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The evolution of cancer genomes within a single tumor creates mixed cell populations with divergent somatic mutational
landscapes. Inference of tumor subpopulations has been disproportionately focused on the assessment of somatic point
mutations, whereas computational methods targeting evolutionary dynamics of copy number alterations (CNA) and loss
of heterozygosity (LOH) in whole-genome sequencing data remain underdeveloped. We present a novel probabilistic
model, TITAN, to infer CNA and LOH events while accounting for mixtures of cell populations, thereby estimating the
proportion of cells harboring each event. We evaluate TITAN on idealized mixtures, simulating clonal populations from
whole-genome sequences taken from genomically heterogeneous ovarian tumor sites collected from the same patient. In
addition, we show in 23 whole genomes of breast tumors that the inference of CNA and LOH using TITAN critically
informs population structure and the nature of the evolving cancer genome. Finally, we experimentally validated sub-
clonal predictions using fluorescence in situ hybridization (FISH) and single-cell sequencing from an ovarian cancer
patient sample, thereby recapitulating the key modeling assumptions of TITAN.

[Supplemental material is available for this article.]

Tumor progression follows the principles of clonal evolution

(Nowell 1976). Accumulation of genomic alterations is patterned

by phylogenetic branching, creating a substrate for natural selec-

tion. Invariably, this leads to the emergence of distinct cell populations

(clones) with divergent genotypes and associated phenotypes

(Aparicio andCaldas 2013). Here, we define a clone as a population

of cells related by descent from a unitary origin and uniquely

identified by the complement of fixed genetic marks comprising

its clonal genotype. Genetic marks can consist of somatic muta-

tions such as point mutations, genome rearrangements, copy

number alterations (CNA), and loss of heterozygosity (LOH), of

which CNA and LOH are the focus of this study. We define the

cellular prevalence of a somatic mutation as the proportion of cells

harboring an aberration in the overall (bulk) tumor cell population

(Aparicio and Caldas 2013). Cellular prevalence can be measured

approximately through sequencing a bulk sample, ormore precisely

in independent analysis of single cells (Navin et al. 2011). The dy-

namics of cellular prevalence of a mutation are reflective of growth

(dis)advantages in the presence of treatment or microenvironment-

induced selective pressures and are thus a useful indicator of the

biology underpinning tumor progression.

The clonal evolution theory implies that extant clones are

related genetically through a phylogenetic tree. In suchpopulation

structures, cellular prevalence of a genetic alteration is generally

a function of its evolutionary timing: High-prevalence mutations

are acquired earlier than low-prevalence mutations. Thus, ances-

tralmutations are found at the root of the tree, whereas descendent

mutations are situated toward the leaves. We explored the result-

ing patterns of alterations acquired after expansion of the ancestral

clone, which generates three types of cells in a tumor sample: nor-

mal (nonmalignant) cells, tumor cells harboring the alteration, and

tumor cells without the alteration. This concept applies to all forms

of genomic aberrations, including CNA and LOH, despite a dispro-

portionate emphasis onpointmutations in the literature (Shah et al.

2009, 2012; Ding et al. 2012; Gerstung et al. 2012; Cibulskis et al.

2013; Landau et al. 2013; Larson and Fridley 2013; Roth et al. 2014).
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Indeed, tumorswith diverse intratumoral patterns of CNA and LOH

have been described in breast (Navin et al. 2011; Nik-Zainal et al.

2012), ovarian (Bashashati et al. 2013), renal (Gerlinger et al. 2012,

2014), and brain tumors (Sottoriva et al. 2013).

Whole-exome (WES) and -genome (WGS) sequencing of a

single biopsy are emerging as the dominant experimental designs

in large cohort studies of tumor genomic landscapes, with con-

sortia such as the International Cancer Genome Consortium

(ICGC) poised to generate on the order of 10,000 tumor-normal

WGS libraries in the next few years (The International Cancer

Genome Consortium 2010). Characterization of clonal popula-

tions from such data sets has been primarily focused on point

mutations, which require targeted deep sequencing. Measuring

cellular prevalences of CNA and LOH presents unique challenges

because these events can span megabases, rendering targeted deep

sequencing of alleles infeasible. Moreover, heterogeneousmixtures

of cells in tumor biopsies present a major limitation in accurate

interpretation of WGS data. CNA and LOH events present in only

minor cell populations will have diminished statistical signals and

thus are susceptible to false negative detection. Figure 1 depicts the

observed read depth (top track) and allelic ratios (middle track) from

subclonal deletions (Deletion I and III) and a high-prevalence clonal

deletion (Deletion II), illustrating the distinct statistical signals

arising from differences in cellular prevalence (bottom track). The

degree to which CNA and LOH contribute to the inference of evo-

lutionary dynamics cannot be estimated using the most current

standard approaches. Methods for robust computationalmodels of

statistical signals emitted from multiple cell populations within

a single tumor sample are therefore underdeveloped and represent

a deficiency in the cancer genomics literature.

We developed a novel probabilistic model called TITAN. The

model simultaneously infers CNA and LOH segments from read

depth and digital allele ratios at germline heterozygous SNP loci

across the genome from tumor WGS data. For each alteration, we

assume the event is segregated into the underlying population of

three different cell types: normal cells, tumor cells containing the

event, and tumor cells without the event (Fig. 2A).We estimate the

cellular prevalence of the CNA/LOH with the assumption that co-

occurring events will be represented in the same clones, resulting

from ‘‘punctuated’’ clonal expansions (Navin et al. 2011; Greaves

and Maley 2012). This motivates a clustering paradigm for statis-

tical inference, allowing for increased power to detectweaker signals

in the data across multiple loci and to distinguish sets of events at

different cellular prevalences (Fig. 1). We integrated this approach

Figure 1. Detection of subclonal deletions in whole-genome sequencing data of a triple negative breast cancer genome. Copy number is represented
as the log ratio of tumor and normal read depth. Discrete copy number status shown is predicted as a hemizygous deletion (HEMD; green), copy neutral
(NEUT; blue), or gain/amplification (AMP; red). Allelic ratios are computed as the proportion of reads matching the reference genome. The LOH status
shown is heterozygous (HET; gray), LOH (green), copy neutral LOH (NLOH; blue), or allele-specific gain/amplification (ASCNA; red). Subclonal deletions
are observed to have a weaker log ratio signal that is closer to zero and shows less spreading in allelic ratios (Deletion I) compared to clonal deletions
(Deletion II); the sample cellular prevalence estimates (proportion of sample) for ‘‘Deletion I’’ indicate it is in a subclonal cluster ‘‘Z2.’’ ‘‘Deletion I’’ and
‘‘Deletion III’’ are clustered into the same subclonal cluster because they share similar signals, and therefore the same cellular prevalence in the data.
‘‘Deletion II’’ is present in all tumor cells, indicated by being in the clonal cluster ‘‘Z1.’’ Tumor cellularity of 84% (normal contamination of 16%) is denoted
with a black horizontal line. The average tumor ploidy (haploid coverage factor) was estimated as 1.66 by genome-wide analysis (right). The log ratio and
symmetric allelic ratio (max(reference reads, variant reads)/depth) for Gaussian kernel densities are shown for all deletions on Chr 2.
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in a generative, factorial hiddenMarkovmodel (HMM) framework.

The approach borrows statistical strength across adjacent genomic

loci induced by segmental CNA and LOH events spanning multi-

ple contiguous SNPs (Methods).

Our approach is distinct from related methods in the litera-

ture. Methods such as APOLLOH (Ha et al. 2012) and Control-

FREEC (Boeva et al. 2012)model normal contamination fromWGS

of tumors, but do not jointly infer CNA and LOH in a unified

statistical approach, nor do they explicitly account for multiple

tumor subpopulations. SNP genotyping array-based methods, such

as OncoSNP (Yau et al. 2010), analyze CNA while accounting for

intratumoral heterogeneity in cancer samples but cannot be directly

applied to WGS data. Recently developed approaches, ABSOLUTE

(Carter et al. 2012) and THetA (Oesper et al. 2013), were designed

with the aim of predicting subclonal CNA events specifically for

tumor sequencing data. However, neither tool uses a complete

model that provides segmentation analysis. Moreover, THetA an-

alyzes subclonal CNA in the absence of allelic ratios, which results

in the omission of LOH and allelic imbalance. Finally, OncoSNP-

seq (Yau 2013) accounts for mixed populations in WGS data but

does notmodel distinct clonal populations in a clustering approach,

which is characteristic of punctuated expansions.

We present a rigorous evaluation of TITAN including: (1)

single-cell sequencing and fluorescence in situ hybridization (FISH)

experimental validation of predictions on WGS data from a high-

grade serous ovarian tumor; (2) systematically engineered in silico

Figure 2. Description of the TITAN probabilistic framework. (A) Representation of the aggregate copy number signal from mixed populations in
a heterogeneous tumor sample. c is the aggregate signal that is composed of three components: normal population (white circles), tumor populations
with the deletion (green decagons) and without the event (blue decagons). n is the normal proportion; sz is the tumor proportion for the zth clonal cluster
that does not contain the event; cnorm and cDEL are normal and tumor copy numbers. Therefore, (1� sz) corresponds to the proportion of tumor harboring
the event, also defined as the tumor cellular prevalence of the zth clonal cluster. (B) Analysis workflow for TITAN. Three inputs are required: (1) Hetero-
zygous positions identified in the normal DNA predicted by genotyping tools such as SAMtools mpileup (Li et al. 2009); (2) reference counts a and read
depth N are extracted at these positions from aligned reads in the tumor DNA sequence data; and (3) the tumor and normal read depths, N and NN, are
normalized independently to correct GC content andmappability biases; log ratios l = log(N/NN) of the corrected read counts are computed. The output is
the optimal sequence of CNA/LOH genotypes and clonal cluster memberships at each position. Model parameters for normal contamination n, tumor
cellular prevalence sz, and tumor ploidy f are estimated. (C ) Probabilistic graphical model of TITAN. Shaded nodes are known or observed quantities;
open nodes are random variables of unknown quantities. Arrows represent conditional dependence between random variables. Full details and definitions
are in Methods and Supplemental Table 13. (D) Parameter trace of vg,z and mg,z when cellular prevalence varies. s1 and s2 are shown as the tumor cellular
prevalence (i.e., transformed using 1� sz). n is normal proportion and f is average tumor ploidy. Each CNA/LOH genotype is shown (Supplemental Table
14) with the associated integer copy number in parentheses.
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mixtures with WGS data from multiple intrapatient samples; (3)

artificially embedded CNA and LOH events in diploid chromo-

somes; and (4) 23 triple negative breast cancer (TNBC) genomes.

We compared TITANwith four publishedmethods to demonstrate,

with quantitative benchmarking on the ground truth data sets,

that TITAN has higher sensitivity to detect low cellular prevalence

events without decreasing specificity and has the capacity to ac-

curately estimate cellular prevalences. Application of TITAN to 23

TNBC samples shows that a substantial proportion of clonal di-

versity is captured in the CNA/LOH dimensions, with low cellular

prevalence LOH impacting allele-specific expression inferred from

matched RNA-seq data. Finally, results from FISH and single-cell

sequencing validation experiments confirm that predicted CNA/

LOH events were consistent with our key modeling assumption:

Distinct cell populations can be identified through inference of

CNA/LOH from WGS data. Together, these data show that the

cellular prevalence profile of the copy number architecture from

WGS provides an effective route to inferring clonal populations in

patient tumor samples. Finally, we suggest how the deployment of

TITAN in large-scale clinical studies can dissect the interplay be-

tween clonal evolution, DNA repair deficiencies, and response to

therapy.

Results
TITAN is a statisticalmodel for predicting segmental CNA and LOH

from matched tumor and normal WGS data. The input to the

model is the full set of germline heterozygous SNP loci (identified

from the normal sample) and the corresponding read depth and

allele ratios at these SNP positions from the tumor. The output is a

set of segmental CNA and LOH events, clonal cluster member-

ships, and estimated cellular prevalences (Fig. 2B). The tumor and

sample cellular prevalences are defined as the proportion of the

tumor cells and the proportion of the sample (including normal

cells) that harbor a CNA/LOH event, respectively. The model is

predicated on four main assumptions: (1) joint analysis of allelic

ratio and tumor sequence coverage (depth) at ;1–3 million het-

erozygous germline SNP loci reflects the underlying somatic ge-

notype of the tumor; (2) segmental regions of CNA and LOH

span tens to thousands of contiguous SNP loci; (3) the observed

sequencing signal is an aggregated measure of heterogeneous cel-

lular populations, including normal and tumor subpopulations

(Fig. 2A,D); and (4) sets of genetic aberrations observed at similar

cellular prevalences possibly co-occurred in the same clone. We

incorporated these assumptions into a two-chain factorial HMM

(Fig. 2C; Methods; Supplemental Methods).

In order to evaluate and experimentally validate TITAN pre-

dictions, we used the genomes from a set of five synchronously

resected pretreatment high-grade serous (HGS) ovarian cancer

specimens (DG1136a,c,e,g,i) from the same patient. We obtained

Illumina HiSeq 2500 WGS 100-bp paired-end data, sequenced at

;303, for each tumor sample and the patient’s matched normal

DNA for a total of six data sets. There were ;2.3 million high con-

fidence heterozygous SNPs in the normal genome of DG1136.

Across the five tumor samples, there were 2816 CNA/LOH events

(Supplemental Table 1), with a range of event sizes (Supplemental

Fig. 1) covering an average of;1.5M SNPs per sample.We used these

data to generate two types of benchmarking data sets for which these

original events formed the ground truth ‘‘positive set’’ in the quan-

titative evaluation. First, we simulated synthetic embedding of

sampled CNA/LOH events into diploid chromosomes; and second,

we systematically admixed the related but distinct CNA/LOH pro-

files from the tumor samples in knownquantities to simulatemixed

tumor populations. Finally, provision over the biological material

allowed for experimental validation of TITAN predictions using

FISH and single-cell sequencing.

Simulated CNA spike-in experiment demonstrates accurate
detection for varying event sizes

We profiled the CNA landscape of DG1136a using two com-

plementary methods: HMMcopy (Ha et al. 2012) and Control-

FREEC (Boeva et al. 2012). Both methods identified a large

deletion (Chr16:46464744–90173515) and an amplification

(Chr8:97045605–144155272) of interest (Supplemental Fig. 2;

Supplemental Table 1A). From these events, we randomly sampled

log ratios and allele counts for nonconsecutive sets of 10, 100, and

1000 positions. The sampled data were then inserted into diploid

heterozygous chromosomes (Chr 1, 2, 9, and 18) at consecutive

SNP positions to simulate segmental CNA and LOH events (Sup-

plemental Methods). In total, there were four deletions and four

amplifications for each event size. Median genomic sizes of these

events were 6.9 kb, 82 kb, and 1.2 Mb. We also included one de-

letion and one amplification event spanning 10,000 SNPs (median

12.5 Mb) (Supplemental Table 2A). To vary cellular prevalences,

we generated spike-in events sampled from two simulated tumor-

normal admixtures at 80% and 60% of the original DG1136a data

set, computationally admixed with its matched normal WGS data

(Supplemental Methods; Supplemental Figs. 3–6).

TITAN was run, from a range of one to five clonal clusters, on

the entire simulated sample (containing 78 events), including the

chromosomes without spike-in events. The run with four clonal

clusters was selected as optimal based on the S_Dbw validity index

(Supplemental Methods; Halkidi et al. 2002). All 54 events of 100

SNPs or larger were detected (true positive rate [TPR] $ 0.9); how-

ever, only 11 of 24 events of 10 SNPs were recalled (Supplemental

Table 2B). The global false positive rate (FPR) was 0.04, which was

computed by considering all SNP positions in Chr 1, 2, 9, and 18

where no spike-in data was inserted.

The tumor cellular prevalence estimates for two of the TITAN

clonal clusters were 0.52 and 0.36, which were within range of the

expected values of 0.52 and 0.39 (Supplemental Methods). For

deletions and amplifications, respectively, the cellular prevalence

for 24 (89%) and 10 (37%) events with 100 SNPs or larger were

correctly estimated (TPR $ 0.9) (Supplemental Figs. 3–6; Supple-

mental Table 2C). Despite the prevalence estimates of many am-

plifications not matching expected values, the events were still

predicted to be subclonal but with a lower prevalence in some

instances. On balance, the spike-in experiments demonstrate that

TITAN is accurate at detecting (sub)clonal events of varying sizes,

but illustrate a potential limitation in detection of very small (10

SNP) events and estimation of the true prevalence for amplifica-

tions (see Discussion).

TITAN confers improved sensitivity for low-prevalence
events in simulated tumor subpopulations

To assess the performance of TITAN using benchmarking data sets

that are more representative of clonal mixtures, we designed sys-

tematic experiments that simulated genomes with multiple tumor

subpopulations at known proportions. In silico, we mixed the

WGS data from DG1136a,c,e,g,i (Fig. 3A; Supplemental Table 3A).

Within eachmixture, we defined clonal events as CNA/LOH events

present in all individual samples and subclonal events as present in

Ha et al.
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only a subset of the samples (Fig. 3B; Supplemental Table 3B–D).

The proportion of tumor contribution from each individual sam-

ple (Supplemental Table 3A) in the mixture was used to compute

the expected cellular prevalence (Supplemental Methods).

We combinedDG1136e (67% tumor cellularity) and DG1136g

(56% tumor cellularity), at mixture proportion increments of 10%

(Methods), resulting in nine (;303) mixtures with two simulated

tumor populations at 0.07/0.50, 0.13/0.45, 0.20/0.39, 0.27/0.33,

0.33/0.28, 0.40/0.22, 0.47/0.17, 0.53/0.11, and 0.60/0.06 relative

ratios (Supplemental Table 3B). Figure 3B illustrates a mixture sce-

nario, which identifies true (sub)clonal events and their expected

cellular prevalence.We compared accuracy of detection of CNA and

LOH events using TITAN (run once each for a fixed number of

clusters ranging from one to five), APOLLOH (A) (Ha et al. 2012),

Control-FREEC (CF) (Boeva et al. 2012), and BIC-seq (B) (Xi et al.

2011). After selecting the optimal number of clusters using the

S_Dbw validity index (Methods), TITAN’s median overall F-measure

over the nine mixtures for predicted clonally dominant and sub-

Figure 3. Performance of TITAN in serial and merging simulations using real intratumoral samples from a HGS ovarian carcinoma. (A) Patient DG1136
had biopsies synchronously resected from four sites in the primary tumor of the right ovary and one site from the left pelvic sidewall metastasis. (B)
Illustration demonstrating the expected proportions in a simulation of two tumor subpopulations. The tumor content of Sample a (80%) and Sample
b (70%) inform the sample cellular prevalence in the merged Sample a + b. Events found in all samples of the mixture represent simulated clonal events.
For example, the (green) deletion is present in 75% of the merged sample (or 100% of tumor cells) given that the normal proportion is 25%. Events
present in a subset of samples in themixture simulate subclonal events such as for the (red) gain unique to Sample awhich is present in 40%of themerged
sample or 53% of the tumor cells. (C–F) Performance of the serial mixture experiment between TITAN, APOLLOH (Ha et al. 2012) (which includes
HMMcopy), Control-FREEC (Boeva et al. 2012), and BIC-seq (Xi et al. 2011). The mixture proportion includes 0.1:0.9, 0.2:0.8,. . ., 0.9:0.1 relative ratios of
DG1136e:DG1136g. Precision (C ) and recall (D) are shown for subclonal and clonal events averaged across gains, deletions, and LOH events. Recall
performance for truth events found uniquely in Sample e (E) or Sample g (F) are shown. ‘‘Mixture Proportion’’ is defined as the ideal mixing fractions (e.g.,
10%, 20%, etc.); expected tumor ‘‘cellular prevalence’’ is defined as the expected tumor contribution, at a givenmixture proportion, from each individual
sample making up the mixture. The expected tumor cellular prevalence shown was computed by adjusting the mixture proportion for tumor content of
67% and 56% for DG1136e and DG1136g, respectively. Ground truth events were identified in the individual samples of the mixture using APOLLOH/
HMMcopy, and expected tumor cellular prevalence values are shown in Supplemental Table 3B. (G,H) Serial mixture performance for TITAN runs ini-
tialized with number of clusters ranging from one to five. Recall performance for events found uniquely in DG1136e (G) or DG1136g (H) represent events
that are subclonal within the simulated mixture. Average recall across deletions, gains, and LOH events are shown. The one-cluster run represents the
scenario in which only one tumor population exists. (I,J) Comparison of recall performance distributions across 10 paired (I) and 10 triplet (J) merging
simulations for TITAN (T), APOLLOH/HMMcopy (A), and Control-FREEC (CF). Performance is shown for simulated subclonal events, which were present
uniquely in exactly one (Subclonal 1) and exactly two (Subclonal 2) samples making up the mixture; and in contrast, clonally dominant events were
present in all samples of the mixture (Clonal).
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clonal events was 0.90. This was similar to APOLLOH (0.91) and

Control-FREEC (0.88), but higher thanBIC-seq (0.73) (Supplemental

Fig. 7A; Supplemental Table 4A). Although the precision for all

approaches performed comparably (Fig. 3C), TITAN had higher

sensitivity—median 0.91 compared to 0.85 (A), 0.83 (CF), and 0.58

(B), respectively (Fig. 3D).

TITAN’s sensitivity gains could be primarily attributed to im-

proved sensitivity to subclonal events (Fig. 3E,F). Accordingly, we

observed improved performance for runs with two or more clusters,

but notwhen runwithone cluster (Fig. 3G,H).Over the range of two

to five clusters, recall was similar for subclonal events, suggesting

TITAN is relatively stable in its predictions when accounting for

more than one tumor subpopulation. Despite this stability, we ex-

plored the utility of unbiasedmodel selection to choose the optimal

number of clusters. We note that three clusters fit the scenario in

which events may be clonally dominant (present in both samples)

or subclonal, having one of two possible unique cellular prevalences

contributing from the individual samples. Using the S_Dbw validity

index, three clusters were appropriately selected as the optimal

number for the majority of the mixtures (Supplemental Table 3B).

The subclonal predictions using the optimal cluster runs consistently

outperformed the other methods (Fig. 3E,F). In addition, perfor-

mance gains were maintained across ranges of event lengths of 10–

100 kb, 100 kb–1 Mb, 1–10 Mb, and >10 Mb (Supplemental Fig. 8).

Next, we used the DG1136 data sets to generate 10 pairwise

(61–693 coverage) and 10 triplet (95–1033 coverage) merged com-

binations of the five intratumor samples, mixed at approximately

equal proportions (Supplemental Table 3C,D). In the triplet-merged

samples (Supplemental Fig. 9; Supplemental Table 4B), TITAN per-

formed comparably for all (clonal and subclonal) amplifications

(0.85 median F-measure) relative to APOLLOH (0.85), Control-

FREEC (0.85), and BIC-seq (0.60). For deletions and LOH events,

TITAN showed statistically significant improvement over the

other algorithms (0.91 compared to 0.87 [A], 0.83 [CF], and 0.60

[B]; two-sample Wilcoxon rank-sum test

P < 0.001) and LOH events (0.96 com-

pared to 0.94 [A] and 0.85 [CF]; P < 0.001).

Similar performance was observed in the

pairwise-merged samples with compara-

ble F-measure for all amplifications (me-

dian 0.87 compared to 0.87 [A], 0.85 [CF],

and 0.70 [B]) and statistically signifi-

cant improvement in F-measure for dele-

tions (0.95 compared to 0.92 [A], 0.87 [CF],

and 0.69 [B]; P < 0.005) and LOH events

(0.98 compared to 0.96 [A] and 0.89

[CF]) (Supplemental Fig. 10; Supplemental

Table 4C).

As shown for the serial mixture sim-

ulation, TITAN was more sensitive for sub-

clonal events than the other methods in

both pairwise and triplet merging simula-

tions. Events unique to only one sample

(subclonal in the mixture) were predicted

with statistically higher recall by TITAN

(Fig. 3I,J) (two-sampleWilcoxon rank-sum

tests, P < 0.001). TITAN was also more

sensitive to subclonal deletion and LOH

events present in exactly two samples in

the triplet-merged mixture (P < 0.001),

whereas amplifications were comparable

(Fig. 3I). All methods accurately predicted

clonally dominant events for each merged simulation. Therefore,

while maintaining accuracy of clonal events, TITAN showed clear

advantages in detection of the engineered subclonal events. We

attribute this increase in sensitivity directly to the consideration of

heterogeneous cell populations in the model.

Accurate estimation of cellular prevalence and normal
contamination

To evaluate the accuracy of cellular prevalence predictions (one of

the key parameters estimated by TITAN), we compared the expected

ground truth values for each simulated mixture. For each pairwise

mixture, three clonal clusters were expected (one ancestral and

two sample-specific), and for triplet mixtures, up to seven clonal

clusters (all possible combinations of three samples)were expected.

The expected cellular prevalence was computed using the tumor

contribution from each individual sample making up the simu-

latedmixture (Supplemental Methods; Supplemental Table 3B–D).

Cellular prevalence estimates predicted by TITAN showed high

and statistically significant positive correlation (Pearson’s r $ 0.9,

P < 0.001, root mean squared error [RMSE] # 0.11) with the

expected tumor cellular prevalence across all samples in the serial

(Fig. 4A; Supplemental Table 3B) andmerging simulations (Fig. 4B,

C; Supplemental Table 3C,D), demonstrating that the model was

able to reproduce the engineered clonal structure.

Next, we compared cellular prevalence estimates between

TITAN and THetA (Oesper et al. 2013). THetA’s estimates also

showed statistically significant correlation with expected values

(Pearson’s r > 0.86, P < 0.001) (Fig. 4D,E); however, the RMSE was

lower for TITAN (0.11) compared to THetA (0.18) for the serial

mixtures and similarly for the pairwisemixtures (0.07 compared to

0.12). Due to time complexity limitations, wewere only able to run

THetA for up to two tumor populations, therefore comparison

on the triplet mixtures could not be performed. THetA has super-

Figure 4. Performance of TITAN tumor cellular prevalence estimates for serial (303) and pairwise
(603)/triplet (903) merging simulations of intratumor samples from a HGS ovarian carcinoma. Pearson
correlation coefficients (r) and root mean squared error (RMSE) were computed for TITAN (A–C) and
THetA (Oesper et al. 2013) (D,E). Correlation and RMSE were computed by comparing the cellular
prevalences of the predicted clusters with the prevalence of the expected clusters across the mixture
samples. Each data point represents an expected clonal cluster with a unique tumor cellular prevalence.
Ground truth and expected tumor cellular prevalence values were computed from the tumor contri-
bution from each individual sample making up the simulated mixture (Supplemental Table 3B–D).
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polynomial time andmemory complexity when twoormore tumor

subpopulations are considered. Moreover, complexity increases

with the number of input regions; thus, fewer than 15 segments

were required for reasonable runtimes, resulting in lower resolution

when inferring subclonal events. Finally, we also used an orthogo-

nal approach (Control-FREEC) to estimate tumor content used to

compute the expected cellular prevalence and observed similar

correlations and RMSE results for TITAN and THetA (Supplemental

Fig. 11; Supplemental Table 5).

Global normal contamination impacts the ability of themodel

to reconcile the presence of subclonality. We assessed the ability of

themodel to correctly estimate the global normal contamination in

the model. TITAN estimates showed significantly positive correla-

tion for the serial mixtures (Pearson’s r = 0.96, P < 0.0001, RMSE =

0.023), pairwise mixtures (r = 0.86, P = 0.0014, RMSE = 0.047), and

the tripletmixtures (r = 0.74, P = 0.014, RMSE = 0.048) relative to the

expected normal proportion (Supplemental Fig. 12A–C; Supple-

mental Table 3B–D). TITAN’s estimates were considerably more ac-

curate than THetA for the serial (r = 0.93, P < 0.0002, RMSE = 0.23)

and pairwisemixtures (r = 0.51, P = 0.14, RMSE = 0.3) (Supplemental

Fig. 12D,E). Therefore, in addition to increased sensitivity for

detecting subclonal events, TITAN showed accurate inference

of cellular prevalence and normal proportion, indicating the

model formulation more closely models the mixture of cells

generating the data. This not only contributes to increased accuracy

in detection, but also adds an interpretive layer to estimating

the composition of both tumor and normal cells being sequenced.

Characterization of the subclonal copy number alteration
landscape in triple negative breast cancers

Having established quantitative accuracy with benchmarking data

sets, we next analyzed a set of 23 triple negative breast cancers

(TNBC) with paired tumor-normal whole-genome sequencing (Ha

et al. 2012; Shah et al. 2012). We applied TITAN to predict regions

of (sub)clonal CNA and LOH in the TNBC genomes (Supplemental

Table 6) and profile the patterns of cell population structure inferred

fromthe genomearchitecture. Six caseswere clonally homogeneous

(i.e., one clonal cluster) with cellular prevalence between 0.91 and

0.97, whereas the remaining 17 cases were more heterogeneous

(between two and six clonal clusters) and cellular prevalence esti-

mates ranging from0.17 to 0.98 (Supplemental Table 7A). In the 17

heterogeneous cases, the proportion of the genome altered by

subclonal events ranged from0.16 and 0.73, with 12 cases having a

higher proportion of subclonal alterations than clonal events

(Supplemental Table 7B). This emphasizes the importance of

considering mixed populations, which if neglected will lead to

vastly different interpretations of the data and preclude inference

of evolutionary patterns.

For four of the TNBC cases, whole-exome capture datawas also

available. We applied TITAN to this exome sequencing data to dem-

onstrate that the method can also be used for data for targeted ge-

nomic regions. Across the four samples, therewere 79,097 (;19,700

per sample) overlapping SNP positions between the exome and

WGS data, of which 55,846 (71%) were concordant for predicted

copy number between the TITAN results for the two data types

(Supplemental Fig. 13; Supplemental Table 8). However, in theWGS

data, TITAN appears to resolve the signal into a potentially higher

number of clonal clusters, possibly due to 1003 more SNP loci

(Supplemental Table 8).

For 22 of the TNBC cohort, we also analyzed the transcriptomes

sequenced via RNA-seq (Ha et al. 2012; Shah et al. 2012) to assess

whether the clonality of LOH predictions influences allele-specific

expression. Using the transcriptome allelic ratio (TAR; proportion

of reference read counts) as an orthogonal measure, we compared

TITAN cellular prevalence estimates to expected allelic imbalance

in expression. We considered only RNA-seq positions within de-

letion LOH segments and estimated the expected baseline TAR as a

function of the cellular prevalence sz +
ð1�szÞ

2 .

The first term corresponds to the tumor cells having only one

copy or allele, and the second term represents all other cells without

the LOH event (i.e., diploid and heterozygous). Across the 22 TNBC

cases and each clonal cluster, the TAR was significantly correlated

with the predicted cellular prevalence (Pearson’s r = 0.71, P = 1.5 3

10�10) (Supplemental Fig. 14A). TAR values were observed to be

more imbalanced than could be explained by deletion LOH alone.

This could be attributed to epigenetic silencing of one or both alleles

in cells without LOH. When higher copy number events are con-

sidered, such as amplified LOH, this can also result inmore imbalance

than expected due to stronger representation of the homozygous

allele if expression is positively correlated with copy number

(Supplemental Fig. 14B). These results indicate that a substantial

proportion ofmonoallelic expression is associatedwith coincident

subclonal LOH prediction, providing evidence that despite the pres-

ence in only aminor cell population, these events are impacting the

transcriptional program in these tumors.

FISH assays validate the presence of subclonal copy number
changes

We performed fluorescence in situ hybridization (FISH) assays in

two primary tumor HGS ovarian cancer samples, DG1136c and

DG1136g, using cryosections from the same tissue blocks used for

WGS (Supplemental Methods). We targeted seven TITAN CNA

predictions (Supplemental Table 9A): one high-prevalence deletion

(C-DLOH-1) (Fig. 5), four low-prevalence deletions (SC-DLOH-1, 3,

4, and 5) (Supplemental Figs. 15, 16), and one low-prevalence gain

(SC-GAIN-1) (Supplemental Fig. 15) in DG1136g. An additional

low-prevalence gain (SC-GAIN-2) was assayed in sample DG1136c.

Notably, all six low-prevalence events were missed (detected as neu-

tral regions) by at least one of the three other comparison methods:

HMMcopy, Control-FREEC, and THetA (Supplemental Table 10).

Each event was scored by counting 100 or more nuclei to obtain

a quantitativemeasure of the prevalence (Supplemental Table 9B–G).

The presence of all seven events was confirmed by FISH (Sup-

plemental Table 9H). Quantitative estimates of prevalence by FISH

were broadly consistent with TITAN predictions (Supplemental

Table 10). The highest prevalence event, C-DLOH-1 (Chromosome

17 centromere), which represented a clonal deletion at 0.94 TITAN

cellular prevalence (and predicted by all other methods), was ob-

served in 0.77 of cells (Fig. 5; Supplemental Table 9H). SC-GAIN-2

(11q13.1), whichhadTITANcellular prevalence of 0.62, was present

in 0.61 of the nuclei scored by FISH inDG1136c. The remaining five

events had predicted a cellular prevalence of 0.51 in DG1136g. Two

events, SC-DLOH-1 (1p31.1) and SC-DLOH-3 (2p16.1), were both

observed at a FISH prevalence of 0.48. These events were not pre-

dicted by Control-FREEC. SC-GAIN-1 (2p23.2), which was not

detected by THetA, had an observed FISH prevalence of 0.35.

Neither SC-DLOH-4 (7q35) nor SC-DLOH-5 (21q21.1), whichwere

observed at FISH prevalences of 0.26 and 0.36, were predicted by

HMMcopy, Control-FREEC, or THetA (Supplemental Table 10).

Thus, experimental revalidation using cytogenetic techniques on

cryopreserved patient material confirmed low- and high-prevalence

gains and deletions predicted by TITAN, emphasizing the en-
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hanced sensitivity conferred by modeling the presence of multi-

ple populations.

Validation of TITAN predictions using single-cell sequencing
confirm the presence of multiple tumor populations

We further validated the CNA predictions from DG1136g using

single-cell sequencing of targeted positions. The nuclei were iso-

lated and sorted from disaggregated frozen tissue blocks and se-

quenced using multiplex PCR reactions and Fluidigm access array

technology (Supplemental Methods). Two sets of events, Set1 and

Set2 (Supplemental Tables 11A, 12A), each included one high-

prevalence clonal LOH event, two subclonal deletions, and two

heterozygous diploid regions (Supplemental Fig. 17). For each set,

42 single cells were sorted, followed by library construction and

sequencing; statistical analysis was then carried out independently

for the two sets (Supplemental Methods).

This experiment focused on LOH events because confirma-

tion of homozygosity (the absence of one allele) in single-cell se-

quencing is generally unambiguous. For statistical robustness, we

interrogated multiple SNPs within each prediction of LOH (10–11

SNPs) and heterozygous (2–3 SNPs) negative control regions. We

Figure 5. Fluorescence in situ hybridization (FISH) validation of TITAN predictions for Chromosomes 1 and 17 in DG1136g. (A) Subclonal hemizygous
deletion, SC-DLOH-1, in Chromosome 1 was validated using BAC probe RP11-795A13 (orange, Chr1:69851036–70025173). Control probe for copy
neutral regions was RP11-159J14 (green, Chr1:69454844–69606688). FISH imaging shows tumor cells with a deletion (green arrow) and diploid (white
arrow) at this region. (B) Clonal deletion, C-DLOH-1, in Chromosome 17 was validated using the centromeric probe, CEP 17. The BAC probes RP11-
147K16 (orange, Chr17:3294803–3452243) and RP11-982O5 (blue, Chr17:55475584–55662513) were used as controls. The majority of cells were
observed to harbor the deletion. FISH count prevalence was computed as the proportion of nuclei with event:control count ratio that is <1 (deletion) or >1
(gain) (Supplemental Table 9H). FISH imaging is shown at 633 magnification. Copy number predictions are shown using log ratios (normalized tumor
depth/normal depth). Copy neutral (blue), hemizygous deletion (green), and copy gain (red) predictions are shown. Cellular prevalence estimates for
clonal cluster 1 (Z1) and cluster 2 (Z2) predicted by TITAN are shown; tumor cellularity is indicated by the black horizontal line.
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also selected previously validated somatic pointmutations (SNVs),

including a homozygous SNV in TP53, from this tumor. Because it

is widely accepted that TP53 mutation is a tumor-initiating event

in HGS ovarian cancer (Ahmed et al. 2010; The Cancer Genome

Atlas Research Network 2011; Bashashati et al. 2013), this muta-

tion was expected to be present in all tumor cells. TP53, along with

the other SNVs, were used as markers to distinguish tumor and

contaminating normal nuclei in this experiment (Supplemental

Methods). This resulted in 14 tumor and 14 normal nuclei for Set1

(Fig. 6A; Supplemental Table 11B), and nine tumor and nine nor-

mal nuclei for Set2 (Fig. 6B; Supplemental Table 12B). The re-

maining nuclei contained insufficient read coverage for analysis.

For predicted clonal LOH events, we expected to observe ho-

mozygous signals for SNPs in all tumor nuclei. In contrast, for sub-

clonal events, we expectedhomozygous SNPs to be present in only a

subfraction of tumor nuclei. We used two statistical tests (Methods)

to determine if an LOH event in a nucleus was present across the set

of positions in the event. This involved controlling for expected

allele dropout frequency (from unequal amplification of alleles)

inferred from the normal nuclei at the predicted heterozygous loci.

Over the set of positions in an event, we classified each nucleus as

heterozygous or homozygous (or unknown if statistically incon-

clusive). As expected, for each of the normal nuclei in both Set1

and Set2, all LOH events were classified as heterozygous, inde-

pendently confirming the initial grouping of cell types using

mutations. In addition, the four negative control heterozygous

events HET1, HET3 (Fig. 6A,C), HET4, and HET5 (Fig. 6B,D) were

each classified as heterozygous in all tumor nuclei for which suf-

ficient coverage was obtained. In contrast, for the predicted clonal

LOH events C-DLOH-1 (Fig. 6A,C) and C-NLOH-1 (Fig. 6B,D), all

tumor nuclei were classified as homozygous, confirming that the

LOHpredictionswere clonally dominant. For each of the predicted

subclonal deletion events (SC-DLOH-1, 3, 4, and 5), the tumor

nuclei were divided into two groups with homozygous and het-

erozygous status, respectively. The proportions of tumor nuclei with

homozygous status in these eventswere 0.54 (7/13 for SC-DLOH-1),

0.71 (10/14 for SC-DLOH-3), 0.50 (4/8 for SC-DLOH-4), and 0.50

(4/8 for SC-DLOH-5), which were generally consistent with the

TITAN cellular prevalence estimate of 0.51 (Supplemental Table 3E).

Therefore, in two independently executed single-cell sequencing

experiments, we were able to relate our predictions back to the key

modeling assumptions of TITAN and confirm the presence of the

three cell types (Fig. 2A): (1) a population of normal cells; (2) a

population of tumor cells harboring the CNA/LOH event; and (3) a

population of cells without the CNA/LOH event.

Discussion
TITAN is a novel algorithm that jointly analyzes both the tumor

read depth and digital allele read counts for segmentation of sub-

Figure 6. Single-cell validation of subclonal deletions in DG1136g using deep DNA sequencing of individual nuclei. (A,B) The 28 nuclei for Set1 and 18
nuclei for Set2 were designated as tumor and normal cell type using the status of mutations. Themutant allele ratio (variant reads/depth) formutations and
symmetric allele ratio (max(reference reads, variant reads)/depth) for SNP positions are shown for Set1 (A) and Set2 (B) events. Low coverage positions are
shaded in gray. (C,D) The LOH status for each event for Set1 (C ) and Set2 (D) were determined using the binomial test for dropout andWilcoxon rank sum
test for allelic ratios. TP53mutation status is shown. The LOH status for each heterozygous (HET) and LOH (C-DLOH, SC-DLOH) event is shown. ‘‘Tumor’’
nuclei having the LOH event (green) or not having the event (blue) are shown to illustrate the original three-component mixture model (Fig. 2A). Normal
nuclei are designated ‘‘Normal’’ (white). Unknown events (gray) were inconclusive for HET or LOH status. See Supplemental Methods for details.
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clonal CNA and LOH in whole-genome sequencing of tumors. The

advantages of TITAN are threefold. First, the proper deconvolution

of signals in the sequencing reads using the proposed sampling

model allows for improved performance for predicting CNA and

LOH (Fig. 3C,D). Second, the algorithm is more sensitive to sub-

clonal events, which generally have more diluted signals, dem-

onstrated by the serial and merging mixture experiments from a

HGS ovarian cancer data set (Fig. 3E–J). Third, estimation of tumor

cellular prevalence and normal proportion is a powerful feature

that enables inference of evolutionary clonal dynamics of the tu-

mor’s genome at CNA and LOH scales (Fig. 4; Supplemental Fig.

12). Importantly, using deep sequencing of single nuclei, we were

able to successfully confirm the presence of six (sub)clonal LOH

and two subclonal copy number gain events. FISH experiments

confirmed that TITAN was able to detect low-prevalence events

that were not predicted by three other methods. In summary, re-

sults from experiments over a broad range of synthetic data, pa-

tient tumor data, and experimental validation have established

that, through appropriate statistical modeling, the composition of

cell populations in source tumor samples can be accurately iden-

tified by inference of CNA and LOH events in WGS data, and

consideration of mixed population leads to enhanced accuracy.

We demonstrated single-cell analysis as a viable experimental

validation for unambiguously confirming the presence of TITAN-

predicted (sub)clonal LOH events at the resolution of individual

cells. The quantification of cellular prevalencewas still challenging

due to the small numbers of nuclei, and inference of patterns of

clonal evolution was limited by the analysis of only three LOH

events in each cell. Scaling up the numbers of tumor nuclei and

LOH events will enable the statistical analysis of mutual exclusion

and co-occurrence of events that are unattainable from single bulk

tumor biopsies and construction of clonal evolutionary phyloge-

nies (Potter et al. 2013). More conventional FISH experiments also

corroborated TITAN predictions, including low-prevalence dele-

tions and gains. Interestingly, for two events, prevalences deter-

mined by FISH were lower (0.26 and 0.36) than TITAN cellular

prevalence estimates. Although TITAN may have over-clustered

them into a higher prevalence clonal cluster, the presence of these

predicted CNAs was still confirmed by FISH. Moreover, the lack of

prediction of these events by any of the other competing methods

illustrates TITAN’s enhanced sensitivity. These results also suggest

that ;0.30 prevalence may fall below the model’s ability to accu-

rately resolve the clustering for samples sequenced at;303. Thus,

higher sequence coverage may be required for greater accuracy in

cellular prevalence estimates.

TITAN has several limitations due to its specific modeling

assumptions. TITAN does not model more than one aberrated ge-

notype at the same locus, but instead assumes that clones har-

boring the subclonal event coexist with tumor population(s) that

have a normal (diploid heterozygous) genotype. An example of this

limitation is shown in Figure 1, in which the event at Chr 2q23.3–

q24.1 is likely an aggregated signal from a tumor populationwith a

hemizygous deletion and another with a copy neutral LOH (sub-

sequent duplication). In particular, it is difficult to distinguish

among coexisting clones that harbor amplifications of variable

copies. In order to model multiple tumor genotypes, the mixture

representation model (Fig. 2A) will need to be reformulated; yet

given only tumor read depth and allele counts, the joint analysis of

these signals may yield multiple solutions.

The primary aim of TITAN is the improved sensitivity for

detecting subclonal CNA/LOH events, and we have demonstrated

this performance in benchmarking mixtures up to ;903 se-

quencing coverage (Figs. 3I, 4C); however, this is limited to re-

solving events in major clones at detectable prevalences. The full

enumeration of clonal cell populations, includingminor clones, is a

limitation of TITAN and remains a difficult problem in the analysis

of single tumor biopsies. This was demonstrated with FISH, which

revealed the presence of rare, isolated nuclei harboring genotypes

not detectable by TITAN. Solutions to address these limitations will

require integration of additional data, such as somatic SNVs (Carter

et al. 2012; Fischer et al. 2014; Roth et al. 2014), genomic rearrange-

ment breakpoints, increased coverage of sequencing (Nik-Zainal

et al. 2012),multipatient biopsies (Bashashati et al. 2013; Gerlinger

et al. 2014), and ultimately, single-cell analysis (Navin et al. 2011;

Potter et al. 2013).

TITAN estimates parameters using the EM algorithm; how-

ever, this approachmay return locally optimal solutions influenced

by the initializations prior to inference. Informed initializations

of the key parameters, normal proportion and tumor ploidy, using

orthogonal sources provided by histopathology may improve

EM-converged parameter values and overall predictions. Also, we

determined the optimal number of clonal clusters that best

represented the expected number of clonal groups in the sample

by using a modified internal evaluation measure S_Dbw. A more

robust solution would be to integrate the model selection directly

into the framework, such as representing the clonal cluster group-

ings using a phylogenetic tree to relate inferred clones into their

ancestral lineages.

Our results indicate that neglecting to model WGS data as a

composite of different tumor populations with diverse somatic ge-

nomes results in an incomplete representation of a tumor’s CNA

and LOH landscapes. This is exemplified by the analysis of the

TNBC genomes, which suggested that the somatic copy number

architecture in tumors might have evolved substantially. It was

recently shown that the inference of subclonal mutations impacts

the outcome of chronic lymphocytic leukemia under treatment-

based selective pressures (Landau et al. 2013). Whether similar

outcome correlations are detectable when CNA and LOH are the

aberrations measured for evolutionary patterns remains an open

question. We anticipate that the TITAN framework will provide a

robust analytical route for studying the degree to which clonal

evolution, driven from the CNA and LOH perspective, influences

treatment sensitivity.

A downstream clinical application of TITAN will be the iden-

tification of tumors with DNA repair defects that wouldmake them

susceptible to genotoxic drugs. Compromised homologous recom-

bination (HR) due to loss of BRCA1/2 is a dominant molecular fea-

ture of HGS ovarian cancer (The Cancer Genome Atlas Research

Network 2011) and other epithelial malignancies (Yang et al. 2013).

HR defects lead to accrual of genomic structural changes through

unrepaired double-strand genomic breaks (Lord and Ashworth

2012). HR-deficient cells carry the genomic footprints of progressive

accumulation of structural genomic aberrations, including regions

of CNA and LOH. Tumors exhibiting subclonal CNA and LOH

events are likely to have acquired HR defects and would be good

candidates for treatment with platinum-based drugs or PARP in-

hibitors (Mukhopadhyay et al. 2012; Wang et al. 2012). Large-scale

whole-genome sequencing studies of epithelial cancers coupled

with reliable homologous recombination deficiency assays will be

an appropriate way to test this hypothesis.

In conclusion, the TITAN statistical framework represents a

significant advance in the field of copy number and LOH analysis

for tumor genome sequencing data. The implications for clonal

evolution of point mutations in clinical trajectories are well docu-
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mented; we suggest that TITAN will enable the execution of com-

plementary studies to investigate the role of genome architecture in

driving the evolutionary selection of clonal cell populations.

Methods

The TITAN statistical model
To model tumors containing multiple tumor subpopulations, we
assumed the observed measurements were generated from a com-
posite of three types of cell populations (Yau et al. 2010) with rel-
ative proportions as follows: n: the proportion of nonmalignant
cells; (1 � n)sz: the proportion of tumor cells with normal geno-
type; and (1 � n)(1 � sz): the sample cellular prevalence or the pro-
portion of tumor cells harboring the CNA or LOH event of interest
(Fig. 2A). sz is the proportion of tumor cells that is diploid het-
erozygous (and therefore normal) at the locus. Thus, (1 � sz) is the
tumor cellular prevalence or the proportion of the tumor population
containing the event. We assume multiple somatic events share
similar cellular prevalence and thus can be assigned to one of a fi-
nite number of clonal clusters, z 2 Z. This allows for sufficient data
points to robustly infer the model parameters by borrowing sta-
tistical strength. The simultaneous inference and clustering of
each data point to z 2 Z is the primary distinguishing feature over
relatedwork (Van Loo et al. 2010; Yau et al. 2010; Carter et al. 2012;
Oesper et al. 2013; Yau 2013).

The inputs to the model are quantities readily extracted from
WGS sequence data (Fig. 2B). The analysis requires the genome-
wide set of T germline heterozygous SNP positions derived from
the normal genome, which generally ranges from 1 to 3 million
per patient. At each SNP, copy number data from the tumor
genome is represented by the log ratio between the tumor and
normal read depths l1:T. We assume l1:T is Gaussian distributed:
l1:T;N ðl1:T jmg;z;s

2
g Þ.Weassume the reference allelic read counts from

the tumor a1:T are binomial distributed a1:T ; Bin(a1:T|N1:T, vg,z),
where N1:T represents the sequencing depth at each position. The
cluster-specific parameters mg,z and vg,z are functions of sz (Fig. 2D),
and therefore represent the signals from the three types of cell
populations. This formulation enables TITAN to be more sensitive
to events with lower cellular prevalences.

Segmental CNA and LOH events span many contiguous SNP
positions, thereby inducing spatial correlation along the chro-
mosome. To capitalize on expected shared signals from adjacent
positions, TITAN was implemented as a two-factor hiddenMarkov
model (HMM) in which the hidden genotypesG1:Tand the hidden
clonal cluster memberships Z1:T comprise the two chains (Fig. 2C).
The state space is dynamically expanded as a function of clonal
cluster membership, resulting in|G|3 |Z|number of state tuples (g 2
G, z 2 Z) (Supplemental Table 14). The HMM is fit to the data using
expectation maximization (EM) as described in the Supplemental
Methods.

The final output of TITAN is a list of segment boundaries that
represent CNA and LOH events with accompanying estimates of
the genotype, the cellular prevalence (1 � sz), and clonal popu-
lation cluster membership for each event. In addition, estimation
of global parameters n, the normal proportion, and f, the estimated
ploidy, are output. The parameters of the probabilistic graphical
model (Fig. 2C) are defined in Supplemental Table 13, and full
mathematical details are described in Supplemental Methods.

Analysis workflow

The analysis workflow of TITAN for tumor whole-genome se-
quencing data is shown in Figure 2B. First, germline heterozygous
SNP positions L= ftigjTi=1 are identified from the normal genome

using SAMtools mpileup (Li et al. 2009). The analysis focuses on
;1–3 million loci genome-wide per patient and allows for identi-
fication of somatic allelic imbalance events (Ha et al. 2012). From
the tumor genome data, the read counts mapping to the reference
base (A allele) and total depth at all positions in L are extracted and
represented as a1:T and N1:T, respectively.

The tumor copy number is normalized for GC content and
mappability biases using only the normalization component of
HMMcopy (http://bioconductor.org/packages/2.11/bioc/html/
HMMcopy.html). Briefly, the genome is divided into bins of 1 kb,
and read count is represented as the number of reads overlapping
eachbin. Loess curve fitting and correctionwasperformedon tumor
and normal samples, separately. The corrected read counts for the
overlapping 1-kb bin at each position of interest t 2 L,Nt , andN

N

t is
used to compute the log ratio, l1:T = logðN1:T=N

N

1:T Þ.
TITAN jointly analyzes the data l1:T, a1:T, N1:T to segment the

data into regions of CNA/LOH and estimate normal contamina-
tion, tumor ploidy, and cellular prevalences for Z number of clonal
clusters. For a range of i = 1 to 5, TITAN is run once for the set of
clonal cluster states Zi := {1, . . ., i}, where |Zi| = i is the number of
clonal clusters. The optimal number of clusters i is then chosen
using theminimum S_Dbw validity index (SupplementalMethods).

In silico mixture experiments simulating multiple tumor
subpopulations

Five intrapatient samples from patient DG1136 were used to
simulate multiple cellular populations by mixing combinations
of samples at knownproportions. For the predefined serialmixture
experiment, nine whole-genome mixtures at;303 coverage were
generated by sampling reads from DG1136e and DG1136g at
mixing proportions of 10% increments (0.1e/0.9g, 0.2e/0.8g,. . .,
0.8e/0.2g, 0.9e/0.1g). The expected relative tumor content con-
tributions from the two samples were computed for each mixture
based on tumor cellularity of 67% and 56%, respectively, as con-
sensus estimates by APOLLOH and the pathological review (Sup-
plemental Table 3B). HMMcopy and APOLLOH (Ha et al. 2012)
results from the individual samples were used as ground truthCNA
and LOH events, respectively, with default parameters (http://
compbio.bccrc.ca/software/apolloh). For the merging of two or
three samples at approximately equal proportions, five intratumor
samples were merged together to generate 10 pairs at ;603 cover-
age (Supplemental Table 3C) and 10 triplets at ;903 coverage
(Supplemental Table 3D) for each combination. This was done
using SAMtools (Li et al. 2009) merge command.

Precision, recall, and F-measure were computed based on copy
number status at heterozygous germline SNP positions from the
individual samples (prior to mixing) predicted by APOLLOH/
HMMcopy. Performance was calculated for deletions, gains, and
LOH independently and averaged together for overall assessment
shown in Figure 3C–J. The number of SNPs for ground truth dele-
tion, amplification, and LOH events used to calculate performance
metrics are given in Supplemental Tables 1, 3, and 4. See Supple-
mental Methods for more details.

Statistical tests for single-cell sequencing experiments

Two statistical tests were used to determine if an event in a nucleus
was statistically significant for LOH. First, we addressed allelic
dropout, which is the preferential amplification of one allele at a
heterozygous locus, leading to a homozygous signal that may be
mistaken for LOH. Using the expected allelic dropout rate (DOR) of
0.28 (Set1) and 0.48 (Set2) determined from the normal nuclei
(Supplemental Tables 11C, 12C), we applied a one-tailed binomial
test in which the null hypothesis asserts that the proportion of
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homozygous positions is not greater than the expected DOR. The
second test examined whether the allelic ratio distribution (Fig.
6A,B) across the positions for an event showed a statistically signif-
icant difference compared to the expected heterozygous allelic ratio
(HAR) as determined from the normal nuclei. Finally, themaximum
of the (Benjamini and Hochberg [FDR] adjusted) P-values between
the two tests was used to determine if an event was statistically
significant (FDR < 0.05) for LOH status, or heterozygous (HET)
otherwise; events were designated as unknown or ambiguous for
nonsignificant FDR and absence of a heterozygous position (Sup-
plemental Tables 11E,F, 12E,F; Benjamini and Hochberg 1995).

Additional methods on mathematical details of the TITAN
model, the inference algorithm, and software aswell as experimental
protocols for generating the validation data are provided in the
Supplemental Methods.

Data access
The ovarian cancer genome sequence data, including the single-cell
data, have been submitted to the European Genome-phenome
Archive (EGA; https://www.ebi.ac.uk/ega/) under accession num-
ber EGAS00001000547. TITAN is available at http://compbio.
bccrc.ca/software/titan/ and can be downloaded fromBioconductor
under the R package, TitanCNA.

Acknowledgments
We thank the British Columbia Cancer Foundation for research
funding support. In addition, thisworkwas funded by theCanadian
Institutes for Health Research (CIHR), Genome Canada/Genome
British Columbia, Canadian Cancer Society Research Institute, and
the Terry Fox Research Institute grants to S.P.S. and S.A. S.P.S. is
supported by the Michael Smith Foundation for Health Research
and is the Canada Research Chair (CRC) in Computational Cancer
Genomics. S.A. is the CRC in Molecular Oncology. G.H. is sup-
ported by the Natural Sciences and Engineering Research Council
of Canada. We thank Dr. Sarah Mullaly for critical reading of the
manuscript.

Author contributions: S.P.S. oversaw the project. S.P.S., S.A., and
G.H. conceived and wrote the manuscript. G.H., S.P.S. and A.R.
designed the algorithm. G.H. implemented the software and car-
ried out all analytical experiments. A.R., A.M., L.M.P., A.B., J.D.,
A.L., J.R., andK.S.were responsible for data analysis anddiscussions.
J.K., D.Y., E.L., and J.B. performed the single-cell sequencing ex-
periment. J.H., N.M., and L.M.P. performed the FISH assays. C.B.G.,
D.G.H., and J.N.M. did sample preparation and histopathological
review. M.A.M. carried out genome sequencing.

References

Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R,
Stewart C, Fereday S, Caldas C, Defazio A, et al. 2010. Driver mutations
in TP53 are ubiquitous in high grade serous carcinoma of the ovary.
J Pathol 221: 49–56.

Aparicio S, Caldas C. 2013. The implications of clonal genome evolution
for cancer medicine. N Engl J Med 368: 842–851.

Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Rosner J,
Shumansky K, Kalloger S, Senz J, et al. 2013. Distinct evolutionary
trajectories of primary high-grade serous ovarian cancers revealed
through spatial mutational profiling. J Pathol 231: 21–34.

Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate:
a practical and powerful approach to multiple testing. J Roy Stat Soc B
Met 57: 289–300.

Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G,
Janoueix-Lerosey I, Delattre O, Barillot E. 2012. Control-FREEC: a tool
for assessing copy number and allelic content using next-generation
sequencing data. Bioinformatics 28: 423–425.

The Cancer Genome Atlas Research Network. 2011. Integrated genomic
analyses of ovarian carcinoma. Nature 474: 609–615.

Carter SL, Cibulskis K, Helman E, McKenna A, Shen H, Zack T, Laird PW,
Onofrio RC,WincklerW,Weir BA, et al. 2012. Absolute quantification of
somatic DNA alterations in human cancer. Nat Biotechnol 30: 413–421.

Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C,
Gabriel S, Meyerson M, Lander ES, Getz G, et al. 2013. Sensitive
detection of somatic point mutations in impure and heterogeneous
cancer samples. Nat Biotechnol 31: 213–219.

Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK,
Young MA, Lamprecht T, McLellan MD, et al. 2012. Clonal evolution in
relapsed acute myeloid leukaemia revealed by whole-genome
sequencing. Nature 481: 506–510.

Fischer A, V�azquez-Garc�ıa I, Illingworth CJR, Mustonen V. 2014.
High-definition reconstruction of clonal composition in cancer.
Cell Rep 7: 1740–1752.

Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E,
Martinez P, Matthews N, Stewart A, Tarpey P, et al. 2012. Intratumor
heterogeneity and branched evolution revealed by multiregion
sequencing. N Engl J Med 366: 883–892.

Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R,
McGranahan N, Matthews N, Santos CR, et al. 2014. Genomic
architecture and evolution of clear cell renal cell carcinomas defined
by multiregion sequencing. Nat Genet 46: 225–233.

Gerstung M, Beisel C, Rechsteiner M, Wild P, Schraml P, Moch H,
Beerenwinkel N. 2012. Reliable detection of subclonal
single-nucleotide variants in tumour cell populations. Nat Commun
3: 811.

GreavesM,Maley CC. 2012. Clonal evolution in cancer.Nature 481: 306–313.
Ha G, Roth A, Lai D, Bashashati A, Ding J, Goya R, Giuliany R, Rosner J,

Oloumi A, Shumansky K, et al. 2012. Integrative analysis
of genome-wide loss of heterozygosity and monoallelic expression
at nucleotide resolution reveals disrupted pathways in triple-negative
breast cancer. Genome Res 22: 1995–2007.

Halkidi M, Batistakis Y, Vazirgiannis M. 2002. Clustering validity checking
methods: part ii. SIGMOD Rec 31: 19–27.

The International Cancer Genome Consortium. 2010. International
network of cancer genome projects. Nature 464: 993–998.

Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K, Lawrence MS,
Sougnez C, Stewart C, Sivachenko A, Wang L, et al. 2013. Evolution and
impact of subclonal mutations in chronic lymphocytic leukemia. Cell
152: 714–726.

Larson NB, Fridley BL. 2013. PurBayes: estimating tumor cellularity and
subclonality in next-generation sequencing data. Bioinformatics 29:
1888–1889.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G,
Abecasis G, Durbin R, Subgroup GPDP, et al. 2009. The sequence
alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.

Lord CJ, Ashworth A. 2012. The DNA damage response and cancer therapy.
Nature 481: 287–294.

Mukhopadhyay A, Plummer ER, Elattar A, Soohoo S, Uzir B, Quinn JE,
McCluggage WG, Maxwell P, Aneke H, Curtin NJ, et al. 2012.
Clinicopathological features of homologous recombination-deficient
epithelial ovarian cancers: sensitivity to PARP inhibitors, platinum,
and survival. Cancer Res 72: 5675–5682.

Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K,
Stepansky A, Levy D, Esposito D, et al. 2011. Tumour evolution inferred
by single-cell sequencing. Nature 472: 90–94.

Nik-Zainal S, Van Loo P,Wedge DC, Alexandrov LB, Greenman CD, Lau KW,
Raine K, Jones D,Marshall J, RamakrishnaM, et al. 2012. The life history
of 21 breast cancers. Cell 149: 994–1007.

Nowell PC. 1976. The clonal evolution of tumor cell populations. Science
194: 23–28.

Oesper L, Mahmoody A, Raphael BJ. 2013. THetA: inferring intra-tumor
heterogeneity from high-throughput DNA sequencing data. Genome
Biol 14: R80.

Potter NE, Ermini L, Papaemmanuil E, Cazzaniga G, Vijayaraghavan G, Titley I,
Ford A,Campbell P, Kearney L,GreavesM, et al. 2013. Single-cellmutational
profiling and clonal phylogeny in cancer. Genome Res 23: 2115–2125.

Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, Ha G, Aparicio S,
Bouchard-Côt�e A, Shah SP, et al. 2014. PyClone: statistical inference
of clonal population structure in cancer. Nat Methods 11: 396–398.

Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A,
Gelmon K, Guliany R, Senz J, et al. 2009. Mutational evolution
in a lobular breast tumour profiled at single nucleotide resolution.
Nature 461: 809–813.

Shah SP, Roth A, Goya R, Oloumi A, HaG, Zhao Y, Turashvili G, Ding J, Tse K,
Haffari G, et al. 2012. The clonal and mutational evolution spectrum
of primary triple-negative breast cancers. Nature 486: 395–399.

Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC,
Curtis C, Watts C, Tavar�e S. 2013. Intratumor heterogeneity in human
glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci
110: 4009–4014.

Ha et al.

1892 Genome Research
www.genome.org

https://www.ebi.ac.uk/ega/
http://compbio.bccrc.ca/software/titan/
http://compbio.bccrc.ca/software/titan/


Van Loo P, Nordgard SH, Lingjærde OC, Russnes HG, Rye IH, Sun W,
Weigman VJ, Marynen P, Zetterberg A, Naume B, et al. 2010. Allele-
specific copy number analysis of tumors. Proc Natl Acad Sci 107: 16910–
16915.

Wang ZC, Birkbak NJ, Culhane AC, Drapkin R, Fatima A, Tian R, SchwedeM,
Alsop K, Daniels KE, Piao H, et al. 2012. Profiles of genomic instability in
high-grade serous ovarian cancer predict treatment outcome. Clin
Cancer Res 18: 5806–5815.

Xi R, Hadjipanayis AG, Luquette LJ, Kim TM, Lee E, Zhang J, Johnson MD,
Muzny DM,Wheeler DA, Gibbs RA, et al. 2011. Copy number variation
detection in whole-genome sequencing data using the Bayesian
information criterion. Proc Natl Acad Sci 108: E1128–E1136.

Yang L, Luquette LJ, Gehlenborg N, Xi R, Haseley PS, Hsieh CH, Zhang C,
Ren X, Protopopov A, Chin L, et al. 2013. Diverse mechanisms of

somatic structural variations in human cancer genomes. Cell 153: 919–
929.

Yau C. 2013. OncoSNP-SEQ: a statistical approach for the identification of
somatic copy number alterations from next-generation sequencing of
cancer genomes. Bioinformatics 29: 2482–2484.

Yau C, Mouradov D, Jorissen RN, Colella S, Mirza G, Steers G, Harris A,
Ragoussis J, Sieber O, Holmes CC, et al. 2010. A statistical
approach for detecting genomic aberrations in heterogeneous
tumor samples from single nucleotide polymorphism genotyping
data. Genome Biol 11: R92.

Received September 6, 2013; accepted in revised form July 23, 2014.

TITAN: inference of subclonal CNA/LOH

Genome Research 1893
www.genome.org


