects of this phosphorylation on 

downstream signaling, we examined how the p130Cas Y128F KI affects phosphorylation of 

signaling molecules in CRC cells after EGF stimulation. It is well-documented that EGF 

receptors, once they are engaged by their ligands, activate multiple well-characterized 

signaling pathways including Ras-MAPK, PI3K-AKT, PLC-γ and STATs (32). We tested 

the phosphorylation status of 27 sites on 16 proteins that could be potentially modulated by 

EGF signaling (Table S2). In both RKO and DLD1 CRC cells, phosphorylation of AKT 

Thr308 was significantly reduced in p130Cas Y128F KI cells in comparison with the 

parental cells (Fig. 7A and B). However, the kinetics of AKT activation appeared to be 

faster in RKO cells than in DLD1 cells (Fig. 7A and B). Although no difference in ERK1/2 

phosphorylation was observed between the RKO parental and Y128F KI cells, ERK1/2 

phosphorylation levels were elevated in DLD1 p130Cas Y128F mutant cells, suggesting that 

a compensatory effect occurred in the DLD1 mutant cells.

The p130Cas Y128F mutant proteins bind less p85 than the WT p130Cas

The above results indicate that AKT is a critical downstream mediator of the p130Cas 

pY128 signaling. It is well documented that AKTs are activated by phosphatidylinositol 3-

kinase (PI3K) (33). PI3K, which consists of a p85 regulatory subunit and a p110 catalytic 
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subunit (34), converts phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 

3,4,5-trisphosphate (PIP3) (33, 34). PIP3 then recruits AKT the plasma membrane, which, in 

turn, activates AKT (34). PI3K becomes activated when it is recruited to the membrane by 

interaction between p85 and pY residues on membrane-bound receptors or adaptor proteins 

(34). Interestingly, several studies demonstrate that membrane-associated p130Cas activates 

PI3K through interaction with p85 (35, 36) and that this interaction is dependent on tyrosine 

phosphorylation of the substrate-binding domain on p130Cas (35). Given that the Y128 

belongs to one of the YXXP repeats (22), we postulated that the reduced AKT activity in the 

p130Cas Y128F mutant cells might be due to weaker binding affinity of the mutant p130Cas 

protein to p85. Indeed, as shown in Fig. 7C, less p85 proteins associated with the p130Cas 

Y128F mutant compared to the WT p130Cas. In contrast, the p130Cas Y128F mutation did 

not affect its binding with CRK, a known p130Cas interacting protein (Fig. 7C) (16, 17). 

Under these conditions, we failed to detect protein interactions between p130Cas and focal 

adhesion kinase (FAK).

Discussion

Using a phospho-proteomic approach, we identified and validated p130Cas as a substrate of 

PTPN14. PTPN14 dephosphorylates an unappreciated Y128 residue on p130Cas protein. 

PTPN14 regulated p130Cas Y128 phosphorylation plays an important role in colorectal 

tumorigenesis, because the genetically engineered p130Cas Y128F mutant CRC cells exhibit 

reduced abilities in colony formation, anchorage-independent growth, cell migration and 

xenograft tumor growth.

PTPN14 is identified to be mutated in various human cancers including breast, colon, head 

and neck, kidney, liver, ovarian and skin cancers (4–10), thereby providing genetic evidence 

suggesting that this PTP plays a role in tumorigenesis. In a fraction of tumors, one allele of 

PTPN14 is mutated whereas the other allele is lost (4), consistent with a “two-hit” tumor 

suppressor model. Therefore we postulate that PTPN14 may function as a tumor suppressor. 

Consistent with this notion, PTPN14 negatively regulates an oncogenic target pY128 

p130Cas, because the unphosphorylatable p130Cas Y128F KI DLD1 and RKO cells exhibit 

reduced colony formation ability and soft-agar growth (Fig. 6). Furthermore, the RKO 

p130Cas Y128F mutant cells grow much slower as xenograft tumors, although the p130Cas 

Y128F mutation in DLD1 cell does not affect xenograft tumor growth. We hypothesize that 

this discrepancy is due to a compensatory effect in the DLD1 p130Cas mutant cells. In 

support, we observed that ERK activities are up-regulated in the DLD1 p130Cas mutant KI 

cells, but not in the RKO mutant KI cells (Fig. 7A and B).

We also demonstrated that SRC is the kinase that phosphorylates p130Cas Y128 residue 

(Fig. 3). Interestingly, CRC cell lines harboring high levels of pY128 p130Cas are more 

sensitive to SRC inhibitor Dasatinib-induced growth inhibition than those cell lines with low 

levels of pY128 p130Cas (Fig. 3D). Dasatinib is used in the clinic to treat chronic 

myelogenous leukemia, and there are several ongoing clinical trials using Dasatinib in 

combination with other drugs to treat solid tumors including colon cancers (27). Our data 

suggest that pY128 p130Cas may be exploited as a prediction marker for Dasatinib response 

in cancer patients. It is worth noting that Src also phosphorylates other sites of the YXXP 
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repeats on p130Cas including the Y253 that regulate transformed cell growth and migration 

(37, 38). As the future directions, it is of interest to determine if PTPN14 dephosphorylates 

the other sites and if there is a cross-talk between the Y128 phosphorylation and the other Y 

residues of the YXXP repeats.

The oncogenic signaling of p130Cas Y128 phosphorylation seems to be mediated by the 

PI3K/AKT pathway, as we showed that AKT T308 phosphorylation, a key to AKT 

activation, is reduced in both DLD1 and RKO p130Cas Y128 mutant KI cells (Fig. 7A and 

B). It has been reported previously that p130cas can activate PI3K through binding to the 

regulatory subunit p85 (35, 36). Here, we demonstrate that p130Cas pY128 phosphorylation 

is crucial for its binding to p85. Although the p130Cas interacting protein CRK is shown to 

activate PI3K through the FAK-p85 interaction (39), our results indicate that the p130Cas 

Y128F mutant does not affect its binding to CRK.

Lastly, the phospho-proteomic approach used in this study represents a novel method to 

globally identify potential substrates of PTPs. Identification of substrates of PTPs has been a 

challenge. Although phosphatase trapping pull-down has been widely used to validate PTP 

substrates, it has limited success in identification of new substrates (40). We show here that, 

coupling with global phospho-proteomic profiling, overexpression of the trapping mutant 

PTPN14 PTP domain can enrich the target pY containing peptides and provides a systematic 

approach to identify candidate substrates. We also successfully employed a similar method 

to identify substrates of protein tyrosine phosphatase receptor T (PTPRT) (41). We further 

validated that STAT3 and paxillin are the substrates of PTPRT (41, 42). Therefore, our 

studies suggest that the phospho-proteomic approach is a generally applicable method for 

identification of PTP substrates.

Material and Methods

Cell Lines

DLD1, HCT116, HT29, RKO, SW480, LOVO and HEK 293T cells were obtained from the 

American Type Culture Collection. (Manassas. VA). All the CRC cells were maintained in 

McCoy’s 5A media plus 10% FBS. HEK 293T cells were maintained in DMEM media plus 

10% FBS.

Establishment of Cell Line Stably Expressing PTPN14 Catalytic Domain

The catalytic domain of PTPN14 was PCR amplified using primers 5′-

cgggatcccgggaagagaatcgagttga-3′ and 5′-ccgctcgaggagctggattggggtgatta-3′. The PCR 

products were cloned into the pcDNA4-Myc-HisB (Invitrogen) by BamHI and XhoI, which 

were incorporated into the primers. The PTPN14 D1079A mutant catalytic domain was 

made by site-directed mutagenesis with primers 5′-

aatatactgactggccagctcacggctgtccagaaga-3′ and 5′-tcttctggacagccgtgagctggccagtcagtatatt-3′. 

Stable clones of SW480 cells were obtained according to the manufacturer’s instructions 

and were maintained in medium containing Zeocin (100 μg/ml) plus blasticidin (10 μg/ml). 

Protein expression was induced by addition of 1 μg/ml of doxycycline.
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Profiling pY Peptides

Cell lysates were prepared under denaturing conditions in the presence of phosphatase 

inhibitors (20 mM HEPES, pH 8.0, 9 M urea, 1mM sodium vanadate). Following trypic 

digestion, peptides were concentrated and partitioned into three fractions by reversed-phase 

solid-phase extraction. The phosphopeptides from each fraction were bound to agarose 

beads conjugated with the phosphotyrosine-specific antibody pTyr-100. After thorough 

washing, peptides were eluted from the immobilized antibody with dilute acid and analyzed 

by nanoflow LC-MS/MS using an ion trap mass spectrometer. Lists of credible 

phosphopeptide sequence assignments were assembled.

Generation of Anti-p130Cas pY128 Antibody

Rabbits were immunized with a pY128 p130Cas peptide [KAQQGL (pY) QVPGP] 

conjugated to BSA. The anti-serum was first absorbed to a BSA-Sepharose 4B column and 

then passed twice through BSA-conjugated unphosphorylated peptide KAQQGLYQVPGP 

columns.

Stimulation of CRC Cells with Growth Factors

DLD-1 and RKO cells were serum-starved for 24 h and stimulated with EGF (200 ng/ml), 

PDGF-AA (10 ng/ml), FGF (10 ng/ml), VEGF (10 ng/ml) and IL-6 (10ng/ml) for various 

times.

Western Blot Analysis

Cells were lysed in lysis buffer (10mM Tris-HCl, pH 8.0; 100mM NaH2PO4; 8M Urea; 

1mM Na3VO4; 20 mM NaF; 80uM beta-glycerophosphate; 20 mM Sodium pyrophosphate). 

Western blots were performed as previously described. Antibodies used include anti-FLAG 

(M2; Sigma, St. Louis, MO), anti-ERK1/2, anti-SRC, anti-pERK1/2, anti-AKT, anti-pAKT 

(Cell Signaling, Danvers, MA) and anti-p130Cas (BD Biosciences, San Jose, CA).

Phosphatase Substrate Trapping Assay

Substrate trapping was performed as described (41) and modified as follows. Ten million 

cells were treated with 100 μM pervanadate for 30 min and collected by centrifugation. The 

cell pellet was lysed with 1 ml of lysis buffer (25 mM HEPES, pH 7.4, 150 mM NaCl, 1% 

Nonidet P-40, 1x complete protease inhibitor cocktail, 1 mM EDTA, 1 mM Benzmidine), 

treated with 5 mM iodoacetic acid on ice for 5 min, neutralized by addition of 10 mM DTT 

for 15 min, and subjected to centrifugation at 16,000 × g for 30 min to remove debris. GST-

PTPN14 bound beads were incubated with this lysate at 4°C for 1 h. The beads were 

pelleted and washed three times for 5 min with lysis buffer supplemented with 1 mM DTT. 

The beads were then boiled and aliquots analyzed by SDS-PAGE and Western blotting.

In Vitro Phosphatase Assay

HEK293T cells overexpressing FLAG-tagged p130Cas proteins were treated with 50 μM 

pervanadate for 30 min and lysed in RIPA buffer. Cas proteins were immunoprecipitated 

with anti-FLAG antibody-conjugated agarose beads. The immune complexes were washed 

twice in wash buffer (50 mM Tris·HCl pH 7.4, 150 mM NaCl, 5 mM EDTA,1% Nonidet 
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P-40) with the phosphatase inhibitors (10 mM NaF and 2 mM Na3VO4), twice in the same 

buffer without the phosphatase inhibitors, once in ST buffer (50 mM Tris·HCl pH 7.4, 150 

mM NaCl) and once in phosphatase assay buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 

mM DTT). The p130 Cas immunocomplexes were then incubated with equal amounts of 

either GST alone, GST-PTPN14, or the trapping mutant at 37°C for 30 min. Western blots 

were performed to quantitate p130Cas pY128.

shRNA knockdown

shRNA lentiviral vectors were purchased from Sigma. Lentiviruses were packaged in 

HEK-293T cells with the transfection of lentiviral vectors together with pMD2.G VSVG and 

pCMV delta R8.74. 24 hrs after transfection, lentiviruses were harvested and purified and 

then were used to transduce DLD1 cells. Stable clones were then selected in medium 

containing 2.5 μg/ml of puromycin.

Targeted Knock-in of p130Cas Y128F mutant Allele

Somatic cell gene targeting was performed as described (26). Briefly, a 1.3 KB fragment 

from intron 2 to intron 3 of the p130Cas locus containing the exon 3 sequences was 

amplified 20 cycles from genomic DNA using primers 5′-gggaaag/deoxyU/

gggtttgctgagggcgacggg -3′ and 5′-ggagaca/deoxyU/ggtgattgagggtggctgggccctt-3′. The 

coding sequences for Y128 were then mutated from TAC (Tyr) to TTC (Phe) by site-

directed mutagenesis using primers 5′-ggctcagcaaggcctcttccaagtcccgggtcccag -3′ and 5′-

aagaggccttgctgagcc -3′. This mutated fragment was used as the left homologous arm. 

Another 1.0 KB fragment from intron 3 of the p130Cas gene was also amplified 20 cycles 

from genomic DNA as the right arm using primers 5′-ggtccca/deoxyU/

ggcattccaggagtggctgtg-3′ and 5′-ggcatag/deoxyU/gttcatctgtgtggggtgtggg-3′. The left and 

right homologous arms were cloned into pAAV-USER-Neo-LoxP vector using USER 

system as previously described. The targeting AAV viruses were packaged in 293T cells (a 

T75 flask at 70% confluence) by transfecting equal amounts of the targeting vector, pHelper 

and pRC plasmids (3 μg each). Viruses were harvested 72 hours post-transfection. DLD1 

and RKO cells were infected with the p130Cas knock-in targeting viruses and selected with 

geneticin for 20 days. The geneticin resistant clones were then screened for homologous 

recombination by 35 cycles of genomic PCR with primers derived from the neomycin 

resistance gene 5′-gttgtgcccagtcatagccg-3′ and the upstream region of the left homologous 

arm 5′-gggccacatggagcacgtacc -3′. Confirmatory genomic PCR was also performed with 

positive clones identified using primers derived from the neomycin resistant gene (5′-

tctggattcatcgactgtgg-3′) and the downstream region of the right homologous arm (5′-

gcatgggtgttcgtatctgtgg-3′). The DNA fragments from the screening PCRs were then 

sequenced to ensure the presence of the mutant Y128F alleles. In order to target the second 

allele with the same targeting virus, correctly targeted clones were infected with 

adenoviruses expressing the Cre-recombinase to delete the drug selection marker. To select 

clones with successful deletion of the drug selection marker, 30 cycles of genomic PCR 

were performed to amplify a ~200 bp genomic fragment in which the Lox P site was 

inserted (using primers 5′-cacgcagctgggagggcacgaag-3′ and 5′-ctctgggtccattcacatccatc 3′). 

The heterozygous KI clones were infected with the same targeting virus to target the second 

allele and the neomycin resistance gene was excised as described above.
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Colony formation assay

DLD1 and RKO cells were trypsinized, counted twice using a hemocytometer, and placed 

into 6-well plates at 200 cells per well. Cells were grown for 14 days before staining with 

Crystal Violet (Sigma, St. Louis, MO). The experiment was repeated three times with two 

replicates each. Average numbers of colonies from each experiment were plotted.

Focus Formation Assay in Soft agar

Soft agar assays were performed as described (43). Briefly, DLD1 and RKO clones were 

trypsinized, counted twice using a hemocytometer, and plated at 5000 cells/ml in top plugs 

consisting of 0.4% SeaPlaque agarose (FMC Bioproducts, Rockland, Maine) and McCoy’s 

5A medium. After 30 days, the colonies were photographed and counted. The experiment 

was repeated three times with two replicates each. Average numbers of colonies from each 

experiment were plotted.

Xenografts

Five million cells were injected subcutaneously and bilaterally into 4- to 6- week old female 

nude mice (5 nude mice in each group). Tumor formation and size were assessed by weekly 

caliper measurements of the length and width of the tumors. Tumor volumes were calculated 

using the formula: Volume = (width)2 × length/2. After 35 days, the mice were sacrificed 

and tumors were harvested.

Focal Adhesion Assay

Focal adhesion assay was performed using the Acitn Cytoskeleton and Focal Adhesion 

Staining Kit (Millipore) according to the manufacturer’s instructions. Briefly, cells were 

seeded on coverslips treated with Fibronectin. The next day, cells were fixed with 4% 

paraformaldehyde in 1X PBS for 15 mins and washed once. Cells were then permeabilized 

with 0.1% Triton X-100 in 1XPBS for 5 mins and washed twice. Cells were incubated in 

anti-Vinculin antibody (1:200 dilution) for 1 hour and followed by three washes. Cells were 

then incubated in Alexa 488-conjugated secondary antibody (1:400) and TRITC-conjugated 

Phalloidin (1:250) for 1 hour and were washed three times. Coverslips were mounted on a 

slide and were visualized under Zeiss LSM 510 Confocal Microscope.

Boyden Chamber Cell Migration Assay

Transwell membranes (pore size 8.0 μm; Corning Incorporated., Corning, NY) were coated 

with 50 μg/ml fibronectin. Cells were detached with 2 mM EDTA and re-suspended in 

serum-free medium with 0.1% of BSA. Five hundred thousand cells were added to the upper 

compartment of the transwell chamber in the wells of a 24-well plate and allowed to migrate 

to the underside of the inserts for 24 hours. Non-migrating cells on the upper membrane 

were removed with a cotton swab, and cells that had migrated and become attached to the 

bottom surface of the membranewere fixed and stained with crystal violet. Migrated cells 

were counted microscopically. The experiments were repeated three times with two 

replicates for each cell line. Average numbers of migrated cells from each experiment were 

plotted.
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Statistical Analysis

We applied the t test to compare the means between two groups assuming unequal 

variances. For xenograft-growth, we performed MANOVA analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification of potential substrates of PTPN14 using a phospho-proteomic approach
(A) Schematic diagram of a phospho-proteomic approach to identify potential substrates of 

PTPN14. Cell lysates were made from the parental SW480 CRC cells, stable clones 

expressing either a wild-type (WT) PTP domain or a PTPN14 D1079A trapping mutant PTP 

domain. Proteins were digested with trypsin and pY containing peptides were enriched by 

anti-pY antibody (pY100)-conjugated beads. Peptide mixtures were profiled by mass-

spectrometry. (B) List of the top candidate substrates of PTPN14. ND, not detected.
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Figure 2. Validation of p130Cas as a substrate of PTPN14
(A) Overexpression of WT PTPN14 PTP domain decreases p130Cas Y128 phosphorylation, 

whereas the trapping mutant enriches pY128 Cas in CRC cells. Cell lysates made from the 

cell lines used in Fig. 1 were blotted with the indicated antibodies. (B) Knock-down of 

PTPN14 leads to increased levels of pY128 Cas in CRC cells. Cell lysates from stable 

clones of DLD1 CRC cells expressing scramble shRNAs or shRNAs against PTPN14 were 

blotted with the indicated antibodies. N14-1 and N14-2 are two independent shRNAs against 

PTPN14. (C) A PTPN14 trapping mutant traps p130Cas protein. GST, GST-WT and GST-

D1079A trapping mutant PTPN14 PTP domains were expressed in E. Coli, purified and 

resolved on a SDS-PAGE gel (bottom panel). Arrow indicates the GST fusion proteins. 

Equal amounts of the purified protein were mixed with DLD1 cell lysates in the phosphatase 

trapping assay. The trapped p130Cas proteins were detected by Western blot (top panel). 

(D). PTPN14 dephosphorylates pY128 Cas in vitro. Phosphorylated p130Cas proteins were 

incubated with the indicated GST fusion proteins. The pY128 Cas proteins were quantified 

by Western blot analysis.
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Figure 3. SRC phosphorylates the Y128 residue of p130Cas
(A) SRC kinase inhibitor treatment down-regulates pY128 p130Cas. DLD1 cells were 

treated with the indicated concentrations of SRC inhibitor AZD0530. Cell lysates were 

blotted with the indicated antibodies. (B) Overexpression of SRC results in increased levels 

of pY128 p130Cas. HEK 293 cells were transfected with either a Myc-tagged SRC plasmid 

or an empty vector. Cell lysates were blotted with the indicated antibodies. (C) Knock-down 

of SRC down-regulates pY128 Cas in CRC cells. Cell lysates from stable clones of DLD1 

cells expressing scramble shRNAs or shRNAs against SRC were blotted with the indicated 

antibodies. SRC-1 and SRC-2 are two independent shRNAs against SRC. (D) CRC cells 

harboring high levels of pY128 Cas are more sensitive to SRC inhibitor Dasatinib-induced 

growth inhibition. The indicated CRC cell lines are treated with a serial concentration of 

Dasatinib. The IC50s of each cell line from three independent experiments are plotted. The 

levels of pY128 Cas in each cell line are quantified by Western blot analysis.
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Figure 4. Generation of p130Cas Y128F mutant knockin (KI) CRC cells
(A) Diagram of the KI construct. (B) Genomic sequences of the parental (WT), 

heterozygous (Het) and homozygous (Hom) KI cells. The rectangular boxes indicate codons 

for the Cas amino acid 128 position. (C) The parental (WT) and p130Cas Y128F 

homozygous KI CRC cells were serum-starved and stimulated with EGF. Cell lysates were 

blotted with the indicated antibodies.
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Figure 5. p130Cas Y128F mutant CRC cells are less tumorigenic in vitro
(A) p130Cas Y128F mutant CRC cells form fewer colonies. Cells from indicated clones 

were plated in 6-well plates in triplicates. Cells were grown for 14 days and stained with 

crystal violet. Colony numbers were counted and plotted for each of the clones. (B) p130Cas 

Y128F mutant CRC cells impair anchorage-independent growth. CRC cells of the indicated 

clones were mixed in 0.4% soft agar and plated in 6-well plates in triplicates. Cells were 

grown for 30 days. Colony foci were counted and plotted for each of the clones. * p < 

0.0001, t test. Het and Hom indicate the heterozygous and homozygous KI clones 

respectively.
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Figure 6. The RKO p130Cas Y128F mutant cells are less tumorigenic in vivo
Athymic nude mice were injected subcutaneously with cells from the indicated clones. 

Tumor sizes were measured weekly for 5 weeks. Mice were then sacrificed and tumors were 

harvested. (A) Tumors grown from the RKO clones. Each black rectangle indicates tumors 

harvested from a mouse. (B) Average sizes of the tumors formed by the indicated clones 

were plotted.
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Figure 7. Reduced AKT phosphorylation in the p130Cas Y128F mutant cells
(A) and (B) Parental and p130Cas Y128F mutant (KI) cells were serum-starved and 

stimulated with EGF for the indicated time. Cell lysates were blotted with the indicated 

antibodies. (C) The p130Cas Y128F mutant proteins show weaker binding affinity to p85. 

Cell lysates from either the parental or p130Cas Y128F mutant (KI) cells were 

immunoprecipitated with an anti-p130Cas antibody and blotted with the indicated 

antibodies.
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