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Neural signature of the perceptual 
decision in the neural population 
responses of the inferior temporal 
cortex
Mohammad‑Reza A. Dehaqani1,2,6, Nazli Emadi2,3,6, Abdol‑Hossein Vahabie1,2, 
Amin Zandvakili3,4 & Hossein Esteky3,5*

Rapid categorization of visual objects is critical for comprehending our complex visual world. The role 
of individual cortical neurons and neural populations in categorizing visual objects during passive 
vision has previously been studied. However, it is unclear whether and how perceptually guided 
behaviors affect the encoding of stimulus categories by neural population activity in the higher 
visual cortex. Here we studied the activity of the inferior temporal (IT) cortical neurons in macaque 
monkeys during both passive viewing and categorization of ambiguous body and object images. We 
found enhanced category information in the IT neural population activity during the correct, but not 
wrong, trials of the categorization task compared to the passive task. This encoding enhancement 
was task difficulty dependent with progressively larger values in trials with more ambiguous stimuli. 
Enhancement of IT neural population information for behaviorally relevant stimulus features suggests 
IT neural networks’ involvement in perceptual decision‑making behavior.

Classifying complex visual objects is a key cognitive function of primate brains. It has been shown that object 
category information is encoded by the activity of single inferior temporal (IT) cortex neurons. Specifically, 
neurons with selective responses to face and body have been found in the IT cortex of  monkeys1–5. We have previ-
ously shown that electrical stimulation of face-selective neurons can bias monkeys’ perceptual decision-making 
when categorizing ambiguous face/object  stimuli6. However, object category information of ambiguous visual 
stimuli is only poorly encoded by the responses of IT single  neurons2,7. When the visual cortex is challenged by 
noisy stimulus in object recognition tasks, the top-down attentional mechanism can enhance the category neural 
code in the IT  cortex2,8. Specifically, the activity of IT single neurons is modulated by cognitive functions such 
as  attention9–11 and  memory12–14 regardless of the visual signal level. While so much has been revealed about the 
impact of behavioral tasks on sensory code at the IT single cell level, little is known about the potential impact of 
behavioral tasks on visual information in the IT neural population. Among the few studies that have examined 
IT neural population task dependent sensory encoding are experimental and theoretical works that show the 
effects of task demands on the responses of the IT cortex in color-selective  neurons15,16. But IT cortex is mainly 
involved in object recognition, and task dependence of IT network activity in object recognition tasks is unclear.

Category information is represented by the pattern of neural activity in monkey and human visual  areas3,17. 
The IT stimulus response selectively is enhanced during visual object categorization while the variability of single 
neural responses  decreases7. A visual stimulus may be recognized by decoding the activity of single neurons or 
a population of  neurons3,4,18. Traditional views suggest sparse coding by gnostic  neurons19, but recent studies 
have pointed to the importance of population  coding3,20,21. Population coding is more resilient to external noise 
(stimulus visibility) or the internal noise that arises from spontaneous or evoked activities of neurons unrelated 
to the task at  hand22. Population coding of visual information has been reported in different visual areas such 
as  V123,  MT24,  V425, and  IT3,20,21. However, few studies have shown a link between neural population coding 
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and behavior in visual  areas24,26. Many studies used the choice probability to predict monkeys’ choice based on 
the firing rate of single neurons across visual  steams27–32. However, it is not clear whether the object category 
information in the spiking activity of the IT neural population is related to object recognition and perceptual 
decision-making.

In the current study, we recorded single unit spiking activities of IT neurons in macaque monkeys performing 
passive viewing and two-alternative forced-choice body/non-body discrimination tasks. We applied population 
encoding and decoding analysis to explore task-dependent sensory enhancement as a function of task difficulty 
in IT neural population activity and examined the relationship between IT population code and behavioral 
choice. We found that enhancement of category information in the population of neural responses is associ-
ated with monkeys’ correct choice. Interestingly, this behaviorally contingent neural activity modulation was 
task difficulty dependent, showing progressively larger enhancements in trials with more ambiguous stimuli. 
Even when neurons with no category selective responses were used for the population analysis, the population 
category information was present. Our results suggest an involvement of IT neural networks in perceptual 
decision-making behavior.

Results
Spiking activity of 123 single neurons was recorded from the inferior temporal cortex (IT) of two macaque 
monkeys under passive viewing and two-alternative forced-choice body/non-body categorization (Fig. 1A, B). 
The stimulus set was identical in the passive viewing and categorization tasks. The stimuli were images of bodies 
(human, monkey, four-leg; n = 90) and non-bodies (airplane, car, chair; n = 90)7. Each stimulus was presented 
with four levels of added noise to create various task difficulties (Fig. 1C). In each recording session, blocks of 
the passive and categorization tasks were presented in an interleaved order (Fig. 1D). As expected, monkeys’ 
performance declined as the stimulus visibility decreased (Fig. 1E). A selectivity index (SI, see “Methods”) 
defined neural response category selectivity. Of 123 recorded single neurons, 75 and 48 were defined as body 
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Figure 1.  Task and performance. (A) Passive fixation task (ISI: inter-stimulus interval). (B) Body/object 
categorization task. (C) Exemplar body and object images in different noise levels. Numbers below the images 
show the percent of the added noise in each column of images. (D) Order of the tasks in a session. Each bar 
represents one block of 90 trials of categorization (C, dark gray) or passive (P, light gray) tasks. (E) Monkeys’ 
performance in the categorization task was plotted for both (M1 and M2 subplot) and each monkey (M1 subplot 
and M2 subplot). The dashed line indicates 50% chance level. Error bars indicate the SEM.
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and non-body selective neurons, respectively (see “Methods”). We used body neurons for population analyses 
unless otherwise specified.

We used principal component analysis (PCA, see “Methods”) to visualize the distribution of category informa-
tion represented in the IT neural population responses. In this analysis, the eigenvectors of the neural covariance 
matrix were used to make a transformation matrix from the high dimensional to the lower dimensional neural 
spaces. In the passive viewing task, we found that IT neural population responses differentiated body/object 
stimulus images of the most visible stimuli with a 90% signal level (Fig. 2A). We observed more distinction 
between body and non-body representation in reduced neural space for 90% signal level stimuli than other signal 
levels. We conducted the same analysis using the correct and wrong trials to assess the relationship between IT 
category representation and the monkeys’ behavioral choice. The categorization information of IT neural popu-
lation responses was enhanced in all of the stimulus signal levels only in the correct trials (Fig. 2B). On average, 
64% ± 2% of the variance was captured by the first two dimensions of the PCA in passive and 67% ± 3% in active 
trials (the SEM computed across visual signals). The representation of the wrong trials in reduced neural space 
showed no clear body and non-body stimuli separation (Fig.  S1).

We introduced a categorization index (CI) to quantify the population-based category coding in the IT cortex 
(see “Methods”). This method can be applied to high dimensional datasets (here, 123 neurons) with a limited 
number of data points. To study the temporal dynamics of the category information across the IT neural popula-
tion, we calculated CI values in 100-ms sliding windows with 5-ms steps for different task difficulties (Fig. 3A 
and B). The time courses were offset by subtracting the mean value of CI computed at [−400 0] ms interval 
from stimulus onset. As expected, lower CI values were observed in more noisy stimuli (CI values from 150 to 
350 ms after the stimulus onset; these values were not offset: 90% = 1.66 ± 0.22; 70% = 0.71 ± 0.1; 55% = 0.48 ± 0.07; 
40% = 0.26 ± 0.05; Fig. 3C). There was a strong correlation between the category information and the level of 
stimulus visibility (r = 0.95, P < 0.05). In the passive condition, the IT neuronal population did not convey sig-
nificant information at 40% signal level (p = 0.75; the significance was checked by bootstrap confidence interval 
with the values of CI in [150 350] ms and [−200 0] ms time windows).

The temporal pattern of CI in the correct trials showed an enhancement in all signal levels (Fig. 3B). CI values 
measured during 150 to 350 ms time window revealed that category information was significantly enhanced in 
the correct trials compared with the passive trials (Fig. 3D; 40% = 1 ± 0.23, 55% = 1.51 ± 0.32, 70% = 1.25 ± 0.23, 
90% = 1.89 ± 0.27; two-way ANOVA with task conditions (passive vs. correct) and noise levels as the two 
factors, Ppassive vs. correct = 0.033,  Pnoise level = 0.0596; one replicate for each signal level). The enhancement of cat-
egory information was similar in both monkeys (monkey 1: Ppassive vs. correct = 0.007,  Pnoise level = 0.017; monkey2 
Ppassive vs. correct = 0.108,  Pnoise level = 0.088).

We calculated a normalized CI index to quantify the enhancement in the categorization information in the 
correct vs. passive conditions (see “Methods”). Interestingly, we found a more considerable enhancement of cat-
egory information in more demanding trials with less stimulus visibility (Fig. 3E; Pearson correlation, r = −0.98, 
P < 0.01). These results show that while category information was absent in the noisiest condition in the passive 
trials, this information emerged in the response of IT neurons only in the correct trials of the categorization 
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Figure 2.  Low dimensional representation of subcategories in IT neural population activity. Representation of 
the categories in the first two most informative dimensions of the principal component analysis is shown for 
passive (A) and correct (B) trials. Ellipses demonstrate two standard deviations of the distribution of category 
members in the 2D representations. Diamonds and circles show body and non-body stimuli, respectively.
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task. The main results were independently replicated in each monkey: enhancement of category information 
in 40% signal level was greater than 90% signal levels (Figure S2; bootstrap confidence interval; Monkey 1 and 
2 p < 0.001).

We also tested the classification performance of IT neurons using the Support Vector Machine (SVM) clas-
sifier (see “Methods”). The classifier results were consistent with the PCA and CI results. There are similar 
temporal dynamics for representing category information at different task difficulties in correct and passive 
trials (Fig. 4A and B). In the passive condition, we found high performance for the low noise stimuli (90% 
signal; decoding accuracy = 0.75 ± 0.04) with systematically lower performances for more noisy stimuli leading 
to chance level performance for the highest noisy stimuli (40%) (Fig. 4C; 70% = 0.64 ± 0.04 , 55% = 0.57 ± 0.04 
;40% = 0.48 ± 0.04; Pearson correlation, r = 0.99, P < 0.001; using bootstrap interval shows that there is no signifi-
cant difference between chance level (0.50) and decoding accuracy in 40% signal level; p = 0.3). Compared to the 
passive condition, classification accuracy increased in the correct trials, respectively (Fig. 4D: 90% = 0.77 ± 0.04; 
70% = 0.65 ± 0.05; 55% = 0.64 ± 0.06; 40% = 0.57 ± 0.06). The results also confirmed a larger enhancement of the 
classification accuracy in more difficult trials (Fig. 4E, Pearson correlation, r = −0.9, P < 0.09). We observed sta-
tistically similar task dependency effects in SVM analyses (two-way ANOVA with task conditions (passive vs. 
correct) and noise levels as the two factors, Ppassive vs. correct = 0.036,  Pnoise level = 0.011; one replicate for each signal 
level). Similar results were observed when data of each monkey was used separately (Fig. S3).

To this end, all of the analyses were performed using the responses of body neurons (SI > 0). We labeled 48 
neurons that systematically gave more responses to non-body than body images (SI < 0) as non-body selec-
tive and used them to calculate population category information. We equalized the number of cells in the 
body and non-body groups by selecting 48 body neurons with the highest SI values to exclude the sample 
size bias. Body neurons conveyed significantly more category information than non-body neurons in both 
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Figure 3.  Category information of body-selective neural population in different stimulus noise levels and 
task conditions. Time course of category information in passive (A) and correct (B) trials in different signal 
levels. Data points are plotted in the middle of each bin. Bar graphs illustrate the CI during 150 to 350 ms after 
stimulus onset in passive (C) and correct (D) trials. (E) Category information in the correct trials compared to 
passive trials. Error bars represent the STD of bootstrap samples.
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passive (Fig. 5A; ΔCIbody–nonbody: 40% = -0.08 ± 0.071, p = 0.884; 55% = 0.119 ± 0.086, p < 0.001; 70% = 0.251 ± 0.129, 
p < 0.001; 90% = 1.051 ± 0.235, p < 0.001) and correct (Fig. 5B; ΔCIbody–nonbody: 40% = 0.179 ± 0.213, p < 0.05; 
55% = 0.705 ± 0.267, p < 0.001; 70% = 0.505 ± 0.24, p < 0.001; 90% = 1.093 ± 0.27, p < 0.001) trials. Similar to the 
body selective neurons, non-body neurons’ category information was also enhanced during the categorization 
of the more noisy stimuli (Fig. 5C; Pearson correlation; r = −0.98, p < 0.05). Although there was no significant 
difference in response, spike count (SC) of body and non-body neurons to all stimuli in passive and active tri-
als (passive:  SCbody-cells: 1.82 ± 0.2,  SCnonbody-cells: 2.03 ± 0.29, p = 0.64; active:  SCbody-cells: 1.9 ± 0.19,  SCnonbody-cells: 
2.32 ± 0.33, , p = 0.39) and task-dependent enhancement of category information in body selective neurons 
were more than two times larger than that of non-body selective neurons in the noisy stimuli (Δ[(C−P)/
(C + P)]body-nonbody: 40% = 0.249 ± 0.0081, p < 0.001; 55% = 0.2927 ± 0.0072, p < 0.001; 70% = 0.0922 ± 0.0072, 
p < 0.001; 90% = −0.0233 ± 0.0067, p = 0.9). Consistent with CI in classification accuracy (CA), we observed that 
the body neurons conveyed significantly more category information than non-body neurons in both passive 
(ΔCAbody–nonbody: 40% = −0.035 ± 0.058, p = 0.726; 55% = 0.053 ± 0.054, p < 0.05; 70% = 0.065 ± 0.059, p < 0.05; 
90% = 0.168 ± 0.053, p < 0.001) and correct (ΔCAbody–nonbody: 40% = 0.054 ± 0.082, p = 0.250; 55% = 0.163 ± 0.079, 
p < 0.001; 70% = 0.096 ± 0.067, p < 0.001; 90% = 0.164 ± 0.052, p < 0.001) trials.

To further study the relation of SI values of category representation in the non-body population, we equalized 
the mean absolute value of SI in both body and non-body groups and calculated the CI in both populations. The 
advantages of body neurons in category representation compared to non-body neurons was observed in both pas-
sive (Fig. 5D; ΔCIbody–nonbody: 40% = −0.093 ± 0.072, p = 0.910; 55% = 0.063 ± 0.098, p = 0.248; 70% = 0.111 ± 0.133, 
p = 0.182; 90% = 0.471 ± 0.325, p < 0.001) and correct (Fig. 5E; ΔCIbody–nonbody: 40% = −0.046 ± 0.185, p = 0.59; 
55% = 0.314 ± 0.227, p < 0.01; 70% = 0.156 ± 0.234, p = 0.246; 90% = 0.504 ± 0.306, p < 0.001) trials. The SI-matched 
body neurons category information was also enhanced during the categorization of the more noisy stimuli 
(Fig. 5F; Pearson correlation; r = −0.95, p < 0.05).

We also measured IT neural category information in the wrong trials. We observed no significant cat-
egory information in any of the signal levels using CI or SVM methods (ΔCI: 90% = 0.19 ± 0.48, p = 0.34; 
70% = 0.24 ± 0.71 , p = 0.35; 55% = 1.01 ± 13.02, p = 0.47; 40% = 0.78 ± 3.57, p = 0.41—decoding accuracy: 
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90% = 0.57 ± 0.18, p = 0.27; 70% = 0.48 ± 0.15, p = 0.57; 55% = 0.52 ± 0.11, p = 0.43; 40% = 0.51 ± 0.08, p = 0.42). These 
analyses computed the difference of CI values in [150 350] ms and [−200 0] ms intervals. Significance was tested 
by the bootstrap confidence interval and comparing the values of CI in these two intervals. The significance of 
decoding bootstrap samples was tested against the chance level of the classifier (0.50). It should be noted that 
fewer wrong trials make the results noisier than the correct and passive trials.

There was a shorter interstimulus interval in our study in the passive compared to the active condition. So 
there might be a higher chance of response contamination by preceding stimuli in the passive condition. To test 
this possibility, we divided trials into two groups for each neuron: trials in which a body image preceded the 
stimulus and those in which a non-body image preceded the stimulus (Fig. 6). We then calculated the CI values 
of neurons in each group. There was no significant difference in category representation between the two groups 
(Fig. 6A: (∆CI: 90% = 0.0021 ± 0.008, p = 0.78; 70% = 0.0021 ± 0.0061, p = 0.23; 55% = 0.0046 ± 0.0038, p = 0.30; 
40% = 0.0013 ± 0.0037, p = 0.77, Wilcoxon’s signed-rank test, two-sided). Furthermore, we matched each neuron’s 
median responses in the passive and active trials to exclude the impact of rate magnitude. For each neuron in 
the active condition, we eliminated the stimulus with the highest response until there was no significant dif-
ference between passive and active neural response distributions (p > 0.05 using Wilcoxon’s signed-rank test, 
two-sided). Then we build the population’s matrix using the rate-matched neurons and computed the CI (Fig. 6B 
and C; Passive: 90% = 2.62 ± 0.49, 70% = 1.12 ± 0.2, 55% = 0.81 ± 0.15, 40% = 0.48 ± 0.1; Correct: 90% = 3.6 ± 0.7, 
70% = 2.39 ± 0.51, 55% = 3.07 ± 0.88, 40% = 3.53 ± 1.08). The task dependent enhancement of category information 
was preserved in the median-matched conditions (Fig. 6D; r = −0.99; p = 0.003).

To separate the effect of task-dependent enhancement on category representation, we compare body and non-
body stimulus representation (body and object categories) in correct compared to passive trials for the noisiest 
level stimuli (i.e., 40% signal level). We computed the decoding accuracy of the SVM classifier for the body and 
non-body stimuli using the confusion matrix. Greater enhancement of representation in the body compared to 
non-body stimuli was observed at the noisiest level of the signal in the correct trials (body category: 0.098 ± 0.004; 
object category: 0.081 ± 0.003; p <  10−3). Together, these results suggest that attention can contribute to enhance-
ment of body representation in correct trails.
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Category information of individual neurons may affects our measurement of the neural population cat-
egory code. To rule out this confounding effect, we calculated population category information using 36 neu-
rons with SI values at, or close to, zero labeled as non-category selective (Fig. 7A; −0.037 < SI < 0.037). None 
of these neurons showed significant category information in the passive or active conditions (p < 0.05; 95% 
bootstrap confidence interval). By definition, there was no category information at a single cell level in the 
passive (Fig. 7B; 40% = 0.0142 ± 0.0029, p = 0.71; 55% = 0.0109 ± 0.0009, p = 0.35; 70% = 0.012 ± 0.002, p = 0.28; 
90% = 0.0112 ± 0.0012, p = 0.20) or the correct (Fig. 7C; 40% = 0.0217 ± 0.0021, p = 0.71; 55% = 0.0204 ± 0.0038, 
p = 0.94; 70% = 0.0135 ± 0.0019, p = 0.09; 90% = 0.0181 ± 0.0032, p = 0.11) trials. Interestingly, non-selective 
neurons also conveyed significant category information at the population level in both the passive (Fig. 7B; 
40% = 0.13 ± 0.02, p = 0.6810; 55% = 0.16 ± 0.03, p < 0.001; 70% = 0.18 ± 0.03, p < 0.01; 90% = 0.15 ± 0.03, p < 0.05) 
and the correct (Fig. 7C; 40% = 0.18 ± 0.05, p = 0.76; 55% = 0.13 ± 0.04, p =  < 0.01; 70% = 0.14 ± 0.04, p =  < 0.05; 
90% = 0.26 ± 0.05, p < 0.05) trials.

To examine the contribution of a single unit in the observed population phenomena, we sorted the IT neurons 
based on their SI (see “Methods”). Then we made a set of the neural population by adding new single units (with 
increasing, Fig. 7D, and decreasing SI, Fig. 7E). Using this approach, we computed the CI as a function of the 
number of neurons in different conditions. In both non-selective (Fig. 7D) and selective (Fig. 7E) populations 
the correct trials conveyed more category information for a given number of neurons (for example the popula-
tion of 50-neurons, ΔCI in non-selective populations: 70% = 0.48 ± 0.33, p ≤ 0.01; 90% = 0.54 ± 0.3, p < 0.001, and 
ΔCI in selective populations: 70% = 0.95 ± 0.5, p < 0.001; 90% = 0.59 ± 0.56, p < 0.01).
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bootstrap samples.
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To understand how many neurons are needed to sufficiently represent category information in the population 
responses, we estimated the number of units explaining the maximum CI in each condition. Figure 8 shows the 
number of single units that can sufficiently explain each normalized CI value in the passive and active conditions. 
Figure 8 illustrated that in low noise stimuli, the small number of the most informative single units accounted 
for the most category coding. Table 1 lists the number of single units that can explain 25%, 50%, 75%, and 95% 
of the ultimate CI in the passive and correct conditions (rows) for different stimulus noise groups for selective 
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calculated by CI in passive (B) and correct (C) trials are shown for the individual units and the neural 
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the number of single units used for making the populations. Neurons were sorted based on SI, and sets of neural 
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and non-selective neural populations (column). More non-selective neurons should be recruited to represent 
less informative stimuli (Table 1).

Body selectivity in the IT cortex has been reported using electrophysiological recordings of neuronal spiking 
 activities3,33 and functional  MRI34–36. The presence of MRI-defined body selective regions suggests clustering of 
body selective neurons in the IT cortex. To examine the relation of IT neurons’ body selectivity and location, 
we computed SI using the highest signal level and plotted SI values versus the anterior–posterior (AP) positions 
of the recorded neurons (Figure S4A and B). These plots illustrate the concentration of high-value SI neurons 
(values SI > 0.25) located within AP 14–18 mm in both monkeys.
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Table 1.  The number of single units that can explain 25%, 50%, 75%, and 95% of the maximum CI. The table 
list the number of single units that can explain X% of the ultimate CI in the passive and correct conditions 
(rows) for different noisy stimuli of the selective andnon-selective neural populations (column). STD was 
estimated by bootstrap.

Selective Non-selective

VS = 40% VS = 55% VS = 70% VS = 90% VS = 40% VS = 55% VS = 70% VS = 90%

0.25% of CI

Passive 31.8 ± 30 37.1 ± 12.1 23.1 ± 7 10.1 ± 5.8 35.3 ± 20 36.4 ± 12.4 53.5 ± 14.5 79.3 ± 8.6

Correct 30.2 ± 19.4 27.4 ± 11.4 25.7 ± 10.1 14 ± 4.7 43.9 ± 16.3 48.4 ± 10.5 49.1 ± 9.5 54.7 ± 7.7

0.50% of CI

Passive 40.5 ± 32.1 57.4 ± 12.9 46.9 ± 17.3 42.6 ± 16.8 45.8 ± 21.8 58 ± 11.8 69 ± 8.1 87.2 ± 2.2

Correct 44.1 ± 18.3 44.4 ± 13.8 47.5 ± 11.9 38.9 ± 11.8 50.6 ± 15.9 57 ± 9.2 61.7 ± 6.2 65.5 ± 2.6

0.75% of CI

Passive 45.6 ± 33.4 71.7 ± 11.4 67.8 ± 16.4 71.1 ± 12.9 53.4 ± 22.5 72.5 ± 9.7 77.7 ± 6.3 89.7 ± 0.9

Correct 51.4 ± 16.4 55.6 ± 12.2 61.9 ± 9.3 58.7 ± 7.9 54.7 ± 15.7 61.9 ± 8.4 67.6 ± 4 69.2 ± 1.3

0.95% of CI

Passive 49.4 ± 34.2 80.6 ± 9 80.2 ± 12 86.8 ± 7.9 58.2 ± 22.9 81 ± 7 83.7 ± 4.1 92.4 ± 1.1

Correct 56.2 ± 15 62.4 ± 10.2 70.4 ± 5.8 71 ± 4.9 57.3 ± 15.7 65.6 ± 7.8 71.9 ± 3.4 73 ± 1.7
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We then used the high-valued SI neurons to construct the neural population and to compute category informa-
tion. Figure S5 shows that similar task-dependent category information was observed during the categorization of 
the more noisy stimuli  (CIpassive: 40% = 0.05 ± 0.01, 55% = 0.08 ± 0.02, 70% = 0.15 ± 0.03, 90% = 0.77 ± 0.09;  CIcorrect: 
40% = 0.14 ± 0.05, 55% = 0.26 ± 0.06, 70% = 0.41 ± 0.08, 90% = 0.9 ± 0.12). Similar to neural population, a larger 
enhancement of category coding was observed in more ambiguous trials ((C−P)/(C + P): 40% = 0.456 ± 0.008, 
55% = 0.546 ± 0.005, 70% = 0.477 ± 0.004, 90% = 0.082 ± 0.004).

To measure how well the firing rate of individual IT neurons predicted the behavioral responses of the mon-
key, we applied the area under ROC analysis. We computed choice probability (CP) using full noise stimuli for 
each neuron. In Fig. 9A, the neuron’s CP values are compared with the mean of the shuffled distribution. Neurons 
depicted with solid dots (n = 20) took values outside the 90% of the permuted distribution (CP = 0.67 ± 0.02). The 
category information coding of passive condition was compared with the correct trials in neurons with high CP 
(Fig. 9B;  CIpassive: 40% = 0.014 ± 0.01, 55% = 0.013 ± 0.012, 70% = 0.02 ± 0.017, 90% = 0.015 ± 0.018;  CIactive: 40% 
0.011 ± 0.005, 55% = 0.013 ± 0.007, 70% = 0.016 ± 0.019, 90% = 0.028 ± 0.033). The CI was significantly higher for 
the correct, compared with the passive, trials in stimuli with high visual signals (∆CI = 0.013 ± 0.018; p = 0.005, 
Wilcoxon’s signed-rank test, two-sided). The difference between the high-valued CP population and the popula-
tion of all neurons suggest a difference between the neural mechanisms involved in choice representation and 
object representation.

Discussion
The involvement of higher sensory areas in the neural processes related to perceptual decision-making has been 
extensively debated. Practically, all related studies have used responses of single units in the prefrontal cortex 
and different sensory areas to address this important question. Here, we have provided evidence that IT neural 
population responses convey more accurate body category information in the correct, but not wrong, trials of 
active categorization task compared with the passive vision condition. As expected, we found a larger amount 
of category information in the passive viewing condition as stimulus ambiguity decreased, confirming a faith-
ful representation of the category boundary map at the neural population level. More importantly, we found 
enhancement of category information in the body selective neurons during the correct, but not wrong, trials 
of the categorization task. The response modulation in the correct trials was task difficulty dependent, showing 
progressively larger degrees of enhancement in trials with more ambiguous stimuli. Monkeys’ wrong choices 
were correlated with a decline in IT neural population category information. Qualitatively similar results were 
observed for non-body neurons, but the category representation was significantly larger in the population of 
neurons with selective responses to the body. Critically, population category information was present even in 
responses of neurons that showed no category selectivity. These findings suggest that the IT cortex is involved 
in the discrimination of task-relevant category boundary map of familiar objects and might be part of a global 
decision-making network.

Theoretical studies of neural population coding have suggested a role for ensemble code in perception and 
decision  making37–40. However, very few experimental studies have examined the link between neural population 
activity and  behavior20,41. Here we show that category information in the neural population is task-dependent and 
enhances during object recognition compared to passive viewing tasks. Enhancement of category information 
was particularly observed when the basic population code, measured using the neural activity during the passive 
viewing condition, was insufficient to support reliable decisions due to high ambiguity in the visual stimulus. 
We also observed significantly higher levels of category information in the correct compared to the wrong trials 
showing a strong correlation between IT neural population code and monkeys’ behavioral choice. Our results 
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Figure 9.  Choice probability computed for full noise stimuli. (A) Comparison of the CP and mean of shuffled 
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are consistent with other reports of the contribution of population-level representation to cognitive functions 
such as categorization, visual attention, and decision  making18,21,42–46.

Ensemble of body selective neurons conveyed the highest amount of category information, and its category 
map underwent the highest degree of change in active vs. passive task. Non-body selective neurons showed a 
lower categorization index (CI) and enhancement of category boundary map in the active condition. These 
findings indicate a greater but not exclusive role for selective neurons in population coding. The highest values 
of CI during active conditions provide evidence for modulation of category representation by feedback sig-
nals. It has been shown that attention changes the responses of sensory neurons when performing a cognitive 
 task47–49. Therefore, attention as one of the main components of perceptual decision tasks can contribute to this 
modulation.

It has been shown that the performance of highly direction-selective medial temporal neurons correlates 
with behavior better than the general neural  population24. Another study has shown that detection of direction 
of visual motion mainly relies on the relative activity of neurons preferring opposite directions of  motion50. 
Decoding mechanisms based on single neurons’ information rely on the activity of the most informative units. 
In contrast, mechanisms that rely on a comparative analysis of the activation pattern across a neural popula-
tion may use information from the whole population regardless of the stimulus selectivity of the constituent 
 neurons51. We found that category selectivity of body neurons was enhanced at least three times more than those 
of non-body neurons. However, non-body neurons category selectivity was also significantly enhanced in the 
correct vs. passive condition. These findings suggest that the whole population of IT neurons may be used in 
behavioral choice and may be an integrated part of a global perceptual-contingent behavioral decision making.

Many studies show the importance of population-level representation for various cognitive functions and 
demonstrate that neural ensemble can utilize the non-selective neurons to improve  coding3,18,21,33,42,44,52,53. 
Although simultaneous recording is necessary to capture some aspects of the population code, the enhanced 
population-level representation is mainly determined by increasing the dimension of neural space and inter-
neuronal  correlation52. For a single neural response space, the neural representation of two categories may fall 
within a single plane and cannot be read out using a simple mechanism. However, two categories can be linearly 
distinguishable when more neurons are added to high dimensional representations. Higher dimensionality plays 
an important role in the linear readout of category information. Although an enhancement in noise correlation 
can improve the coding ability (e.g., if signal and noise correlations were in a different orientation), the theoretical 
and experimental  studies52,54,55 have shown that noise correlation can limit the amount of information coding 
in a neural population. Since our unit recordings were not simultaneous, we cannot address this limitation.

In summary, we have shown that enhanced category information in IT neural ensembles is associated with the 
correct categorization of visual objects. We observed greater enhancement of category coding in more difficult 
trials, and there was no significant category information in any of the signal levels during the wrong condition. 
This association between IT neural population activity and behavior indicates that the IT cortex is an integrated 
part of the global neural network responsible for perceptual decision making.

Methods
Subjects. Two male adult macaque monkeys (Macaca mulatta) were used in this study. Head restraints and 
recording chambers were stereotaxically implanted under aseptic conditions on the dorsal surface of the skull 
of the monkeys while the animals were anesthetized with sodium pentobarbital. The anesthesia was performed 
under ARRIVE guidelines. All experimental procedures were approved by the animal care and use committee of 
the Institute for Research in Fundamental Sciences (04-11-6415-2008). All methods were performed in accord-
ance with the relevant guidelines and regulations.

Stimuli. The stimuli were presented on a 19 inch CRT computer monitor placed 57 cm in front of the mon-
key seated in a primate chair. The stimuli were 7° × 7° in size grayscale photographs of bodies (including human, 
monkey, and four-leg) and objects (including aircraft, cars, and chairs). There were 90 images in each category 
(30 images per subcategory). Each stimulus was presented in four different signal levels. Each signal level was 
generated by assigning a uniformly distributed grayscale value to X% of image pixels, where 100-X was the abso-
lute signal level and had one of the values of 90, 70, 55, or 40. These 720 noisy stimuli (2 categories, 90 stimuli 
in each category, 4 signal levels) and 90 full noise images (0% visual signal) were randomly presented to the 
monkeys without repetition.

Behavioral paradigms. In each recording session, monkeys performed two tasks; passive fixation (passive) 
and two-alternative forced-choice body/non-body categorization (active) tasks. At the beginning of a recording 
session, 810 noisy stimuli in the image set were randomly divided into 9 blocks of 90 images separately for each 
task. Monkeys were presented with an interleaved order of passive and active blocks, starting randomly with 
any of them in each recording session. No cue was provided to the monkeys about the task change beforehand.

In the passive fixation task following 400 ms of fixation on a fixation point at the center of the screen, a ran-
dom sequence of 90 images (7° × 7° in size) were presented to the monkey. Each image was presented once and 
for 70 ms with three variable blank intervals (850, 900, and 950 ms) between images. The monkey was rewarded 
with a drop of apple juice every 1.5–2 s as long as its gaze was maintained within a 2.4° × 2.4° fixation window at 
the center of the screen. The sequence stopped when the monkey broke the gaze fixation, and the fixation point 
reappeared after a 1500 ms blank interval.

The monkey started an active trial by fixating on a fixation point at the center of the screen for one of the 
three randomly selected durations (350, 400, or 450 ms) followed by a noisy image (7° × 7° in size) presented for 
70 ms at the center of the screen. The images were presented in a pseudo-random order, assuring each image 
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was only presented once. The image presentation was followed by a 500 ms blank interval followed by two small 
response targets presented 10 visual degrees to the left and right of the screen center. The left and right targets 
represented the body and non-body responses, respectively for one monkey and the opposite for the other one. 
Monkeys were required to make a saccade to the correct target no later than 300 ms after the onset of targets and 
maintain their gaze within a 2.4° × 2.4° fixation window on the saccade point for 150 ms. Correct responses were 
rewarded by a drop of apple juice. For full noise stimuli (0% visual signal), the monkey was rewarded randomly 
with a probability of 0.5. The inter-trial delay was 750 ms on the correct trials and 1500 ms on the false trials. An 
infrared eye-tracking system measured the eye position (i_rec, http:// staff. aist. go. jp/k. matsu da/ eye/).

Recording. We recorded the spiking activity of 123 single units in the IT cortex of behaving monkeys (n = 49 
in monkey 1 and n = 74 in monkey 2). For each neuron, data were collected during both active and passive tasks. 
In each recording session, tungsten electrodes (FHC, USA) were inserted into the IT cortex. The electrodes 
were advanced with an Evarts-type manipulator (Narishige, Japan) from the dorsal surface of the brain through 
a stainless steel guide tube inserted into the brain down to 10–15 mm above the recording sites. The recording 
positions were defined by the MRI images acquired before the surgery. Recordings were made on an evenly 
spaced grid, with 1-mm intervals between penetrations over a wide region of the lower bank of STS and TE cor-
tices (12 to 18 mm and 13 to 20 mm anterior to the interauricular line in monkey 1 and monkey 2, respectively). 
The action potentials of single units were isolated in real-time by a template matching  algorithm56. After isolating 
single units, monkeys were required to perform the passive fixation and the categorization tasks.

Data analysis. Based on the similar trend of monkeys’ behavior and a similar pattern in other results, data 
from two monkeys were combined in all analyses.

Selectivity Index (SI). The degree of category selectivity of each neuron for body versus object images was 
measured by SI:

μ(B) and μ(O) were the means evoked response of each neuron (within 70 ms to 420 ms after the stimulus 
onset) to body and object images, respectively. In each neuron, SI values were averaged across all signal levels 
in correct trials of the active task. Neurons with SI values larger than zero were considered as body selective.

Population analysis. The individual neurons used in population analysis were recorded in different record-
ing sessions with slightly different trial numbers (median = 810, mean ± s.e.m. = 791 ± 14). Neural subpopula-
tions were randomly generated from the recorded neurons in each specific condition. Trial numbers between 
different neurons were matched by the mean number of body and non-body trials; by condition, we refer to the 
task and signal level. All of the neurons which have a trial number more than the mean number of trials in each 
category and condition were included in a population analysis (for all conditions: neuron number > 68; stimulus 
number > 86). Therefore we did not repeat any trial to make population. We equalized the number of body and 
non-body stimuli to prevent potential bias of stimulus number in each category. We randomly sampled the tri-
als from the body and non-body stimuli for each neuron. The selected trials of N neurons were concatenated 
together to make the population response  (RN space). Each stimulus (x) is represented as a point in the  RN space 
x ∈ RN , N is the number of neurons. We repeated sampling and concatenation 1000 times to provide a bootstrap 
procedure. Using this bootstrap method, we calculated population measurement distributions and estimated 
confidence intervals. The standard error (SE) was then estimated as the standard deviation of computed meas-
urements over 1000 bootstrap runs.

PCA. To illustrate categories represented in the population of neural response, we used Principle Component 
Analysis (PCA) to reduce the dimension of neural space and show the categories in two-dimension  space57,58. 
The neural response from 150 to 350 ms after the stimulus onset was used in this analysis. The first two compo-
nents with the greatest variance were used to generate the two-dimensional representation of the neural popu-
lation space. To illustrate the body and non-body stimuli representation in reduced PCA space, we used the 
covariance matrix of stimuli in body and non-body categories. This matrix was illustrated by the ellipses that 
demonstrate two standard deviations of the distribution of category members in the 2D representations.

Categorization Index. A categorization index was defined to quantify category information in the neural 
population. This index is based on the ratio of the between-category to within-category response variability. 
A Scatter matrix is a statistic used to estimate the covariance matrix of a high-dimensional  space59. Scatters of 
the within-category subgroups (e.g., human and monkey body) and between-category subgroups (e.g., human 
body and car) were generated. The ratio of between-category scatters to the within-category scatter indicates the 
category information in the pattern of IT neural responses.

CI was measured in a 200-ms window from 150 to 350 ms after the stimulus onset in three steps:
First, we computed the center of mass of each category in  RN and also the mean across all categories, total 

mean:

SI =
µ(B)− µ(O)

µ(B)+ µ(O)

http://staff.aist.go.jp/k.matsuda/eye/
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Each image (x) is a point in the  RN space x ∈ RN , N is the number of neurons and Ci is the set of images 
in the ith category. ni is the number of images in the ith category and n is the total number of images; c is the 
number of categories.

Second, the within and between scatters were computed with the following formulas:

In within-category scatter matrix, the covariance matrix measures potential relations of the neural responses 
in a specific category. In between-category scatter matrix, the covariance matrix of the mean responses in each 
category and the total mean was computed.

Third, CI was computed as:

 which �i i = 1,2,.., n (n = number of neurons in population) are the Eigen valuse of S−1
W SB . This method of CI 

calculating can be applied to high dimensional datasets with a limited number of data  points33. It is closely related 
to Fisher’s  information52,59, and the use of ANOVA in low dimensional  datasets60. To calculate the standard error 
of the separability index, we used a bootstrapping  process61. All of the calculations were repeated 1000 times 
on a random selection of stimuli. We used the standard deviation of bootstrap samples to compute confidence 
intervals and significances by checking whether the zero lay outside the confidence interval of different distribu-
tions or not. We applied the percentile-based method for statistical tests and the SE of bootstrap samples used 
for plotting error bars in the plots. We computed the p-values by counting the number of values that exceed 
the observed value. For comparing two bootstrap distribution. For measuring CI in time, 100 ms windows with 
5-ms steps were used.

The CI in one-dimensional space is similar to F-statistic. So to study the amount of category information 
conveyed by every single neuron, we used CI computed for single neuron responses in a 200 ms window from 
150 to 350 ms after the stimulus onset.

Significance of CI for population analysis in [150 350] ms time window was tested by bootstrap confidence 
interval and comparing the values of CI in this time window with the CI values computed in a 200-ms window 
before stimulus onset ([−200 0] ms). We used the Wilcoxon sign rank test to examine the significance of CI values 
for single cells in these two-time intervals.

Category information in correct trials comparative to passive trials was measured by the following formula 
using normalized values:

Classifier. A decoding approach was used to measure the categorical information in the neural population. We 
trained a Support Vector Machine (SVM) classifier with a linear  kernel62 on the population of neural response. 
We applied a fivefold cross-validation procedure to estimate the classifier’s performance in the population in a 
200-ms window from 150 to 350 ms after the stimulus onset. To generate the SEs of the classifier output (decod-
ing accuracy), we used a bootstrap method and repeated the calculations 1000 times. In each repetition, the 
classification accuracy was computed cross-validation. We used the standard deviation of bootstrap samples to 
compute confidence intervals and significances. One hundred-ms windows with 5-ms steps were used to meas-
ure classification accuracy in time. Classification accuracy (CA) in correct trials compared to passive trials was 
measured by the following formula using normalized values:

Choice probability. To quantify the relationship between neural response and choice of the monkeys, we com-
puted empirical receiver operating characteristic (ROC)  curves28,63 and used the area under curves as a measure 
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of choice probability (CP). Based on the monkey’s category choice, the neural responses to full noise stimuli 
were divided into body and non-body distributions. The area under ROC gives a nonparametric and reliable 
measure for the separation of neural response evoked by monkeys’ decisions. Choice probability measured by 
ROC analysis represents the proportion of trials that could correctly predict the monkeys’ choice based on the 
firing rate of a single IT neuron. A value of 0.5 represents chance performance, and a value of 1 represents a 
perfect association between neural and behavioral responses. Statistical significance for the choice probabilities 
was computed using a permutation  test64 with 1000 permutations. We calculated the CP for neural data after 
randomly shuffling the monkey’s choice. We obtained the chance distribution, and the actual ROCs that lay 
outside the confidence interval of the permuted distribution were considered significant (i.e., one-tailed test).
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