
REVIEW
published: 29 June 2018

doi: 10.3389/fendo.2018.00345

Frontiers in Endocrinology | www.frontiersin.org 1 June 2018 | Volume 9 | Article 345

Edited by:

Derek LeRoith,

Icahn School of Medicine at

Mount Sinai, United States

Reviewed by:

Erika Peverelli,

Università degli Studi di Milano, Italy

Carsten Grötzinger,

Charité Universitätsmedizin Berlin,

Germany

*Correspondence:

Terry W. Moody

moodyt@mail.nih.gov

Specialty section:

This article was submitted to

Systems and Translational

Endocrinology,

a section of the journal

Frontiers in Endocrinology

Received: 15 May 2018

Accepted: 11 June 2018

Published: 29 June 2018

Citation:

Moody TW, Ramos-Alvarez I and

Jensen RT (2018) Neuropeptide G

Protein-Coupled Receptors as

Oncotargets. Front. Endocrinol. 9:345.

doi: 10.3389/fendo.2018.00345

Neuropeptide G Protein-Coupled
Receptors as Oncotargets

Terry W. Moody 1*, Irene Ramos-Alvarez 2 and Robert T. Jensen 2

1Department of Health and Human Services, National Cancer Institute, Center for Cancer Research,

National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States, 2Digestive Diseases

Branch, National Institute of Diabetes, Digestive, and Kidney Disease (NIDDK), Bethesda, MD, United States

Neuropeptide G protein-coupled receptors (GPCRs) are overexpressed on numerous

cancer cells. In a number of tumors, such as small cell lung cancer (SCLC), bombesin

(BB) like peptides and neurotensin (NTS) function as autocrine growth factors whereby

they are secreted from tumor cells, bind to cell surface receptors and stimulate growth.

BB-drug conjugates and BB receptor antagonists inhibit the growth of a number of

cancers. Vasoactive intestinal peptide (VIP) increases the secretion rate of BB-like peptide

and NTS from SCLC leading to increased proliferation. In contrast, somatostatin (SST)

inhibits the secretion of autocrine growth factors from neuroendocrine tumors (NETs)

and decreases proliferation. SST analogs such as radiolabeled octreotide can be used

to localize tumors, is therapeutic for certain cancer patients and has been approved for

four different indications in the diagnosis/treatment of NETs. The review will focus on

how BB, NTS, VIP, and SST receptors can facilitate the early detection and treatment of

cancer.

Keywords: cancer GPCR, cancer RTK, bombesin, neurotensin, vasoactive intestinal peptide, pituitary adenylate

cyclase activating polypeptide (PACAP), somatostatin, cancer signal transduction

INTRODUCTION

Gprotein-coupled receptors (GPCRs) have 7 transmembrane (TM) domains and they interact with
G proteins comprised of α, β, and γ subunits (1). The activated GPCRs undergoes a conformation
change dissociating the G-protein into a GTP-bound α subunit and β, γ dimer. GPCRs for
bombesin (BB) and neurotensin (NTS) interact with Gq/11, whereas receptors for vasoactive
intestinal peptide (VIP) interact with Gs and somatostatin (SST) receptors interact with Gi/0 (2).
BB andNT receptors cause phosphatidylinositol (PI) turnover resulting in the elevation of cytosolic
Ca2+ and activation of protein kinase (PK) C. VIP receptors activate adenylyl cyclase resulting in
elevated cAMP whereas SST receptors reduce the elevation of cAMP stimulation caused by VIP.

Neuropeptides modulate neural activity in the brain in a paracrine manner, however,
they function as autocrine growth factors in cancer (3). BB, NTS, and VIP stimulate the
growth of small cell lung cancer (SCLC) cells whereas SST inhibits growth (3). BB and
the structurally related gastrin-releasing peptide (GRP) bind with high affinity to the GRP
receptor or BB2R; NTS binds high affinity to NTSR1; VIP binds with high affinity to
VPAC1/VPAC2 and SST as well as octreotide/lanreotide bind with high affinity to SSTR2/SSTR5
but reduced affinity to SSTR1, SSTR3, and SSTR4. The agonist-GPCR complex is internalized
and the GPCR recycle to the membrane but the peptide is metabolized in lysosomes.
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Because cancers frequently over-express GPCRs, the cancer
GPCRs can be used to deliver neuropeptide-drug conjugates into
the cancer cell (4). In contrast, GPCR antagonists bind to the
GPCR at the cell surface but are not internalized. PD176252
(GRPR antagonist) and SR48692 (NTSR1 antagonist) inhibit
cancer growth (5–7). This review will focus on how neuropeptide
GPCRs are oncotargets for the early detection and treatment of
cancer.

GRPR, NEUROMEDIN B RECEPTOR AND
BBR SUBTYPE 3

SCLC has high levels of the BB-like peptide GRP (8, 9). GRP
is derived from a 148 amino acid prepropeptide (10). After
removal of the N-terminal 23 amino acid signal sequence, pro-
GRP1−125 is metabolized by a prohormone convertase to GRP,
which contains 27 amino acids and has an amidated C-terminal.
GRP (proGRP1−27) is readily metabolized in the blood but SCLC
patients have elevated pro-GRP (11). Antibodies to proGRP31−98

have been used to detect high concentrations of proGRP (>100
pg/ml) in the serum of patients with SCLC. Because proGRP is
elevated in the serum of 71% of the SCLC patients it may be
a biomarker for SCLC (12). BB or GRP, but not proGRP bind
with high affinity to the GRPR. The C-terminal octapeptide of
BB or GRP can be neutralized by mAb 2A11. mAb2A11 inhibits
the growth of SCLC in vitro and in mouse models in vivo (13).
In a clinical trial, 2A11 was well tolerated and one patient had
SCLC remission whereas four patients had stable disease out of 13
patients treated (14). The results indicate that the GRP precursor
may be a biomarker for SCLC.

Table 1 shows that the GRPR, which is localized to
chromosome xp22, contains 384 amino acids and is a member
of the class A/Rhodopsin-like GPCR (15, 16). The neuromedin
B (NMB) R or BB1R, which is localized to chromosome 6q24,
contains 390 amino acids whereas BB receptor subtype-3 (BRS-
3), which is localized to chromosome xq26, contains 399 amino
acids. The NMBR and BRS-3 have about 50% sequence homology
with the GRPR (17, 18). The GRPR binds GRP and NMB
with high and low affinity, respectively. The NMBR binds GRP
and NMB with low and high affinity, respectively. The orphan
receptor BRS-3 binds both GRP and NMB with low affinity but
MK5046 binds with high affinity (7). The universal agonist BA1,
(D-Tyr6, β-Ala11, Phe 13, Nle14) BB6−14, binds with high affinity
to the GRPR, NMBR, and BRS-3. Numerous amino acids in TM
domains 6 and 7 as well in extracellular loops (EL) 1, 2, and 3
of the GRPR are essential for high affinity binding of GRP (4).
While the GPCRs of each family have a similar sequence, the
pharmacological profile is different.

BB-drug conjugates were synthesized which are cytotoxic for
lung cancer cells. The topoisomerase-1 inhibitor camptothecin
(CPT) was coupled with a linker to the N-terminal of BA1.
Surprisingly, the resulting CPT-L2-BA1 bound with higher
affinity to the GRPR, NMBR, and BRS-3 than did BA1 (19). CPT-
L2-BA1 was an agonist which increased PI turnover and was
internalized. The CPT-L2-BA1 was metabolized in the lysosome
leading to the release of CPT (20). Also, BB agonists have been

coupled to paclitaxel (21), doxorubicin (22), marine toxins (23),
magainin II (24), and siRNA to the GRPR (25) resulting in
decreased cancer cellular proliferation. Doxorubicin was coupled
to a GRPR antagonist and the resulting AN-215 was cytotoxic for
gastric, colon, lung, ovarian, endometrial, breast, and pancreatic
cancer (26). RC-3095, a GRPR antagonist, was tested in 25
patients with solid tumors. RC-3095 had minimal toxicity but a
partial response was only seen in 1 patient (27). Unfortunately,
these BB-drug conjugates will not only kill cancer cells, but
normal cells with excessive BBR.

BBR antagonists were developed which inhibit the growth of
cancer cells. Peptide antagonists such as RC-3095 or (Psi13,14,
Leu14)BB blocked the GRPR, and they inhibited the growth
of cancer cells (27, 28). Small molecule antagonists such as
PD168368 were synthesized which inhibit the growth of cancer
cells which have NMBR (6). Also, bantag-1 is a peptide antagonist
for BRS-3 (29). The BB receptor antagonists inhibited the growth
of lung cancer cells in vitro and in vivo using nude mice bearing
lung cancer xenografts. GRPR, NMBR, and BRS-3 mRNA was
detected in 11/13 lung cancer cell lines (7). All lung cancer cell
lines tested had at least 1 type of BBR and many cell lines had all
3 receptors.

In contrast, a high density of GRPR but not NMBR or BRS-
3 were detected in most prostate and breast cancer cells (30).
GRPR agonists were labeled with 111In, 64Cu, 99mTc, 68Ga, 18F
for imaging studies. Using a 99mTc-BB2−14 analog 14 prostatic
lesions were visualized in patients (31). Using a 99mTc-RGD-BB
analog, tumors were visualized in 6/6 breast cancer patients (32).
Using a 64Cu-BB6−14 analog, tumors were visualized in 3 of 4
prostate cancer patients (33). It remains to be determined if the
imaging of GRPR will be useful in the early detection of breast
and/or prostate cancer.

Many of the growth effects of BB-like peptides on non-
SCLC (NSCLC) cells may result from transactivation of receptor
tyrosine kinases (RTK) such as the epidermal growth factor
receptor (EGFR). Activation of the NMBR in NSCLC cells
causes PI turnover leading to increased phosphorylation of the
EGFR (Figure 1). Addition of NMB to NSCLC cells increases
the tyrosine phosphorylation of the EGFR after 1min leading
to the tyrosine phosphorylation of ERK after 2min (34). The
transactivation of the EGFR that is regulated by the NMBR
is inhibited by the tyrosine kinase inhibitor (TKI) gefitinib or
the NMBR antagonist PD168368. The transactivation process
in NSCLC cells is mediated by the EGFR ligand transforming
growth factor (TGF)α (Figure 1). The inactive precursor pro-
TGFα is metabolized by matrix metalloprotease (MMP) enzymes
in the membrane to biologically active TGFα which is secreted
and binds to the EGFR. The transactivation of the EGFR
caused by addition of NMB to NSCLC cells is inhibited by
GM6001 (MMP inhibitor) or anti-TGFα Ab. The transactivation
process requires reactive oxygen species (ROS). Addition of
N-acetyl cysteine (antioxidant) or tiron (superoxide scavenger)
impaired the ability of NMB to increase EGFR tyrosine
phosphorylation. The ROS may oxidize Cys773 of the EGFR
increasing its tyrosine kinase activity and/ or oxidize protein
tyrosine phosphatases (PTP) impairing their ability to metabolize
phosphotyrosine (35, 36). The results indicate that GPCRs
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TABLE 1 | Peptide GPCRs (human).

Receptor GRPR NMBR BRS-3 NTSR1 NTSR2 VPAC1 VPAC2 PAC1

Chromosome xp22 6q24 xq26 20q13 2p25 3p22 7q36 7p14

Amino acids 384 390 399 418 410 457 438 468

G-protein Gq Gq Gq Gq Gq Gs Gs Gs, Gq

Agonist BB, GRP NMB MK5046 NTS NTS VIP VIP Maxidillin

BA1 BA1 BA1 JMV449 Levocabastine PACAP PACAP PACAP

(Lys15, Arg16,

Leu17)VIP1−7

GRF8−27

R025-1553

Antagonist RC3095 PD168368 Bantag1 SR142948A SR142948A VIPhyb VIPhyb PACAP(6–38)

(Psi13,14,

Leu14)BB

SR48692

PD176252

FIGURE 1 | Effect of GPCR’s on RTK transactivation. GPCRs for BB and NTS couple to Gq and causes metabolism of PIP2 to DAG (activates PKC) and IP3 (elevates

cytosolic Ca2+). Addition of NTS or BB to NSCLC cells increases phosphorylation of PYK2, FAK or paxillin leading to increased cellular migration. GPCR for VIP

interact with Gs activating adenylyl cyclase and increasing cAMP. The cAMP activates PKA leading to CREB phosphorylation and altered gene expression. GPCR for

PACAP interact with both Gq and Gs. GPCR activate Src and MMP resulting in the production of EGFR ligands such as TGFα. When TGFα binds to the EGFR,

tyrosine kinase activity is increased leading to phosphorylated EGFR homodimers or EGFR-HER2 heterodimers. The RTK activates the Ras-Raf-MEK-ERK pathway

leading to increased cellular proliferation. The RTK activates the PI3K-PKD-AKT-mTOR pathway leading to increased cellular survival. The phosphorylated

EGFR/HER2 is dephosphorylated by protein tyrosine phosphatase (PTP).

regulate the transactivation of receptor tyrosin kinases (RTKs) in
NSCLC cells.

The EGFR contains 1,186 amino acids with a 621 and
extracellular domains I and III bind EGF or TGFα with high
affinity (37). The EGFR has a 23 amino acid TM domain and
a 542 intracellular domain with tyrosine kinase activity. Lys721

is essential for binding ATP and the phosphorylation of protein
substrates. Upon binding of ligand, the EGFR can undergo
homodimerization resulting in the phosphorylation of Tyr1068,
Tyr1086, Tyr1148, and Tyr1174. Alternatively, the EGFR can form
heterodimers with HER2. The MAPK and PI3K/Akt pathways
are downstream of the EGFR and are important for EGFR

mediated proliferation and cancer cellular survival, respectively.
Currently, we are investigating if GPCRs transactivate additional
RTK such as HER2, HER3 or HER4 in cancer cells.

NMB increases the proliferation of NSCLC cells. In contrast,
PD168368 and gefitinb inhibit the growth of NSCLC cells
(34). Surprisingly, combinations of the NMBR antagonist with
the EGFR TKI reduced the proliferation of NSCLC cells
in a synergistic manner. The results indicate that GPCR
antagonists potentiate the action of TKI in NSCLC. Traditionally
NSCLC which kills 130,000U.S. citizens annually is treated with
combination chemotherapy, however, the 5 year survival rate
is only 15%. The EGFR is mutated is approximately 13% of
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the NSCLC patients and those with the L858R mutation have
increased tyrosine kinase activity and sensitivity to TKI such
as gefitinib or erlotinib (38, 39). Traditionally NSCLC patients
are treated with combination chemotherapy, however, the 5 year
survival rate is only 15% (40).

NEUROTENSIN RECEPTORS

NTS is present in numerous SCLC cell lines (9, 41). NTS is
derived from a 170 amino acid precursor and metabolized to a
biologically active peptide which contains 13 amino acids (42).
NTS and its C-terminal fragment NTS8−13 bind with high affinity
to the NTSR1, which is localized to chromosome 20q13, contains
418 amino acids, and is a class A/Rhodopsin-like GPCR. Table 1
shows that the NTSR2 which is on chromosome 2p25 contains
410 amino acids and binds NTS and levocabastine with high
affinity. The NTS−-NTSR1 complex has been crystallized and
NTS8−13 sits on top of the NTS binding pocket and interacts with
TM domains 6 as well as 7 and EL 2 as well as 3 (43). Both NT and
BB receptors have short N-terminals which have little effect on
ligand binding (44). The nonpeptide NTSR1 antagonist SR48692
binds deep into the NTSR1 binding pocket and blocks the effects
of NTS agonists. Also, SR142948A blocks both the NTSR1 and
NTSR2. The NTSR3 is not a GPCR but is sortilin.

NTS binds with high affinity to SCLC cells (45). Addition
of NTS to cancer cells causes PI turnover leading to increases
PKC activity and elevation of cytosolic Ca2+ (46–48). In contrast,
the NTSR2 agonist levocabastin has little effect on lung cancer
cells. The effects of NTS on second messenger production and
proliferation was antagonized by SR48692 (5). NTS addition to
cancer cells causes phosphorylation of various proteins such as
focal adhesion kinase (FAK) or ERK (49, 50). The phosphorylated
ERK increases the expression of c-fos and c-jun leading to cellular
proliferation (51). NTS stimulates proliferation whereas SR48692
inhibits the proliferation of lung cancer cells (5). NT addition
to NSCLC cells increased EGFR tyrosine phosphorylation 5-fold
(52). NT (5 nM) half-maximally increased EGFR transactivation
after 2min. NTS or NTS8−13 but not NT1−8 or levocabastine
increase EGFR tyrosine phosphorylation. The NTSR1 regulation
of EGFR transactivation is inhibited by SR48692, gefitinib,
PP1, GM6001, TGFα antibodies and antioxidants. SR48692 and
gefitinib inhibit the proliferation of NSCLC cells in a synergistic
manner. Previously, JMV449, a NT8−13 analog, was found to
increase expression of the EGFR, HER2, and HER3 after 24 h
(53). JMV449 addition to cells increase MMP activity resulting
in HB-EGF and neuregulin 1 release, which activates the EGFR
and HER3, respectively.

NTSR1 regulates the EGFR transactivation in numerous
cancers including colon, foregut neuroendocrine, lung, and
prostate cancer (47, 52, 54, 55). Lung cancer and gastric
cancer patients whose tumors had high densities of NTSR1
had decreased survival (53, 56). Addition of NTS to NSCLC
cells caused tyrosine phosphorylation of the EGFR in a PLC-
dependent manner (52). Phosphorylated β-catenin dissociates
from E-cadherin and increases the expression of NTSR1. Wnt/β-
catenin signaling increases the expression of E-cadherin leading

to epithelial to mesenchymal transitions and cancer metastasis
(57). Recently, 3BP-227, a SR142948A analog, was radiolabeled
and used to image tumors containing NTSR1. In nude mice
containing HT29 colon cancer tumors 177Lu-3BP-227 localized
to the tumors with high tumor-to-kidney or tumor-to-liver ratios
using whole-body SPECT/CT techniques (58). In 5 out of 6
patients with ductal pancreatic adenocarcinoma tumor uptake of
177Lu-3BP-227 was observed (59). It remains to be determined
if 177Lu-3BP-227 will improve survival of patients whose tumors
are enriched in NTSR1.

VIPRs AND PITUITARY ADENYLATE
CYCLASE ACTIVATING POLYPEPTIDE
RECEPTOR

The biological activities of the VIP and PACAP family of peptides
are mediated by 3 GPCR (VPAC1, VPAC2, and PAC1), which
are members of the classB/secretin-like receptors (60). Table 1
shows that VPAC1, which is localized to chromosome 3p22,
contains 457 amino acids with a 112 amino acid N-terminal.
VPAC2, which is localized to chromosome 7q36, contains 438
amino acids with a 103 amino acid N-terminal. PAC1, which is
localized to chromosome 7p14, contains 468 amino acids with
a 125 amino acid N-terminal. PAC1 has about 50% sequence
homology with VPAC1 or VPAC2 (60). The large N-terminal
extracellular domain of PAC1 has antiparallel β-sheets and binds
to the C-terminal of PACAP (61, 62). The PAC1 receptor has 3
closed transitional states (G1-G3) and one open state named G4
(63). The N-terminal of PACAP, which activates PAC1 binds to
EL and TM domains (64). VPAC1, VPAC2, and PAC1 interact
with Gs resulting in elevated cAMP, however, PAC1 interacts with
Gq as well resulting in PI turnover (65). VIP, which contains 28
amino acids, is derived from a 170 amino acid precursor protein.
PACAP-27 as well as PACAP-38 is derived from a 176 amino
acid precursor protein and 67% of the amino acids in PACAP-
27 and VIP are identical (60). VPAC1 and VPAC2 binds VIP and
PACAP-27 or PACAP-38 with high affinity, whereas PAC1 binds
PACAP-27 or PACAP-38 with high affinity but VIP with low
affinity. Maxidillin, a 61 amino acid peptide isolated from sand
fly, binds with high affinity to PAC1 but not VPAC1 or VPAC2
(66). Recently, a number of PACAP-38 analogs were synthesized
which prefer PAC1 relative to VPAC1 or VPAC2 by over an order
of magnitude (67). VIPhybrid is a peptide antagonist which binds
with moderate affinity to VPAC1 or VPAC2, whereas, PACAP(6–
38) is a peptide antagonist for PAC1 (68). Selective non-peptide
antagonists for VPAC1, VPAC2 or PAC1 remain unknown.

VPAC1 is present in numerous cancers including breast,
colon, liver, lung, neuroblastoma, pancreatic, and prostate
cancers in high densities (69). VPAC2 is present in moderate
densities in gastric pancreatic adenocarcinomas, gastric
leiomyomas, thyroid cancer, and sarcomas (70). PAC1
is present in brain, breast, colon lung, neuroendocrine,
pancreatic, pituitary, and prostate cancer as well as
neuroblastoma/pheochromocytoma (71). In SH1SY5Y
neuroblastoma cells, numerous PAC1 splice variants (SV)
were detected in the N-terminal and intracellular loop (IL)
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3 (72). PAC1 has 18 exons and deletion of exons 5,6 or 4-6
reduce the N-terminal by 7, 21 (short) or 57 amino acids (very
short) (73). The short PAC1 but not the very short PAC1 bind
PACAP-38 with high affinity and elevate cAMP (74). Alternative
splice variants (SV) of IL3 result in the addition of an additional
28 amino acid segment (hip) to PAC1null (75). Addition of a
different set of 28 amino acids to IL3 of the PAC1 results in the
hop SV. Finally, both SVs can be added resulting in PAC1hiphop.
The order of potency to increase PI turnover was PAC1hop >

PAC1null = PAC1hiphop > PAC1hip (76). Thus binding of
PACAP and second messenger production can be altered by
PAC1 deletions and SVs.

VPAC1 can be utilized to image cancer tumors.
18F(Arg15,21)VIP localized to T47D breast cancer cells in
nude mice (77) and 64Cu-TP3982 localized to mammary tumors
in MMTVneu transgenic mice (78). 99mTc-TP3982 was used
to image breast tumors in 5 patients (79). The VPAC1-agonist
complex internalizes in cancer cells and the ligand is metabolized
in lysosomes. VPAC1 has been used to deliver VIP analogs
containing cytotoxic CPT, paclitaxel, ellipticin or geldanomycin
to cancer cells (80–83). The actions of VIP are antagonized
by peptides such as VIP10−28 or VIPhybrid (84). Addition of
VIP to cancer cells results in elevated cAMP which activates
PKA. Activation of PKA results in CREB phosphorylation
which increases nuclear oncogene expression of c-Myc leading to
increased proliferation (Figure 1). VIP increases the proliferation
of lung cancer cells whereas VIPhybrid inhibits proliferation
(84). Addition of PACAP-27 or PACAP-38 to lung cancer cells
containing VPAC1, VPAC2 or PAC1 increases cAMP, however,
it causes PI turnover in cells containing PAC1. When PI is
metabolized, ERK becomes phosphorylated. Phosphorylated
ERK increased the expression of the nuclear oncogenes c-fos
and c-jun leading to increased cancer cellular proliferation.
PACAP(6–38) inhibits the proliferation of lung cancer cells
in vitro and in vivo (85).

VIP may be a promoter of carcinogenesis. VPAC1 density is
higher in mammary cancer than adjacent normal tissue using
rat and mouse models (86). Specific binding of 125I-VIP to
mouse mammary tumors was inhibited with high affinity by
(Lys15, Arg16, Leu17) VIP1−7GRF8−27 (VPAC1 peptide agonist)
but not Ro25-1553 (VPAC2 peptide agonist). Retinoic acid, a
chemopreventive agent, down-regulates VPAC1 expression in
breast and lung cancer cells (87, 88). Finally VIPhybrid inhibits
mammary carcinogenesis in C3(1)SV40T antigen mice (89).

Addition of PACAP-27 or PACAP-38 but not VIP causes
transactivation of the EGFR in NSCLC cells (90). The PAC1
regulation of EGFR tyrosine phosphorylation is inhibited by
PACAP(6–38), gefitinib, PP2, GM6001, and ROS inhibitors.
Diphenyleneiodonium (DPI), a NADPH oxidase (NOX)
inhibitor impaired the ability of PACAP to increase EGFR
tyrosine phosphorylation. NOX-4, which produces ROS, is
present in NSCLC cells (91). PACAP-27 addition to NSCLC cells
increased ROS which was inhibited by DPI. VIP addition to
breast cancer cells increased EGFR and HER2 phosphorylation
(92). The EGFR which dimerizes, may form homodimers with
itself or heterodimers with HER2. VPAC1 regulation of EGFR
transactivation was blocked by JV-1-53 (VPAC1 antagonist),

PP2 or H89 (PKA inhibitor). In contrast, the PAC1 regulation of
EGFR transactivation in NSCLC cells was inhibited by U73122
(phospholipase C inhibitor) but not H89. The results indicate
that the EGFR can be transactivated by GPCR which interact
with Gq or Gs.

SST RECEPTORS

SST occurs endogenously in two principal forms (SST-14, SST-
28) and their action is mediated by 5 related subtypes of GPCRs
(SSTR1-5) (93, 94). SST receptors are not only widely expressed
on normal tissues, but also are frequently overexpressed by
many neoplasms, particularly NETs [i.e., carcinoids/pancreatic
neuroendocrine tumors (panNETs)] (93–95). SST has a wide
range of physiological actions and they are primarily inhibitory
(93, 94).

SST and its receptors represent the prototype for a clinically
successful peptide/peptide receptor oncotarget. It is the only
peptide-GPCR system which has multiple approved indications
(four different indications) for the treatment of a class of
human neoplasms, NETs. Furthermore, its results in NETs have
potential applicability for its clinical utility in a number of other
neoplasms.

The initial approved indication for SST analogs was its
use in hormone-excess states. Depot long-acting formulations
of synthetic SST analogs (octreotide-LAR, lanreotide autogel)
(Figure 2) are the drugs of choice to control various functional
NET syndromes due to the ectopic release of a biologically active
peptides by the NETs (93, 96–99). This includes the control of
such widely different functional NET syndromes as the carcinoid
syndrome (diarrhea, flushing) due to metastatic carcinoid tumor;
severe diarrhea due to VIPomas; rash due to glucagonomas;
acromegaly due to excessive growth hormone release primarily
by pituitary adenomas, and a number of others (93, 96–100).
Almost all (>90%) of the well-differentiated forms of these NETs
(>95%) overexpress somatostatin receptor subtype 2 which has
high affinity for octreotide and therefore it is generally effective in
controlling the hormone-excess state and in many, their growth.
Some NETs such as pituitary adenomas do not overexpress
SSTR2 with the result that octreotide/lanreotide are only effective
in 20–70% of patients (101). One solution to this has been the
development of next generation somatostatin analogs such as
pasireotide, which has high affinity for multiple subtypes (SSTR5
> SSTR2 > SSTR3 > SSTR1), which has been shown to be
effective in these patients and is approved for use in the treatment
of a acromegaly.

The second approved indication for SST analogs is for its anti-
proliferative activity on NETs. In numerous pre-clinical studies
and animal studies, it was shown that SST analogs have anti-
proliferative effects on NETs, as well as number of other human
tumors (102–107) Two double-blind Phase 3 studies (108, 109) in
patients with advanced NETs treated with lanreotide/octreotide
increased the patient’s progressive free survival (PFS), which lead
to FDA approval. Recent meta-analyses (106, 110) of SST analogs
anti-proliferative effects in all publications (106) or the above
two studies (110), in patients with advanced NETs, demonstrate
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FIGURE 2 | Structures of SST and synthetic analogs used clinically. (A) The 14 amino acid SST is shown and essential amino acids are in black. The SST synthetic

analogs, octreotide (B), and lanreotide (C), which have 8 amino acids, are approved to treat patients with neuroendocrine tumors (NETs) producing hormone-excess

states (VIPoma, carcinoid syndrome) and for their anti-proliferative activity in patients with advanced, aggressive NETs. 111 InDTPA pentetreotide (D) as well as
68GaDOTATATE (E) are used for SSTR imaging in patients with NETs. 90Y-DOTA (F) and 177Lu-DOTA (G) -labeled SST analogs are used for their antitumor activity

during PRRT by targeting the cytotoxic radiolabel to the tumor.

good anti-proliferative activity, significant benefit from their use
resulting in disease control (HR 0.51, p< 0.01), with the response
rates vs. placebo being 58 vs. 32% and a good safety profile.
In general, these studies demonstrate that SST analog treatment
in patients with advanced NETs result in a tumoristatic effect
primarily, rather than a decrease in the tumor size. SST analogs
are now recommended in recent guidelines as well as expert
reviews as one of the initial treatments for controlling tumor
growth in patients with advanced NETs, especially those with
well-differentiated NETs, and slower growth rates (99, 111–115).
Numerous in vitro and animal studies report that SST receptors
are expressed on a number of other non-endocrine tumors, and
that SST analogs have anti-proliferative activity in these tumors
(93, 94, 97, 103, 104, 107, 116, 117). No controlled trials have
established the use of SST analogs for anti-proliferative effects in
patients with non-endocrine tumors.

The third approved indication for SST analogs in patients
with NETs is for imaging of the tumor. SST receptor imaging
(SRI) was originally approved for the use of 111In-labeled
pentetreotide with SPECT/CT scanning (Octreoscan), which is
now replaced by the use of 68Ga-DOTATATE PET/CT scanning,
which has greater resolution, sensitivity and high specificity
(118–122). Almost all well differentiated NETs overexpress the
somatostatin receptor subtypes (SSTR2 > SSTR5 > SSTR3) that
bind this radiolabeled agonist with high affinity (118, 119, 123).
A systematic review (122) demonstrated that the use of 68Ga-
DOTATATE PET/CT scanning changed the management of the
patient in a mean of 44% (range, 16–71%). SRI is now essential

for the staging and management of NET patients and is the most
sensitive method to allow whole body scanning rapidly to present
a complete assessment of the extent of the tumor (112, 118, 121).

The fourth approved indication for SST analogs in patients
with NETs is their use to target cytotoxic radiolabeled SST
analogs to the tumor in patients with advanced NETs, as
an anti-tumor therapy (called PRRT for peptide receptor
radionuclide therapy) (124–127). Numerous animal studies as
well as uncontrolled studies on patients with advanced NETs,
demonstrated this approach resulted in tumor stabilization in
progressive tumors as well tumor shrinkage in a significant
number of patients with acceptable side-effects (124–127).
Various SST analogs were coupled to linkers (DOTATATE,
DOTATOC, DOTANOC) (Figure 2) and to different radiolabels
including 111Indium,90 Yttrium, and 177Lutetium (127, 128).
A recent double-blind controlled trial (129) demonstrated that
177Lutetium-DOTATATE treatment in patients with advanced
midgut carcinoids, resulted in marked increase in progression-
free survival and a preliminary result demonstrating increased
overall survival, with acceptable safely profile. This has led to
FDA approval for this treatment in patients with advanced
NETs. Almost all of the early studies performed with SRI
and PRRT used SST analogs that were agonists because of
the belief the peptide should be internalized to provide the
best imaging and radionuclide delivery to the tumor. Recent
studies demonstrate that SST receptor antagonists recognize
more binding sites on the tumor, provide superior tumor
targeting to agonists (118, 130, 131) and also demonstrate
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greater membrane binding suggesting it will be superior for
PRRT.

Unfortunately, the over-expression of SST receptors is limited
to a subset of tumors and is not seen in many of the more
frequent adenocarcinomas, such as breast, colon, lung or prostate
and therefore the specific ligands developed for NETs will
not be useful in these tumors. However, many of these other
more common tumors over-express a number of other GPCRs
including receptors for the BB, NTS, VIP/PACAP family (68,
132–134). Furthermore, in many cases selective ligands that are
radiolabeled have been developed and studies in animal models
and some cases in small numbers of humans with different
diseases, support this approach (68, 132–134). Whether in the
future they will become established for the imaging of these
tumors or for the delivery of cytotoxic substances is unknown.

CONCLUSIONS

Neuropeptide GPCR may play an important role in cancer
proliferation, angiogenesis, and metastasis. Most of the research
conducted on NTS, BB, and VIP has been at the preclinical
level. NTSR1 and BBR are class A/Rhodopsin-like receptors
which interact with Gq and cause PI turnover. Nonpeptide
antagonists are available for the BBR and NTSR which
inhibit the proliferation of cancer cells. NTS, BB, and VIP
conjugates, which kill cancer cells, have been developed. BB,
NTS or PACAP stimulate the proliferation of NSCLC cells
in an EGFR-dependent manner. The transactivation of the
EGFR is blocked by SR48692 (NTSR1 antagonist), PD176252
(GRPR antagonist) or PACAP(6–38) (PAC1 antagonist)
as well as gefitinib (EGFR TKI). The GPCR antagonists
potentiate the ability of TKI to reduce NSCLC growth
in vitro. It remains to be determined if GPCR antagonists
will potentiate the action of TKI in vivo. GPCR antagonists
potentiate the effects of chemotherapeutic drugs (135, 136).
VIPhybrid, a VPAC1 antagonist, potentiates the effects
cytotoxicity of taxol in breast cancer in vitro and in vivo.
Also, VIPhybrid potentiated the cytotoxicity of cisplatin,
doxorubicin, gemcitabine, irinotecan or vinorelbine on colon
cancer in vitro.

VIP and PACAP are class B/Secretin-like receptors which
interact with Gs and stimulate adenylyl cyclase. PAC1 has
numerous splice variants, which alter second messenger
production. VIP has been coupled to radioisotopes, e.g., 18F,
65Cu, and 99mTc to image tumors in animal models. High
affinity non-peptide antagonists need to be developed for PAC1
VPAC1 and VPAC2. The use of peptide coated nanoparticles
which contain chemotherapeutics is being investigated (137). The
GPCR can be used to direct neuropeptide coated nanoparticle
to the tumor. Recently, cholecystokinin antagonists were found
to potentiate the effects of immune checkpoint inhibitors at
impairing the growth of pancreatic tumors in vivo (138). Thus
GPCR antagonists can potentiate the effects of various drugs in
cancer treatment.

The use of SST analogs and their receptors are now an
established part of clinical practice and provide the basis

for 4 different FDA approved indications in patients with
NETs. Long acting formulations of octreotide or lanreotide
are the predominant therapeutic agents used to control excess
secretion of peptides or growth hormone causing clinical
syndromes in NET patients. Large clinical trials have recently
led to the FDA approval of lanreotide/octreotide analogs to
reduce NET growth in patients with advanced disease resulting
in increased progression-free survival. SST receptor imaging
using initially 111In-pentetreotide, and more recently, 68Ga-
DOTATATE, which takes advance of the over-expression of
SSTRs by NETs is the most sensitive method to image tumor
location/extent in these patients. Lastly, numerous animal
studies and non- prospective clinical studies, demonstrated
that patients with advanced NETs expressing SSTRs could be
treated with radiolabeled SST analogs with good antitumor
effects. Recently, a large double -blind study in patients with
advanced ileal carcinoid NETs confirmed this result leading
to FDA approval for this approach using 177Lu labeled
octreotate. The SST research shows that neuropeptide GPCRs
can be used as oncotargets to detect and treat a human
cancer.

A goal is to advance the cancer research on BB, NTS,
and VIP. SST is inhibitory in nature and was initially used
to inhibit secretions from NETs. Few effective therapies
were available and octreotide effectively controlled the
symptoms of patients with VIPomas, glucagonomas, GRFomas,
insulinomas or gastrinomas. In contrast, BB, NTS, and VIP
are stimulatory in nature and a substantial effort has been
made to improve the half-life of peptide agonists in the
blood and develop specific high affinity antagonists which
are stable. SSTRs are present in over 90% of the NETs. BB,
NTS, and VIPRs are not so universal in epithelial cancers.
By precision medicine, the overexpression of GRPCRs
for BB, NTS or VIP in the biopsy specimen will dictate
which GPCR should be targeted. To illustrate if the tumor
overexpresses NTSR1, the patient may be treated with SR48692
alone or in combination with another drug. Additional
clinical trials are needed in BB, NT, and VIP research
so that these peptide GPCR’s can be used as oncotargets
to treat epithelial cancers of the breast, colon, lung, and
prostate.
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