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HIGHLIGHTS

e Using RNA-seq data of AML patients, two biomarkers including CD109 and LRP12 for the diagnostic significance were identified based on DEGs, GO/KEGG, and PPI
network analysis.

e The transcriptome mining unmasked the complexity of gene alterations in AML by identifying immune response related genes deregulation and significance of TCR
signalling.

o Several genes were identified as AML hub genes by network analysis, variant analysis identified non-synonymous variants in co-stimulatory checkpoint targets and
the co-inhibitory targets.

ARTICLE INFO ABSTRACT
Keywords: Acute Myeloid Leukemia (AML) is a heterogeneous disease with highest mortality compared to other types of leu-
Acute myeloid leukemia kemia. There is a need to find the gene abnormalities and mechanisms behind them due to their heterogenic nature.
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The present study is aimed to understand genes, pathways and biomarker proteins influenced by transcriptomic
deregulation due to AML. Differentially expressed gene (DEG), protein-protein interaction network, gene ontology,
KEGG pathway, variant analysis and secretome analyses were performed using different AML RNAseq datasets. A
total of 655 DEGs including 291 up-regulated and 364 down-regulated genes, which were satisfied with a fold change
of 1.5 were identified. Top hub genes for AML were identified as TP53, PTPRC and AKT1. This integrative bioin-
formatics approach revealed the deregulation of T Cell Receptor (TCR) pathway and altered immune response
related genes. The survival analysis revealed the associated deregulation of multiple TCR pathway related genes.
Variant analysisidentified the benign and likely benign nature of many important target genes and markers screened,
which were found to have an important role in the progression of AML. DEGs and secretome analysis found out a set
of seven molecules represents potential biomarkers for AML. In vitro analytical validation showed overexpression
pattern of CD109 and LRP12 in AML cell line and HL-60 cells than the normal human bone marrow-derived stromal
cell line HS-5. Here we report first time for CD109 and LRP12 as a possible biomarkers for the diagnostic significance.
Amino acid substitutions detected by variant analysis and deregulation of immune checkpoint molecules revealed
their role in reducing immune response and inability to fight cancer cells. In conclusion, this study highlights the
possibility of new biomarkers for AML and the mechanism of decrease in immune response due to the down-
regulation of co-stimulatory immune molecules, which needs further clinical validation investigations.

* Corresponding author.
** Corresponding author.
E-mail addresses: beutline.bioinfo@gmail.com (B. Malgija), prakash.vincent@msuniv.ac.in (S.G. Prakash Vincent).

https://doi.org/10.1016/j.heliyon.2022.e11123
Received 15 March 2022; Received in revised form 16 May 2022; Accepted 12 October 2022
2405-8440/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:beutline.bioinfo@gmail.com
mailto:prakash.vincent@msuniv.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e11123&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e11123
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.heliyon.2022.e11123

E.S. Deepak Shyl et al.

1. Introduction

The cancer therapeutic decision-making is largely dependent on
molecular pathway deregulations that guide as predictive biomarkers.
The Precision Medicine Initiative by National Cancer Institute (NCI) is
formed in 2015 aimed to scale up efforts to identify cancer genomic
drivers and apply that information in the development of more
effective approaches to cancer treatment. The heterogenic nature of
cancer needs attention to understand hinges on the development of
valid biomarkers interrogating key aberrant pathways potentially
targetable with molecular targeted or immunologic therapies [1].
Acute myeloid leukemia (AML) is a phenotypic and genetically het-
erogeneous disease, categorized by numerous genetic abnormalities
and gene mutations. AML is the most dominant form of leukemia in
neonatal and adult ages but signifies a small fraction of cases during
infancy and adolescence [2]. AML usually starts in the bone marrow,
but most often it quickly moves into the blood, as well. At times it can
spread to other parts of the body namely lymph nodes, spleen, liver,
central nervous system (brain and spinal cord), and testicles. AML
diagnosis is mainly based on bone marrow and peripheral blood
analysis. The pathophysiology of AML is not yet understood well at the
cellular and molecular level, and recently cytogenetic markers are the
most important for risk stratification and treatment of AML patients
[3]. Targeted sequencing approach has identified numerous mutations
that convey prognostic information, including gene mutations in FLT3,
NPM1, KIT, CEBPA, and TET2 [4]. Biomarkers play a progressively
vital role in the clinical management of cancer patients. World Health
Organization suggests that “A biomarker is any substance, structure or
process that can be measured in the body or its products and influence
or predict the incidence of outcome or disease” [5].

The genomic data richness and computational tools allow us to find
specific mutation, pathway deregulation switch and disease progres-
sion. Understanding genetic mutations are the important element of
AML. For example, mutation in the gene Nucleophosmin 1 (NPM1), a
nucleolar phosphoprotein that performs diverse biological functions
including molecular chaperoning, DNA repair, ribosome biogenesis,
and genome stability are one of the most frequent molecular abnor-
malities in AML in patients with a normal karyotype [6, 7]. Roughly
12% of AML patients with mutation in the tumour protein p53 (TP53),
which is involved in cell cycle arrest and apoptosis [8, 9]. Specific
diagnosis is made by immunophenotyping and cytochemistry search-
ing for myeloperoxidase activity in blasts or by immunophenotyping
surface markers like CD123, CD45, CD34, CD38 and others [10]. The
advent of new in-depth sequencing technologies necessitates the
detection of other molecular markers such as point mutations epige-
netic and proteomic profiles, have begun to play an important role. A
very recent report on transcriptome mining has predicted a novel AML
biomarker COMM domain-containing protein 7 (COMMD7) which is
involved in the regulation of NF-kappa B signalling [11, 12].

AML patients treated with rigorous chemotherapy, targeted ther-
apy or bone marrow transplantation improved survival [13]. However,
despite the understanding of its pathophysiology, mortality rates
remain high. For instance, in 2020 there were an estimated 60,530
new leukemia cases and 23,100 deaths in the unites states [14]. The
poor outcomes are due to late detection and lack of achieving com-
plete remission [15]. This difficulty insists the urgent need for diag-
nostic and prognostic markers identification from RNA-seq data. Rapid
improvements in high-throughput technologies and omics have led to
the identification of novel genetic abnormalities and diagnostic bio-
markers of AML. The purpose of the present study is to compare the
genes expression changes in AML against normal samples by using
statistical analysis and performing functional, pathway enrichment
network analyses and to gain insights on the impact of genetic vari-
ations on gene deregulation using variant analysis and protein-protein
network analysis.
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2. Materials and methods

2.1. Filtration, alignment, batch correction and differentially expressed gene
(DEG)

The AML RNA-seq samples used in the study were collected from
Sequence Read Archive (SRA) from four different bioprojects with
accession numbers PRJEB21548, PRINA428149, PRINA576867 and
PRJNA390519. Aligned reads and the count data was generated by STAR
alignment [16], sorted by SAM TOOLS [17] and the count data were
generated by HTSeq count [18]. To overcome the technical and biolog-
ical differences across different samples batch correction was done by
ComBat-seq [19]. In order to find the AML specific gene expression, it is
essential to find the genes that are differentially expressed than the
normal expression pattern. Differential expression was detected using
DESeq2. Rows with only zeroes, those with little to no information
regarding the amount of gene expression were removed. The magnitude
(log, transformed fold change) and significance (P-value) of differential
expression between AML and control were calculated. Genes with a fold
change one and false discovery rate (FDR) adjusted P-values <0.05 were
counted as differentially expressed. The detailed workflow of the present
work is given in Figure 1.

2.2. Protein-protein interaction (PPI) network analysis

To examine the interaction and hub genes of DEGs, protein-protein
interactomes were constructed using the STRING app of Cytoscape.
Network analyzer and CentiScape were used to analyze the topological
parameters of the network. Genes with a degree of connectivity >35 were
considered hub genes. MCODE module was used to extract the clusters
from the network, by setting a node cut-off 0.2 and K-core 2.

2.3. Functional annotation of DEGs

The unknown gene symbols were converted using g:convert from
g:profiler [20]. G:convert can convert between various gene, protein,
microarray probe, RNAseq and numerous other types of namespaces.
Functional enrichment was performed using multiple sources,
including FunRich, PANTHER, DAVID, VarElect and GeneAnalytics. In
GeneAnalytics, the unknown gene symbols were also converted
to their respective Ensembl IDs before analysis. Functional (GO,
pathway) and expression (Disease, tissue) information of the DEGs
were analysed.

2.4. Variant calling and analysis

The sorted bam file was further indexed by Tabix before the
accomplishment of variant calling by bcftools mplieup. For the
assessment of variation in the candidate genes and the potent
biomarker genes, the consensus sequence was produced by bcftools
consensus. Based on the consensus sequence and fasta file of GRch38,
the gene sequences for the screened DEGs were extracted. The variant
from AML and normal samples were merged in beftools, compared by
isec and the variants unique to AML were extracted and annotated in
ANNOVAR [21]. This annotates the variants with the RefSeq Genes
annotations with reference GRCh38 [22]. RefSeq gives information
about the type of mutation and the amino acid change when the
variation occurs in the coding region. The variant data of the screened
DEGs were analysed for their correlation with clinical impact using
Variant Interpretation for Cancer (VIC). VIC uses the pre-annotated
files and classifies sequence variants based on numerous criteria,
which helps to improve the interpretation on clinical impacts [23].
The functional impact of the amino acid substitution was assessed
based on SIFT, Polyphen2, FATHMM and Provean scores of the
non-synonymous SNVs.
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Figure 1. Workflow of the proposed study.

2.5. Survival analysis

The correlation of DEGs related to immune response with overall
survival was examined by Kaplan-Meier plotter. The overall survival
curves created using KM (Kaplan-Meier) method were produced by
reference to the median gene expression levels. We employed the 50%
quantiles of gene expression with 95% confidence interval as cut-offs for
the KM curves obtained by Leukemia Gene Atlas (LGA) (http://www.le
ukemia-gene-atlas.org/) which supports analysis of leukemic data.

2.6. In vitro analytical validation by western blot analysis

AML cell line and HL 60 cells and human bone marrow-derived
stromal cell line HS 5 were extracted after 90% confluence without
treatment. Total protein lysates were extracted using RIPA buffer sup-
plemented with 1% phenylmethylsulfonyl fluoride (PMSF). Protein
concentration was estimated by Bio-rad protein quantification solution.
After quantification, 40 pg of protein sample from each group was loaded
on SDS-PAGE (10-12%) at a constant 90 V and transferred onto PVDF
membrane (Milipore, Bedford, MA. 0.45 pm pore size) using Bio rad
transfer apparatus. Blots were then blocked in blocking buffer (5% milk,
20 mM Tris-HCI, pH 7.6, 150 mM NacCl, and 0.1% Tween 20). After TBST
washes, blots were incubated in primary antibodies overnight at 4 °C.
The immunoblots were rinsed three times in TBST buffer for 10 min each
rinse and then incubated in their respective secondary antibodies for 1 h
at RT. The membranes were then washed in TBS buffer for 10 min three
times. Blots were developed using ECL chemiluminescent reagent and
documented. ‘Image J’ software was used to quantify the expression

levels of proteins. Nuclear proteins were extracted using NE-PER® Nu-
clear and Cytoplasmic Extraction Reagents (Thermo Fisher Scientific, Inc.
Rockford, USA) according to the manufacturer’s instruction. The
following antibodies were used in this study: CD109 (#sc-271085 Santa
Cruz), LRP12 (#EPR9056 ab150352 Abcam) and GAPDH (6C5) (sc-
32233 Santa Cruz), all secondary antibodies (anti-rabbit and anti-mouse)
were purchased from Santa Cruz Biotechnology. All reagents were pur-
chased from Sigma.

3. Results
3.1. Identification of differentially expressed genes in AML

Publicly available AML specific RNA-seq datasets (Table S1) from SRA
database were downloaded and processed through standard pipeline and
utilized for the study. The normalized expression of each gene was
measured by FPKM (Fragments Per Kilobase of transcript per Million
mapped reads). We identified the DEGs among AML comparable to normal
samples using DEseq2 and detected 655 genes including 291 up-regulated
and 364 down-regulated genes, which were satisfied with a fold change of
1.5 and P-value < 0.05. The top ten up and down regulated genes are
depicted in Table 1.

3.2. Construction and analysis of PPI networks

To further investigate the molecular mechanism behind the pathogen-
esis of AML and interactive relationships among all DEGs, the DEGs from
each analysis were mapped separately to string database and the validated

Table 1. List of top deregulated genes identified using DEG analysis.

Sl. No Gene symbol Description Biological function Fold change P-value
EGFL7 EGF-Like Protein 7 Vasculogenesis regulation 2.99 0.00
2 MCL1 Myeloid Cell Leukemia 1 Cell survival 2.99 0.00
) IGHG1 Immunoglobulin Heavy Constant Gamma 1 Antigen binding 2.39 0.1
4 CD109 CD109 molecule Negative regulation of TGF-p signaling 2.38 0.00
5 GNA15 G Protein Subunit Alpha 15 Cell signal transduction 2.36 0.00
6 FAM30A Family With Sequence Similarity 30 Member A Cell migration 2.21 0.00
7 MEIS1 Meis Homeobox 1 Development, hematopoiesis 2.19 0.00
8 MAP7 Microtubule Associated Protein 7 Cell polarization and differentiation 2.15 0.00
9 SLC17A9 Solute Carrier Family 17 Member 9 Transport of small molecules 2.14 0.01
10 HSPG2 Heparan Sulfate Proteoglycan 2 Endothelial growth and regeneration, vascularization 2.14 0.00
11 CD3E CD3e molecule Immune response -2.74 0.05
12 GNLY Granulysin antimicrobial -2.74 0.01
13 1L32 Interleukin 32 Immune response -2.69 0.02
14 FGFBP2 Fibroblast Growth Factor Binding Protein 2 Immunity -2.55 0.01
15 FCMR Fc Fragment Of IgM Receptor Immune system processes -2.47 0.05
16 TCF7 Transcription Factor 7 natural killer cell and innate lymphoid cell development -2.47 0.00
17 TBX21 T-Box Transcription Factor 21 Developmental process regulation -2.44 0.00
18 CD2 CD2 molecule Optimize immune recognition -2.38 0.00
19 ZAP70 Zeta Chain Of T Cell Receptor Associated Protein Kinase 70 Immune response -2.32 0.01
20 IL2RB Interleukin 2 Receptor Subunit Beta Immune response -2.27 0.03
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Table 2. List of high-ranking genes identified using PPI network analysis.

Gene symbol Name Family Type of Expression Degree Occupancy in module
TP53 Tumour protein P53 TF Normal 56 Module VI
PTPRC Protein tyrosine phosphatase receptor type C Enzyme Normal 52 Module IIT
AKT1 AKT Serine/Threonine Kinase 1 Kinase Normal 51 Unclustered
ITGAM Integrin Subunit Alpha M Integrin Down 50 Module III
SYK Spleen Associated Tyrosine Kinase Kinase Normal 48 Module I
RPS27A Ribosomal Protein S27a Ribosomal protein Normal 48 Module I
LCK LCK Proto-Oncogene Src Family Tyrosine Kinase Down 48 Module I
UBA52 Ubiquitin-52 Amino Acid Fusion Protein Ubiquitin, ribosomal Normal 45 Module I
FYN FYN Proto-oncogene Src family tyr kinase Down 45 Modulel
JUN Jun Proto-Oncogene bZIP Up 44 Module X1

TF- Transcription factor; N-terminal section of UBA52 belongs to ubiquitin family and C-terminal to ribosomal protein el40 family.

interactions with the confidence score >0.7 were selected to construct the
protein-protein interaction (PPI) networks. The 655 DEGs were searched for
their biological interaction ability from String database and network was
created. Interactions that did not satisfy the above said cut-off were not
considered and the constructed network consists of 601 nodes and 1728
edges. The R-squared value of node degree distribution and topological
coefficients were found to be in acceptable range for the network. Clustering
coefficient resides another important parameter that renders knowledge on
the overall organization of the interconnections within a network. This
measures the extent to which a node gets clustered and this lies between
0 and 1, which was also observed to be in the preferable range. The genes
namely TP53, PTPRC, IL2, AKT1, ITGAM, SYK, RPS27A, LCK, FLT3, UBA52,
FYN, CD2, JUN, CD3D, CD28 and ZAP70 were identified as the hub genes
and the list of top ten genes with highest degree is displayed in Table 2.
Among the hub genes, most of the genes were found to be down-regulated.

3.3. Functional analysis of the network and significant module
identification

ClueGO analysis found out functional enrichment and GO terms is
shown in figure S1. Annotation of the significant genes in the network
showed that most of the genes share their localization in the membrane.
Moreover, the network mainly showed the enrichment of immune
response-related processes like lymphocyte, leukocyte activation and
positive regulation of T-cell receptor (TCR) signaling. The web view of
the constructed network and functional annotation can be assessed using
the URL: https://sites.google.com/view/acutemyeloidleukemia/home.

The main PPI network was further analysed for dense regions using
MCODE and was ranked according to the density and the number of
nodes. Modules with score >5 were assumed to play an important role in
the pathologic features of AML. MCODE generated 17 modules from the
PPI network; in which 4 clusters were filtered based on the preferred cut-
off (Table 3 and Figure 2). Different modules generated by the MCODE
clustering algorithm emphasized the deregulation of genes related to
immune response and T-cell receptor (TCR) signalling. Module 1 corre-
sponds to genes related to immune response and protein binding. SYK
was identified as the seed (highest scoring node) of the cluster. Most of
them were found to localize in the plasma membrane. The genes CD2,
CD3D, CD3E, CD8A, CD8B and IL6 corresponds to hematopoietic cell
lineage occupies the module I. Module II occupies the genes related to
platelet degranulation (GAS6, IGFBP7, LAMC1), Endoplasmic reticulum
(ER) to Golgi vesicle-mediated transport and cell adhesion (F5, GAS6,
SERPINAL). The functions enriched by Module IIT include TCR signalling,
protein ubiquitination and negative regulation of apoptosis. Most of the
genes in module III reside to locate in plasma membrane. Module IV is
enriched by interferon-gamma (INF-y) mediated signalling (OAS1, GBP1,
IRF2, HLA-F, HLA-DQB1, MT2A) and immune response (OAS1,
SAMHD1, LILRB2, HLA-F, HLA-DQB1). Most of the hub genes occupied

Table 3. MCODE modules of significant AML genes. Red and green denote the up
and down-regulated genes respectively. Grey represents their interactive part-
ners from STRING.

Module Network Score (S), Enriched function
Nodes (N) &
edges (E)
I S: 12.462 TCR signaling
N: 27 Protein binding
E:162 hematopoietic cell
lineage
I S:6.182 Platelet
N: 19 degranulation
E:113 Cell adhesion
ER to Golgi vesicle-
mediated transport
I S: 6.000 TCR signaling
N: 12 Protein
E:34 ubiquitination
Negative regulation
of apoptosis
v S: 5.556 INF-y mediated
N: 9 signaling
E:24 Immune response

different modules excluding TP53 and AKT1. Based on their importance
in the network 106 genes were screened for further studies.

3.4. Immune deregulation of T cell receptor pathway in AML

Functional annotation and pathway enrichment of the top DEGs were
performed following adjustment of the data set to exclude any changes
with a p-value of >0.05, gene ontology network pathway analysis of the
top up and down-regulated genes were carried out.

3.4.1. Functional enrichment
Investigation of Gene Ontology (GO) terms biological process and
molecular functions related to AML is depicted in Table S2. Go terms
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Figure 2. PPI network of the differentially expressed genes in AML. Red and

green nodes denote the up and down regulated genes respectively coloured
based on their Fold change. Grey denotes the interactive partners from String.

found out the matching of 104 genes to a total of 116 GO-Biological
process categories. The top hits with high scores include T cell receptor
(TCR) signalling pathway (score 41.44) with an alteration of 14 genes out
of 179. Similarly, 100 genes were matched with 31 GO-Molecular func-
tions. But only three terms possessed high scores: protein binding (score
48.61) with 93 genes out of total 11,207 genes. In terms of cellular
component 100 genes matched to 24 GO terms with the top hits of
plasma membrane (score 44.05). Functional enrichment using FunRich
also showed the enrichment of similar terms as displayed in Figure 3.

3.4.2. Finding disease causing likelihood genes from the screened genes

Translating the obtained result into significant discoveries by infer-
ring biological and clinical importance is an important step towards
analysing high-throughput RNA-seq data. Among the 106 symbols ob-
tained from the previous MCODE analysis, 64 were directly related and
42 symbols were indirectly related to AML. The strength of the connec-
tion between the gene highlights FLT3, RUNX1, ETV6, ATM, ZBTB16,
PAXS, CDK4, MYB, FANCA, MPO, CBFA2T3, PRF1, CSK, MCL1, CD38,
CDKN1A, CD8A, MEIS1, IL3RA, CD5, EZH2, ITGAM, IL3RA, MYB, MCL1,
LCK, CD4 and CDK®6 as the top genes. VarElect also predicted the average
disease-causing likelihood for each gene based on RVIS (Residual vari-
ation intolerance score) and GDI (Gene Damage Index). It is calculated
based on the principle that a variant in a gene with high mutation
intolerance is more likely to be disease-causing. This shows the genes
ZBTB16, CDK4, IL1B, JUN, CDK6, ETV6, ARHGEF1, AFDN, MYB, MVP,
PLK1, CD28, MEIS1 and MCL1 among the top-scoring genes (score >
200) has high disease-causing likelihood (>60%) ratio. The top genes
with indirect relations include BLK, PLCG1, CCR7, CD3E, GNA15,
CD247, MT2A, BIN1 and UBAS52.

3.4.3. Encoded protein class and KEGG pathway enrichment of DEGs in
AML

To further understand the proteins' function of the top DEGs, we
examined their protein classes using PANTHER [24]. Encoded proteins of
the screened genes were mainly distributed among defence/immunity
protein (PC00090), gene-specific transcriptional regulator (PC00264),
metabolite interconversion enzyme (PC00262), protein modifying
enzyme (PC00095), protein-binding activity modulator (PC00095) and
transmembrane signal receptor (PC00197). In addition, the number of
proteins associated with immune response, was high, which was
consistent with the GO analysis and DEGs identification analysis,
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suggesting immune response may play an important role in the patho-
genesis of AML.

Pathway enrichment of the significant genes using GeneAnalytics
uses data mined from PathCards (pathcards.genecards.org), which dis-
plays pathways as superpaths merged from twelve sources [25]. This
predicted 20 super pathways consistent with them and the top pathways
are depicted in Table 4. This shows the significance of genes related to
innate immune system, hematopoietic stem cells and lineage-specific
markers, TCR signaling, ICos-ICosL pathway in T-helper cell, Class-I
MHC mediated antigen processing and presentation, NF-kappaB
signaling, Th17 cell differentiation and GPCR pathway. The innate im-
mune system pathway presented the highest match score with 65 genes
(score 125.82), followed by haematopoietic stem cells and
lineage-specific markers (score 80.95) and T-cell receptor signalling
pathway (score 73.02) specific to AML.

3.4.4. Phenotypic and genetic relationships with the disease

The phenotypic abnormalities provided by Human phenotype
ontology (HPO) of DEGs from AML showed the phenotypic decrease
including T cell count, abnormality of the immune system and cellular
immune system morphology, abnormal lymphocyte and leukocyte
morphology and leukopenia (decreased WBC count) etc. Based on the
number of overlapping genes and the clinical significance of the gene-
disease relation, disease matching scores were obtained. The top gene-
disease relationship showed the association of many genes with leuke-
mia, especially acute myeloid and acute lymphoblastic. This also shows
the importance of structural variation and hence further recalculation
based on filtering found that mutation in the five genes FLT3, PAXS5,
ETV6, RUNX1 and MPO have their correlation with structural variation
in AML.

3.5. Variant analysis on immune checkpoint molecules of AML

The screened genes from DEGs and PPI network analysis were also
further subjected for analysis of variants. Detailed investigation on the
variants of immune checkpoint molecules were carried out due to their
importance by this study identified the amino acid substitutions at the
important domains which is shown in Figure 4, predicted as disease-
causing ability. This found the non-synonymous variants in co-
stimulatory checkpoint targets CD28, CD226, PVR (CD155) and the co-
inhibitory targets BTLA, LAG3, B7-H3 (CD276), CEACAM1, HAVCR2,
LGALS9, PD1, PDL1 (CD274) and TIGIT.

3.6. Validation by survival analysis

Survival analysis identified some genes related to immune response in
particular TCR signalling to be correlated with AML patient survival. Log-
rank overall survival curves showed that the gene expression pattern of
CD3D, CD3E, CD247, FYN, LCK, ZAP70, CD226, CD28 and TREML2 were
significantly associated with overall survival as depicted in Figure 5.

3.7. CD109 and LRP12 as possible biomarker prediction and validation

The cell surface protein products of the deregulated genes of AML
may withstand the external cell signaling mechanisms in AML and thus
should be further studied to determine their diagnostic and prognostic
value in the patients. The sequences of the significant cell surface pro-
teins extracted from the previous step of PPI networks were subjected to
secretome analysis by SignalP [26]. By analysing the DEGs localized in
the membrane, seven biomarkers including CD109, LRP12, EGFL7,
FURIN, GAS6, LDLR and MMRN1 were predicted to have the ability to
act as biomarker (Table 5). Based on databases and available literature
search, CD109 and LRP12 were predicted as possible biomarkers for AML
which is the first report from this study [27]. CD109 and LRP12 was
validated using KM survival analysis and were significantly associated
with overall survival as shown in Figure 5.
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Table 4. Top enriched super pathways of AML significant genes using GeneAnalytics.

S.No  Pathway Score Matched genes Important gene symbols
(Total genes)
1. Innate Immune System 125.82 65 (2124) RASAL3, EVL, FGRFLT3, FOS, TNRC6C, IL1B, IL32, RORA, KLRB1, KLRD1, OAS1, RASA3, CAMK4,
IGHG1, PSTPIP1CD28, LCK, CSK, PIK3CD, CD8B, IL12RB1, IL18, IL7R, GNLY, ITGB7, CD79B, ITK,
CD14, DUSP16, BIN2, STK10, CCL5, HLADQB1, FCGR3A, CARD11, HLAF, YES1, ZBP1, CDKN1A,
GBP5, GZMM, ZAP70, CD3E, RASGRP1, CD300E, CD247, CLEC2D, SOCS3, PLCG1, JUN, FCN1, IL3RA,
SIGLEC10, CD4, ITGAL, FYN, CD3D, VNNI1, LTF, IGHG3.TRAC, MCL1
2. Hematopoietic stem cells & lineage- 80.95 20 (116) FLT3, KLRB1, CD28, MS4A1, SLAMF1, CCR7, CD2, ITGAM, IL2RB, MPO, IL7R, CDS, CD8A, CD69,
specific markers CD79B, CD14, CD3E, LY9, CD226, IL3RA, CD38, CD4, ITGAL
3. T Cell receptor signalling pathway 73.02 21 (183) FOS, IL1B, PSTPIP1, CD28, GRAP2, LCK, PIK3CD, CD8B, FYB1, BATF, CD8A, ITK, CARD11, ZAP70,
CD3E, RASGRP1, GAB2, CD247, PLCG1, CDK4, TEC, JUN, SKAP1, CD4, FYN, CD3D, MAP4K1
4. TCR signalling in Naive CD4" T cells ~ 72.55 16 (66) CD28, GRAP2, LCK, CSK, CD8B, PAG1, FYB1, CD8A, ITK, PRF1, CARD11, ZAP70, CD3E, RASGRP1,
GAB2, CD247, PLCG1, CD4, FYN, CD3D, MAP4K1
5. ICos-ICosL pathway in T-Helper cell 72.28 19 (131) FOS, CD28.GRAP2, LCK, CSK, IL2RB, SYK, IL2, PTPRC, ITK, HLA-DQB1, ZAP70, CD3E, CD247, PLCG1,
JUN, CD4, FYN, CD3D
6. Class I MHC mediated antigen 72.19 34 (823) KLRB1, BTBD6, CD28, GRAP2, LCK, CSK, CD8B, LILRB2, ZBTB16, UBA52, SYK, BLK, PTPRC, LMO7,
processing and presentation RNF213, CD8A, ITK, HLA-DQB1, HLA-F, CDKN1AZAP70, CD3E, ZNRF1, RPS27A, CD247, PLCG1, EGF,
SH3RF1, KCTD7, CD4, ITGAL, FYN, CD3D
7. NF-kappaB signaling 68.72 24 (327) IL1B, OAS1, CD28, LCKGZMB, CD2, ZBTB16, IL2RB, MPO, MYB, SYKBLK, IL2, PTPRC, RUNX1, CD8A,
ITK, ZAP70, TBX21, CDBE, SOCS3, PAXS, IRF2, CD38
8. Th17 cell differentiation 66.63 19 (162) FOS, IL1B, CD28, LCK, IL6, IL2RB, IL2, RUNX1, HLADQB1, ZAP70, TBX21, CD3E, CD247, SOCS3,
PLCG1, JUN, CD4, CD3D, MCL1
9. NFAT in Immune response 61.77 18 (162) FOS, CD28, GRAP2, LCK, UBA52, SYK, PTPRC, ITK, ZAP70, CD3E, CD247, PLCG1, JUN, CD4, FYN,
CD3D
10. GPCR pathway 60.45 29 (712) FLT3, FOS, ARHGEF1, CD28, LCK, CSK, IL6, IGF2R, ITGAM, SYK, GASO, IL2, ITK, P2RY1, HLA-DQBI,
CDKNIA, GNA15, ZAP70, CD3E, E2F1, CD247, PLCG1, EGF, CDK4, JUN, CD4, ITGAL, FYN, CD3D
11. Hematopoietic cell lineage 58.10 15 (99) FLT3, IL1B, CD8B, IL6, CD2, ITGAM, IL7R, CD5, CD8A, HLA-DQB1, CD3E, IL3RA, CD38, CD4, CD3D
12. Cytokine signalling in immune 57.97 29 (760) FLT3, FOS, IL1B, OAS1, LCK, CSK, IL6, ITGAM, UBA52, IL2RB, GBP1, SYK, MT2A, 112, IL7R, SAMHD1,
system HLADQB1, HLAF, CDKN1A, GBP5, RPS27A, SOCS3, PLCGI, EGF, IRF2, IL3RA, CD4, FYN, MCL1
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Figure 4. Deleterious mutations observed in immune checkpoint molecules. Grey color regions (in TIGIT and BTLA) display mutation other than domain regions.
CD276, CLEC4G, PVR, LAG3 and LGALS3 show substitutions in their domain region.
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Figure 5. Kaplan-Meier survival curves of the DEGs related to TCR signaling. CD3D, CD3E, CD247, FYN, LCK, ZAP70, CD226, CD28. TREML2, CD109 and LRP12 are
shown. TPM-transcripts per million. HR- Hazards score, which is calculated based on Cox model.
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Table 5. Identified candidate biomarkers of Acute Myeloid Leukemia.

SL Gene Description Subcellular localization
No
1 CD109 Cluster of Differentiation 109 Plasma membrane
2 LRP12 LDLR-related protein 12 Plasma membrane
3 FURIN Furin, Membrane Associated Extracellular
Receptor Protein
4 GAS6 Growth arrest specific 6 Extracellular
5 LDLR Low-density lipoprotein receptor External side of plasma
membrane
EGFL7 Epithelial growth factor-like 7 Extracellular
MMRN1  Multimerin 1 Extracellular

3.8. CD109 and LRP 12 expressions were demonstrated by western blot
analysis

The western blot results showed CD109 and LRP12 proteins expres-
sion were upregulated in HL60 cells from normal cell HS5 (Figure 6).
Images of the uncropped original western blot are provided in Supple-
mentary Figure S2.

4. Discussion

Despite the fact that, alteration in immune system and immune-
related components have been identified as one of the hallmarks of
cancer and the effect of immune microenvironment in survival and
response to treatment in solid tumours, their impact on leukemia is not
known fully [28, 29]. Here, we compared the gene expression profiles of
AML and normal samples to assess their differential expression in cases of
haematological malignancies particularly, AML. AML is considered a
heterogenous genomic landscape caused due to numerous genetic mod-
ifications, making disease classification and management complicated
[2]. Even though studies reported significant genes in AML, their relation
to pathogenesis and prognosis has not been completely elucidated. Hence
an integrative analysis based on multi-genomic data is essential to
determine the relationship between specific genes and cancer progres-
sion. By mining the high throughput RNA-Seq data the significantly
differentially expressed genes were identified.

In order to investigate the molecular mechanism behind the patho-
genesis of AML, our data revealed a total of 655 DEGs with up-regulated
and down-regulated genes. EGFL7, MCL1, IGHG1, CD109 and GNA15
were the top five upregulated genes and CD3E, GNLY, IL32, FGFBP2 and

a) b)
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2
2
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o
£
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FCMR were found to be the top five downregulated genes. This highlights
CD109, a glycosylphosphatidylinositol (GPI)-anchored protein, which
was recently reported its association with different tumor entities and a
possible future diagnostic marker linked to reduced patient survival.
Also, different cell signalling pathways including the TGFp, JAK-STATS3,
YAP/TAZ, and EGFR/AKT/mTOR were proposed as targets for CD109
interference pathways [30, 31, 32]. The present study reveals the CD109
as a possible biomarker for AML. The interactive relationships among all
DEGs by protein-protein interaction (PPI) network found out sixteen
genes with up or down regulation pattern with TP53, PTPRC and AKT1 as
top three hub genes. Here, TP53 mutation is detected in up to 75% of
patients, while patients who harbor co-occurring mutations show a lower
incidence of mutations in several AML-related genes such as NPM1,
FLT3, IDH1, IDH2, WT1, DNMT3A, RUNX1, and RAS [33, 34]. Protein
tyrosine phosphatase receptor type C (PTPRC), a subgroup of Protein
tyrosine phosphatases, which plays a major role in regulation of
cell-signalling and controls cell growth, differentiation, apoptosis, sur-
vival, migration and invasion [35] was majorly altered in the AML which
is an essential regulator of T and B cell antigen receptor-mediated acti-
vation [36]. A recent report by Saint-Paul et al found that PTPRC also
known as CD45 is involved in the progression of AML through modifi-
cation in plasma membrane bound lipid rafts, cholesterol and glyco-
sphingo lipid enriched patches which is correlated from our results [37].

To gain a better understanding of the underlying biological functions
and pathways associated with AML gene signature, we utilized ClueGO
[38], which is a functional gene ontology analysis tool that integrates
several gene-set enrichment databases, including KEGG, REACTOME
pathway database annotations, and the GO consortium database, to
create a comprehensive GO/pathway term network. Further PPI network
with MCODE screened out 106 DEGs including genes related to immune
response and T-cell receptor (TCR) signalling for AML. Likewise, Han
et al. (2020) reported top three hub genes of PPI network of FANCI,
POSTN, IFIH1, ZMYND10, PACRG and POU2AF1 for nasopharyngeal
carcinoma biomarkers using STRING database PPI network construction
with MCODE for module analysis [39]. In the present study, the number
of proteins associated with immune response, was high, which was
consistent with the GO analysis and DEGs identification analysis, sug-
gesting immune response may play an important role in the pathogenesis
of AML.

Further, GeneAnalytics predicted twenty super pathways and the
innate immune system pathway presented the highest match score top
pathway. Current researches in cancer mainly focus on the identification
of mechanisms that inhibit the binding of T cells with its ligands, stim-
ulating tolerance induction, which permits the positioning of T cells to
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dede s 600
* %%
I - ; 1

S 400- —
2 —
£ —
S —
E 200 g
E =

D H O O
Q\%Q{bb‘b

5 5 S &
R N

Q‘V ‘b\/

Figure 6. CD109 and LRP12 are overexpressed/upregulated in HL60 acute myeloid leukaemia (AML) cell line compared to human bone marrow-derived stromal cell
line HS-5, in vitro. a) Representative western blots of CD109 and LRP12 expression; b and c) shows the protein expression of CD109 and LRP12 in HS-5 and HL-60 cells
from the western blot quantifications, normalized to GAPDH. ***p < 0.001 compared with the control group.
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fight against the cancer cells. The activation of T cell involves several
extracellular stimulatory molecules mediated primarily by TCR complex
and precise T cell regulation is essential for maintaining immune ho-
meostasis [40]. TCR complex containing TCR a/p chains, a CD3E chain
and a CD3 co-receptor, associated through hydrophobic interactions has
a tightly controlled assembly and expression within cells [41]. CD3E is an
essential part of the TCR signalling pathway and its downregulation has
been reported in several conditions associated with inflammation [42].
Studies reported the association of CD3E levels with T-cell response and
proliferation [42, 43]. Low CD3E leads to reduced immune responses
including a decrease in cell proliferation and cytokine production [44].
Mutation in TRAC (T cell receptor o constant) gene impairs surface
expression of TCR aff complex [45]. As most of the genes downstream of
TRAC were found to be down-regulated, we believe that it might be due to
the lack of surface expression of TCR af due to mutation in TRAC gene.
Hence, we searched for its mutation specific to AML from the variant data,
which found a synonymous mutation at position 81 (i.e., I811I) of the amino
acid sequence. This queries whether this mutation affects downstream
phosphorylation events as a single synonymous mutation prevents phos-
phorylation and decides stability of TP53, a tumor suppressor gene [46].
Downregulation of genes involving TCR signalling, also insists to search
for the factors which impair the interaction of the antigen-presenting cells
with the T-cell and affects T-cell activation. A decrease in expression of MHC
molecules suggests a lack of antigen presentation to the T cells. Naive T-cell
activation involves the stimulation of TCR by an MHC-peptide complex and
co-stimulatory signalling by co-stimulatory receptors with their respective
ligands on antigen-presenting cells (APCs) [47]. T-cell co-signalling re-
ceptors (immune checkpoints) either positively (co-stimulatory) or nega-
tively (co-inhibitory) regulate TCR driven signals, thus activating T-cell. As
these receptors play a vital role in T-cell biology, the expression of these
co-receptors and their ligands are firmly controlled in T-cells and the tissue
micro-environment [48]. Effective T-cell activation needs both TCR stim-
ulation and co-stimulation by checkpoint proteins. The co-stimulatory
proteins CD28 and CD226 were found to be downregulated in the present
findings analysed by DEGs, PPI network and variant analysis. CD28, the
major costimulatory receptor for T-cell activation affects the expression of
some genes varied by TCR stimulation alone. CD28 signalling enhances the
expression of CD226 [49], suggesting lack of CD28 expression might have
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reduced the expression of CD226. The decrease in CD28 might be due to the
competence of an inhibitory checkpoint molecule CTLA-4, which shares the
common B7-related ligands CD80 and CD86. Also, the affinity of CTLA-4
with B7 is greater than that of CD28 with B7, which allows CTLA-4 to
outcompete and inhibit co-stimulatory CD28/B7 interactions [50]. Another
study reported the decreased expression of immune checkpoint receptors in
AML compared to other types of leukaemia which coincides with our results
too [51]. However, they noticed varied immunologic phenomena in
different AML patients. Overall, this study identified the decreased
expression of immune response-related genes, suggesting the incapability of
the normal functioning of immune system in AML.

Survival analysis revealed the association of deregulated genes
related to TCR signalling with poor overall survival. ZAP70 has been
reported to have a significant association with poor overall survival in
chronic lymphocytic leukaemia [52, 53]. Okamoto et al. [52], and
Robinson et al. [54], suggested the involvement of Src family kinases
especially LYN and LCK in FLT3-induced cell survival. Our analysis also
shows the involvement of Src kinases LCK and FYN in poor clinical
outcomes of AML patients. Low CD3D expression was correlated with
increasing clinical stage in colon adenocarcinoma and its increased
expression showed better clinical outcome [55]. Lower CD226 and high
TIGIT may predict poor prognosis in AML patients and the imbalance in
TIGIT/CD226 axis may be the immune checkpoint barrier responsible for
T-cell immune dysfunction [56]. Li et al. [57], reported the reduced
survival time in correlation with high TREML2 (aka. TLT2). In contrast,
our study showed a slight decrease in expression of TREML2, which too
correlated with a poor survival rate.

As the immune response is found to be downregulated in our study,
aiming to gain further insights regarding the lack of T-cell activation, we
searched for the exonic variants specific to AML associated with the
immune checkpoint molecules responsible for T-cell activation. This
found the non-synonymous variants in co-stimulatory checkpoint targets
CD28, CD226, PVR (CD155) and the co-inhibitory targets BTLA, LAG3,
B7-H3 (CD276), CEACAM1, HAVCR2, LGALS9, PD1, PDL1 (CD274),
TIGIT. Based on the results we proposed a mechanism of T cell activation
in AML (Figure 7), discussed below as depicted. Analysing possible
impact of the identified amino acid changes on their structure and
function predicted the variants associated with BTLA, B7-H3, CLECA4G,

S —
Lack of Immune
Response

Figure 7. Proposed model of Co-stimulatory and Co-inhibitory immune checkpoint molecules in AML. The mechanism is activated by the presentation of antigen (Red
circle) by MHC-II of the APC/tumour cells to the TCR of T cell. Other co-regulatory interactions occur simultaneously as depicted. The down regulated genes are
labelled white (CD28, CD226 and TLT2) and red label denotes those which show deleterious mutation in the domain region. CTLA-4 competes with CD28, thereby
sending negative signals. Mutation in the domain regions of B7-H3 might disrupt its interaction with TLT2. Hence all the positive signals might be prohibited and

activation of negative signals resulting in inhibition of immune response.
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LAG3, LGALS3, PVR and TIGIT to be disease-causing. Further investi-
gation revealed the amino acid substitutions in domain regions of B7-H3,
CLEC4G, LAG3, LGALS3 and PVR. Only a synonymous variant V65V
(coded by C195T) was observed in CD28. B7-H3, a type I transmembrane
protein is believed to express on immune cells playing a co-stimulatory
role, but their function on immune cells is unclear [58, 59]. More than
20 variants were observed for the gene and three amino acid sub-
stitutions namely D159N (n.G475A), D231IN (n.G691A) and D377N
(n.G1129A) in various domains were predicted deleterious. Hashiguchi
et al. [60, 61] reported TLT2 (Trem-like transcript 2; TREML2) as the
binding partner of B7-H3, however, no others studies have not yet
confirmed it. Downregulation of TLT2 might be due to the inability of the
ligand to recognize the receptor B7-H3, because of the substitutions in its
Ig-like type 1 and 2 domains. Comparatively, numerous variations have
been observed for B7-H3 in our study, which might disturb its folding
pattern and function thereby limiting our knowledge in finding its perfect
ligand. Lymphocyte activation gene 3 (LAG3; CD223) is a co-inhibitory
molecule expressed on activated T-cells, Tregs, NK cells, B cells and
dendritic cells [62]. Structurally, LAG3 resembles a CD4 co-receptor
nevertheless, interacts it with MHC-II with increased affinity than CD4.
LSECtin, an alternative ligand of LAG3 regulates LAG3 expressing CD8 T
cells and NK cells. Moreover, enhanced expression of LAG3 on CD8 T
cells reveals their dysfunction in anti-tumour activity, thus being an
important target for blocking checkpoint in cancer immunotherapy [63].
A non-synonymous mutation (N250Y) in exon 4 of LAG3 residing in the
region of its interaction with FGL1 was observed. Change in residue
occupying the immunoglobulin-like domain, observed in B7-H3, LAG3
and PVR which might disturb their interaction with respective binding
molecules, an Ig-like domain usually requires its intact domain for
binding with another molecule. We observed a non-synonymous muta-
tion namely A562G corresponding to T188A at the Ig-2 domain of
CD226. As this domain generally interacts with the ligand of CD226
during T-cell activation, the introduction of the hydrophobic residue
might disturb this interaction.

Currently, most of the blood clinical tests are based on secreted
proteins, which can be used as diagnostic or prognostic markers. By
analysing the DEGs localized in the extracellular region, CD109, LRP12,
EGFL7, FURIN, GAS6, LDLR and MMRN1 were predicted to have the
ability to act as biomarker because of their secretory role. Studies re-
ported the identified biomarkers to have their role in AML survival.
EGFL7, a secreted angiogenic factor as a biomarker coincides with study
by Cheng et al. [64], highlighting the poor prognosis with increased
EGFL7 expression in AML. FURIN, a potential oncogene can target
several oncogenic pathways simultaneously, which would be beneficial
in improving the efficiency of cancer treatments. Increased expression of
Gasb6 correlates with shorter overall survival in AML patients [65, 66].
MMRN1 had also been suggested as a predictive biomarker in AML.
LDLRs (Low-density lipoprotein receptors) showed altered expression in
several cancers including leukemia [64, 67]. Floeth et al. [68] anticipated
the contribution of LDLR in chemotherapy resistance and suggested it to
be an independent adverse prognostic factor in AML. Orentas et al. [69]
reported the increased expression of LRP12, another Low-density lipo-
protein in pediatric lymphoid leukemia [70]. However, no studies re-
ported their overexpression in AML to our knowledge. Our in vitro
analytical validation was carried out in AML cell line and HL 60 cells and
human bone marrow-derived stromal cell line HS 5 which are routinely
used for the study of AML [71, 72]. HL-60 was studied and characterized
previously for Acute myeloid leukemia studies and the expression of
pattern of CD109 and LRP12 could confirm its validation. The western
blots of CD109 and LRP12 expression confirms the protein expression of
CD109 and LRP12 in HL-60 is higher than HS-5 and cells which was
normalized to GAPDH. CD109, a negative regulator of TGF-f signalling is
a possible prognostic biomarker in epithelioid sarcoma [73] and penile
squamous cell carcinoma [74]. However, no studies reported the
biomarker potential of CD109, LRP12 in AML. Thus, revealing novel
biomarkers may contribute to better understanding the molecular basis
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of AML, which may play an essential role in the diagnosis of AML,
leukaemia residual monitoring, prognostic stratification, as well as the
possibility of targeted drug development. However, the limitation of the
present study is the small sample size of RNA-seq. To ensure greater
reliability of the present observations and assumptions, the sample
should be expanded for further research in the future. Clinical samples
and experimental validation should be utilized to verify the prognostic
predictive role of CD109 and LRP12 mRNA and protein in AML.

5. Conclusion

In conclusion, this study addressed the genes and pathways involved
in the transcriptomic deregulations due to AML. Various bioinformatic
tools have been utilized to mining the transcriptomes for DEGs, PPI
networks, gene ontology, KEGG pathway, variant analysis and secretome
analyses to unmask the heterogenic nature of AML. Deregulation of genes
related to immune response in particular TCR signalling pathway is
found to be emphasized based on pathway, network and functional an-
alyses. TP53, PTPRC and AKT1 were identified as top three hub genes for
AML. CD109, LRP12, EGFL7, FURIN, GAS6, LDLR, MMRN1 and PTK7
were predicted to have the ability to act as possible biomarkers based on
their secretory function from our study. Moreover, this study emphasizes
the significance of the genes CD3D, CD3E, CD247, FYN, LCK, ZAP70,
CD226, CD28 and TREML2 were associated with overall survival. The
study revealed the mechanism of decrease in immune response due to the
downregulation of co-stimulatory immune molecules, whereas no alter-
ation was observed in co-inhibitory molecules thus affecting the main-
tenance of proper immune homeostasis in AML. Further studies on these
mutations and their impact on interaction with respective partners and a
detailed understanding of these mechanisms in combination with
advanced therapeutic approaches will be beneficial in designing poten-
tial clinical applications for AML.
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