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The brain-computer interface (BCI) has been investigated as a form of

communication tool between the brain and external devices. BCIs have been

extended beyond communication and control over the years. The 2020

international BCI competition aimed to provide high-quality neuroscientific

data for open access that could be used to evaluate the current degree of

technical advances in BCI. Although there are a variety of remaining challenges

for future BCI advances, we discuss some of more recent application

directions: (i) few-shot EEG learning, (ii) micro-sleep detection (iii) imagined

speech decoding, (iv) cross-session classification, and (v) EEG(+ear-EEG)

detection in an ambulatory environment. Not only did scientists from the

BCI field compete, but scholars with a broad variety of backgrounds and

nationalities participated in the competition to address these challenges. Each

dataset was prepared and separated into three data that were released to the

competitors in the form of training and validation sets followed by a test set.

Remarkable BCI advances were identified through the 2020 competition and

indicated some trends of interest to BCI researchers.

KEYWORDS

brain-computer interface (BCI), electroencephalogram, competition, open datasets,

neural decoding

1. Introduction

This paper presents a review of new frontiers regarding brain-computer interface

(BCI) technology and discusses the current BCI technology levels based on the

challenges presented in the 2020 international BCI competition. In particular, BCI

technology was investigated to provide practical solutions for real-world environments.

To achieve this goal, various advanced BCI research topics were summarized into the five

categories shown in Figure 1 as a precondition for this review. Beyond simply examining

contemporary studies conducted by BCI researchers, we prepared datasets related to
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the aforementioned challenging topics and released the datasets

to the competitors and general public. Various scientists and

scholars (98 participants, consisting of 31 teams) participated

in the competition to determine the effectiveness of each

other’s decoding models and methodology used. Through the

competition, we were able to confirm the extent of interest and

enthusiasm researchers have regarding certain research topics.

Hence, we disclosed the datasets and evaluated the models’

performances objectively to determine the extent to which

current BCI studies have progressed. As a result, we identified

current state-of-the-art decoding models and the development

direction of non-invasive BCI to obtain a glimpse of how BCI

may evolve in the future.

1.1. Overview of recent BCI advances

Bridging the communication gap between humans and

computers has led to innovative advances using various tools

(Millán and Mouriño, 2003; Dornhege et al., 2007; Wolpaw

and Wolpaw, 2013; Müller-Putz et al., 2015; Kinney-Lang et al.,

2020). BCI is a promising tool for communication between

humans and external devices (Vaughan et al., 2003; Wolpaw

and Wolpaw, 2007; Blankertz et al., 2010). Traditional BCI

technology has been used as a means to support communication

with the outside world, mainly for patients with impaired

movement due to limb paralysis. Over the past 20 years,

experimental studies on BCI have progressed rapidly, with

promising results in clinical trials involving groups of motor-

impaired patients as well as healthy people (Hochberg et al.,

2012; Chaudhary et al., 2016; Penaloza and Nishio, 2018; Jeong

et al., 2020c; Mane et al., 2020). BCI technology is characterized

by acquiring information generated by brain activity through

sensors and interpreting it through technologies such as signal

processing and machine learning. BCI systems are implemented

by recognizing human intentions through specific patterns of

neural signals (Kao et al., 2015; Pearson, 2019) using modern

signal processing and machine learning (Pascual-Marqui, 2002;

Delorme and Makeig, 2004; Blankertz et al., 2008, 2011, 2016;

Lemm et al., 2011; Lee M. H. et al., 2019). In particular, recent

trends in the development of decoding models have achieved

meaningful performance in BCI systems by also applying

technologies such as deep learning along with more traditional

signal processing methods and machine learning. BCI forms an

integrated interface involving hardware and software that can

directly decode human intentions for a variety of applications

(Dornhege et al., 2007; Müller et al., 2008; Millán et al., 2010;

Yadav et al., 2020), as shown in Figure 1.

BCI research has progressed in two forms: invasive and

noninvasive (Chaudhary et al., 2016). These forms enable the

recording of different types of brain signals. The invasive type

involves surgical implantation of micro-sensors in the cerebral

cortex and could be used to control neuroprosthetics (Hochberg

et al., 2012; Micera, 2017). General invasive modalities, for

instance, have been reported as electrocorticography (ECoG)

and intracortical neuron recording (INR). These techniques

can obtain high quality patterns from high-resolution temporal

signals, including the activity patterns of neurons (Nason

et al., 2020). However, short usability arises owing to the high

possibility of tissue rupture and scar build-up over the passage

of time, in the case of INR. In addition, installation through

surgical approaches remains unchanged even if using ECoG

(Chaudhary et al., 2016; Yadav et al., 2020).

In contrast, despite poor signal quality and low spatial

resolution, noninvasive BCI typically remains the preferred

method because surgical operations are not required.

Noninvasive modalities exist in various forms for the detection

of brain signals over the scalp, such as electroencephalography

(EEG), magnetoencephalography (MEG), and functional-near-

infrared spectroscopy (fNIRS) (Fazli et al., 2012; Ahn et al.,

2013; Dähne et al., 2015; Aghajani et al., 2017). EEG is the

most widely used modality and can record electrical activity

by synaptic excitation of neuronal dendrites within the brain

(Rashid et al., 2020). It can detect a variety of control signals,

including slow cortical potential (SCP) (Birbaumer et al., 1999;

Kübler et al., 2001; Shakeel et al., 2015; Jeong et al., 2020b),

event-related potential (ERP) (Kübler et al., 2009; Riccio et al.,

2013; Won et al., 2017), steady-state visual evoked potential

(SSVEP) (Müller-Putz and Pfurtscheller, 2007; Lesenfants

et al., 2014; Kwak et al., 2017; Zheng et al., 2020), error-related

potential (ErrP) (Blankertz et al., 2003, 2011; Buttfield et al.,

2006; Chavarriaga and Millán, 2010), and motor imagery (MI)

(Blankertz et al., 2008; Suk and Lee, 2011; Ang and Guan, 2016;

Leeuwis et al., 2021). As a result, neural decoding has been

developed for healthy people and patients along with various

applications (Birbaumer et al., 1999; Millán et al., 2004; Pires

et al., 2011; Höhne et al., 2014; Abiri et al., 2019).

BCI applications have been investigated for rehabilitating

patients and to communicate with external devices such as

wheelchairs (Kim et al., 2016; Degenhart et al., 2020), robots

(Penaloza and Nishio, 2018; Edelman et al., 2019), and spellers

(Kübler et al., 2009; Chen et al., 2015). Furthermore, one of

the important achievements of utilizing EEG-based BCI is its

application in routine areas of our daily lives [e.g., sleep Cox

and Fell, 2020, augmented/virtual reality (AR/VR) Schwarz et al.,

2020b; Woo et al., 2021, emotion recognition Zhang et al., 2019;

Kim et al., 2020, biometrics Maiorana, 2020, and environmental

control Zhuang et al., 2020] that have arisen through advances

in various studies, such as the development of BCI hardware,

neurophysiological knowledge, and machine learning. In this

review, we mainly focus on the advances in machine learning.

1.2. BCI challenges

Despite advances in decoding skills, current BCI systems

still face significant technical issues (Yadav et al., 2020). To be

widely commercialized such as in other research fields (e.g.,
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FIGURE 1

Overview of noninvasive BCI. Every BCI begins its analysis with meaningful feature extraction through signal processing, starting with data

recording. Researchers decode EEG data collected from experimental environments suitable for each study using advanced methodologies to

develop BCI applications.

speech recognition and computer vision), the performance of

the neural interface must be stable and robust under different

conditions. Recent BCI advances have been reported alongside

trends in technical approaches. In this review, we primarily focus

on the significant and substantial challenges associated with BCI

software. These challenges were presented to help overcome

the limitations and drawbacks of current BCIs. Regarding the

commercialization and generalization of practical BCIs, five

technical challenges and our datasets were defined as follows:

i) Data Set-A: Few-shot EEG learning for short-calibration

ii) Data Set-B: Micro-sleep detection from a single channel

iii) Data Set-C: Imagined speech decoding for intuitive BCI

communication

iv) Data Set-D: Cross-session classification of upper-limb

movements

v) Data Set-E: EEG(+ear-EEG)-based ERP detection under

ambulatory environment

1.3. Relevance of BCI competition

For decades, BCI research has progressed in many areas

and has gained popularity. However, the technology is usually

expensive, complex to operate, and requires a long set-up time,

making it difficult to collect data. Owing to these difficulties,

reliable EEG data collected for BCI competitions I–IV (Sajda

et al., 2003; Blankertz et al., 2004, 2006; Tangermann et al., 2012)

in the past continue to be used in many studies. Therefore,

we decided to provide new-frontier datasets through the 2020

international BCI competition to many investigators to better

evaluate BCI advances and the current level of BCI technology.

This review is based on a wide investigation and the insights

gained from organizing the international BCI Competition

(website: https://osf.io/pq7vb/; DOI: https://doi.org/10.17605/

OSF.IO/PQ7VB), which was jointly held with the 9th IEEE

Winter Conference on Brain-Computer Interface (http://brain.

korea.ac.kr/bci2021/competition.php). The competition was an
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online-based and comparably large event whose purpose was

to evaluate the latest state-of-the-art BCIs and their respective

performances.

We outline the latest methodologies and directions of

research in each field. We list descriptions of the datasets

utilized during the competition and describe the performances

demonstrated by competition participants. Consequently, the

released datasets are considered challenging and point to

remaining issues in this discipline that if solved will allow BCI

technology to become more closely integrated in daily life.

1.4. Necessity of open datasets for BCI

As mentioned earlier, BCI is quite difficult to commercialize

owing to limitations such as a lack of data and the absence

of affordable measuring equipment (Jeong et al., 2020a).

In addition, it is a challenging topic in related research

communities because it consists of high-dimensional data

containing large amounts of noise caused by in vivo interference

as well as the surrounding environment. To solve these

problems, high-quality (open) data measured through various

experiments are essential. In this regard, many universities and

research institutes contribute to the advancement of technology

by providing BCI data or holding competitions (Kaya et al.,

2018; Shin et al., 2018; Lee M. H. et al., 2019; Jeong et al.,

2020a; Stieger J. R. et al., 2021). As such, open datasets are

considered an important asset for promoting BCI research and

practices. By providing the data for this competition, scientists

and researchers from various fields such as signal processing,

data analytics, and artificial intelligence should also be able to

develop new algorithms, methods, and applications leading to

better commercialization of BCI technology.

2. Overview of the competition
datasets

For the competition, BCI datasets were prepared according

to the challenging issues discussed previously. Five competition

datasets were separately prepared and consisted of training,

validation, and test sets. Participants were able to train

their models with the training sets and measure their BCI

performance using the validation sets. Lastly, a test set was

used to evaluate the final version of the models developed by

the participants based on decoding performance. BCI studies

have developed models and compared performance based on

locally obtained data or limited public datasets. Through the

2020 international competition, we expect that the released

datasets may contribute to the creation of advanced decoding

models and can be used for fair performance comparisons.

Using competition datasets to compare and evaluate various

researchers’ BCI decoding performance has not been easily

achieved in BCI studies. However, this type of comparison can

identify the level and direction of the development of BCIs by

study groups using common comparators.

All experimental protocols and settings that we collected

were reviewed and approved by the ethical committee of the

Institutional Review Board (IRB) at Korea University. The IRB

information for the data is as follows: 1040548-KU-IRB-16-159-

A-2 (Data Set-A); 1040548-KU-IRB-17-46-A-2 (Data Set-B, only

validation and test sets); KUIRB-2019-0143-01 (Data Set-C);

1040548-KU-IRB-17-172-A-2 (Data Set-D); KUIRB-2019-0194-

01 (Data Set-E). After ensuring that subjects understood the

experiments and provided their written consent according to the

Declaration of Helsinki, they signed a form that agreed to the

anonymous public release of their data.

2.1. Data Set-A

2.1.1. Background

Short calibration, which uses minimal training data in

most BCI paradigms that aim to develop practical systems, is

a major challenge (Benaroch et al., 2021; Ko et al., 2021a).

The development of decoding models using less training data,

described as few-shot learning, which allows a model to learn

a method that enables fast adaptation to a new task or

environment (Hospedales et al., 2020), is one of the challenges

associated with machine learning and deep learning (An et al.,

2020). For few-shot learning, recent studies have been conducted

that mostly used only 10 samples from datasets to estimate

the true labels for an entire dataset (Supplementary Table 1).

With this 10-shot classification, Azab et al. (2019) proposed a

weighted logistic regression-based transfer learning algorithm

that achieved an accuracy of 71.0–75.6%.McCartney et al. (2019)

proposed a zero-shot EEG-to-image brain-decoding approach

and achieved classification accuracies of 61.3 and 62.2% for zero-

calibration. An et al. adopted a relation network to efficiently

learn class representative features amongmultiple subjects. They

evaluated the proposed network in 5-, 10-, and 20-shot settings

per class. The results achieved averaged accuracies of 71.0%

(±10.5), 72.6% (±11.7), and 74.6% (±10.2), respectively (An

et al., 2020).

2.1.2. Challenge

Classification of MI data is a significant challenge due to the

lack of data volume, inter-subject variability, low signal-to-noise

ratio, and complex dynamics of MI. The purpose of Data Set-A

was to classify the MI data of a certain subject using minimal

training data based on few-shot learning. Few-shot learning

aims to train generalized classifiers using very small amounts

of training data, contrary to the normal practice of using a

large amount of data. The expected baseline of this part of

the competition was to achieve high classification performance
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using only the data provided after a short-calibration session

to develop BCI practical systems. For example, if BCIs are to

be used by people, it is important to build a highly accurate

system, but at the same time, the models should be learned

quickly, and people should be able to use them without excessive

recalibration (Fazli et al., 2009; Kindermans et al., 2014; Ko

et al., 2021a). Consequently, the relevant data were released to

develop technologies that enabled the required minimization

calibration as a condition for implementing a practical BCI by

the participants.

2.1.3. Experimental protocols and paradigm

EEG data for two motor imagery tasks were recorded during

a single session across 20 subjects. During a session of the

experiment, the subjects were seated comfortably in a chair with

armrests at 60 (±5) cm in front of a 21-inch LCD monitor

(Figure 2A). The approximate horizontal and vertical visual

angles were 37.7 and 28.1◦, respectively. During the experiment,

subjects were asked to relax their muscles andminimize their eye

and muscle movements.

EEG signals were recorded at a sampling rate of 1,000Hz and

collected using 62 Ag/AgCl electrodes (nasion-referenced and

AFz-grounded). The EEG amplifier used in the experiment was

a BrainAmp (Brain Products GmbH, Munich, Germany) shown

in Figure 2B. The impedance was kept 10 k� below during the

experiment.

The MI paradigm was designed according to a well-

established protocol (Figure 2C). For all blocks, the first 3 s

of each trial began with a black fixation cross that appeared

at the center of the monitor to prepare subjects for the MI

task. Afterward, each subject performed an imagery grasping

task with the appropriate hand for 4 s once a right or left

arrow appeared as a visual cue. After each task, the screen

remained blank for 6 s. The given dataset provided only 4 s MI

tasks. The data disclosed to the participants for the competition

was prepared by ourselves and was reviewed by the Korea

University IRB.

2.1.4. Data configuration

The data were configured as training (10 shots), validation

(10 shots), and test (10 shots) sets according to each class,

providing a total of 20 shots (10 shots×2 classes) for each

stage. Only the training and validation sets were provided to the

competitors in order to obtain a fair evaluation. A description of

the data is provided in Supplementary Table 2.

2.1.5. Competition outcomes

The results of the participants’ analyses are depicted in

Figures 3A,B. Overall, participants achieved classification results

over the chance rate accuracy in 2-way, 10-shot settings.

The top-scoring participants showed a statistically significant

increase in performance compared to other participants through

the paired t-test (p<0.01). Interestingly, although the final

averaged performances across all samples were similar, the

performance differed for each subject sample according to

each participant’s model (Figure 3A). Therefore, the dataset

was demonstrated to not be biased according to each subject

sample. Furthermore, the performance of the models developed

was generally stable, producing high performance utilizing

minimized training data, and also exhibited reliable true positive

rates for each class, despite using only a few data samples

(Figure 3B). This allows us to state that for short calibration,

the stability of the model requires not only an improvement in

average performance across all subject samples, but also stable

performance per class.

2.1.6. Contribution

Through the competition using Data Set-A, the state-of-

the-art performance for few-shot EEG learning was examined.

Despite the 2-way, 10-shot setting, the results achieved surpassed

the chance-level accuracy across all samples. A variety of

approaches have been reported to solve the short calibration

problem in BCI, such as adapting transfer learning methods

and applying data augmentation algorithms. The few(zero)-shot

learning approach is expected to be the most complex and

difficult approach because it addresses the scenario where a

classifier must adapt to accommodate classes that are not seen

during training when only a few labeled samples per class are

provided (An et al., 2020). In addition, unlike signals from other

domains, the inconsistent features of an EEG can reveal different

information for each shot (trial), which may make it difficult to

train the model. In this respect, through the competition, when

first trying few(zero)-shot learning for short-calibration BCI,

we recommend adopting explicit few-shot learning algorithms

while confirming the quality of the signals for each trial as well

as attempting to reflect invariability from temporal, spatial, or

spectral information.

2.2. Data Set-B

2.2.1. Background

Consciousness is an outcome of the neuronal network in

the brain (Dehaene and Changeux, 2004; Tononi, 2004; Koch

et al., 2016; Lee et al., 2017). To recognize the consciousness

of people, BCI technology has received attention in the medical

and engineering fields. Sleep stage classification is a BCI task

associated with recognizing consciousness (Laureys et al., 2004;

Patil et al., 2007; Jordan et al., 2008; Boly et al., 2009; Rosipal

et al., 2013; Koch et al., 2016). There are two consciousness

states during sleep: rapid eye movement (REM) and non-

rapid eye movement (NREM) sleep. Classifying these states is
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FIGURE 2

Experimental setup and protocol. (A) During the experiment, the subjects were seated comfortably in a chair with armrests at 60 (±5) cm in front

of a 21-inch LCD monitor. (B) EEG signals were measured using brainwave collection equipment (BrainAmp, BrainProducts GmbH, Germany)

and data recorders (BrainVision, BrainProducts GmbH, Germany). (C) In the experimental paradigm, for all blocks, the first 3 s of each trial began

with a fixation cross that appeared at the center of the monitor to prepare subjects for the MI task. Afterward, the subject performed the imagery

task using the appropriate hand for 4 s when a right or left arrow appeared as a visual cue. After each task, the screen remained blank for 6 s. The

given data set provides only 4 s MI tasks.

important for the diagnosis and treatment of patients with sleep

disorders (Lee M. et al., 2019; Perslev et al., 2019). Therefore,

a large-scale EEG database during night sleep, Sleep-EDF, was

previously published (Kemp et al., 2000) (Figure 4). In contrast,

various BCI tasks involve recognizing a user’s consciousness

during driving: fatigue estimation, drowsiness detection, and

micro-sleep detection. To investigate the conscious state,

various methods have been used, such as the Karolinska

sleepiness scale (KSS) and percentage of eye closure (PEREC)

(Zhou F. et al., 2020). Gao et al. (2019). evaluated driver

fatigue using the KSS, and estimated fatigue from EEGs using

an EEG-based spatial-temporal convolutional neural network

achieving 0.93 accuracy. Ko et al. (2021b) categorized drowsiness

using a percentage of eyelid closure (PERCLOS) levels, and

they classified drowsiness using a multi-scale neural network

(Supplementary Table 3).

2.2.2. Challenge

Micro-sleep is a brief episode within the sleep cycle, which

can last from 1 to 15 s. These episodes of micro-sleep occur

most frequently when a sleepy person is trying to fight off

sleep and remain awake, especially in the driving environment

(Skorucak et al., 2020b). This is a critical problem that can result

in severe accidents (Williamson and Feyer, 2000). Despite the

importance of micro-sleep during driving, the development of

micro-sleep detection has been delayed because of too many

variations in associated experiments, such as whether the study

involves a simulation or real driving (Gao et al., 2019; Ko

et al., 2021b), use of different physiological signals (Gao et al.,

2019; Karuppusamy and Kang, 2020), and the criteria used

to define micro-sleep (Gao et al., 2019; Ko et al., 2021b). On

the one hand, micro-sleep is similar to NREM stage 1 during

night sleep because NREM stage 1 is the transition period

between wakefulness and sleep (Balaji et al., 2021). In micro-

sleep, EEG theta activity is dominant like NREM stage 1 (Wu

et al., 2013; Skorucak et al., 2020a). We suggest that using a

large-scale EEG database during night sleep can improve micro-

sleep detection performance, regardless of variations among

experiments. Another important issue is the single-channel

classification. For real-life applications, too many EEG channels

interrupt driving and reduce comfort. However, reduction of

EEG channels causes decrements in BCI performance (Lim

et al., 2014). Thus, maintaining performance is a critical issue,

especially when EEG channels are reduced. We hoped that

participants detected micro-sleep using night sleep with only 2

channels. This would accelerate the development of micro-sleep

detection in various fields.
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FIGURE 3

Competition outcomes. (A) Decoding results on short-calibration BCI (Accuracy), where the di�erence between the top performer and the

other two performers are significant, but the di�erence between the second and third places is not significant. All participants demonstrate

consistent decoding performance regarding the samples used. For short-calibration BCI, both right-hand MI and left-hand MI classes were

used. (B) Despite using a small amount of data, on average, the true positive rate and performance were approximately 0.200 (20%) higher than

the chance rate.

2.2.3. Experimental protocols and paradigm

Training: We used the sleep-EDF database that includes

197 polysomnographic sleep recordings during the whole

night, containing EEG, EEG, electroculography (EOG), chin

electromyography (EMG), and event markers to analyze sleep

patterns. The 153 sleep cassette files were obtained in a 1987–

1991 study of age effects on sleep in healthy Caucasians who do

not have any sleep-related medications and aged 25–101. The

sampling frequency of EEG signals were 100 Hz. Sleep-EDF is

presented in detail at https://physionet.org/content/sleep-edfx/

1.0.0/.

Validation and Test: Ten subjects participated in this

experiment. The driving simulator was composed of three

42-inch-wide monitors and driving control tools, such as

an accelerator, a brake pedal, a steering wheel, and a seat

(Figure 5A). The simulation was developed using the Unity 3D

engine software (http://unity3d.com). Subjects were seated with

fastened seat belts to provide a real-world driving simulation.

The EEG signals used the BrainAmp amplifier (Brain Products

GmbH, Munich, Germany), and the sampling frequency was set

to 100Hz. The experiment was conducted with the impedance of

all electrodes below 10 k�. We selected the Pz and Oz channels

from Sleep-EDF (Figure 5B). The experiment was conducted for

approximately 1 h, and the subjects were evaluated using the

Karolinska sleepiness scale (KSS) 13 times, which represents the

drowsiness scale from 1 to 9 (Figure 5C).

2.2.4. Data configuration

Training: We created a training set by converting the Sleep-

EDF dataset. A total of 50 EEG data (from 20 males and 30

females) were selected, excluding missing data and subjects

outside the range of 25–56 years of age. Following standard rules,

sleep stages (W, R, 1, 2, 3, 4, and M) were assigned for each

30 s window. A detailed description of the data is provided in

Supplementary Table 4.

Validation and Test: It is a dataset for detecting micro-

sleep using night sleep (training set) containing information

regarding EEG sleep patterns. The data are divided into 2-class

samples indicating micro-sleep when KSS ≥ 7 and wakefulness

when KSS ≤ 6 for each 30 s window. A detailed description of

the data is provided in Supplementary Table 4.

2.2.5. Competition outcomes

The performance evaluation for micro-sleep detection was

based on Cohen’s kappa value because of data imbalance

(Figure 6A). The average kappa value recorded by the model

achieved the highest performance was 0.308, and the second-

best performance was 0.177, which indicated a relatively large

deviation between performances. Therefore, it can be inferred

that there may be many effective solutions using this type of

data, but the problem is not easy to solve given the variations

in performance achieved by the participants. Therefore, creating
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FIGURE 4

Overview of training data from modified Sleep-EDF dataset. In Data Set-B, an open dataset was modified to provide large sleep stage data,

unlike other competition tracks. (A) Total number of samples according to classes in the training set. For this competition, we selected a total of

50 EEG data from 20 males and 30 females, excluding missing data and subjects outside the range of 25–56 years of age. (B) Spectrogram of

DataSample01 based on classes. From top to bottom, the figure represents the average spectrogram for Wake, NREM1, NREM2, NREM3, and

NREM4 states (PSD: power spectral density). (C) Hypnogram of DataSample01. (PSD, power spectral density).

a classification model that can accurately explore these areas is at

the core of a well-performing conservative BCI decoding model.

In addition, based on the confusion matrix, micro-sleep

using brain signals is difficult to detect accurately between classes

(Figure 6B). This result was due to how different models learned

the environment from the training set as well as the evaluation

and test sets. As a result, use of even the same micro-sleep data

suggests that model learning will also vary depending on the

subject’s current environment.

2.2.6. Contribution

The competition results using Data Set-B showed that it may

be possible to detect micro-sleep using large-scale EEG data

based on night sleep. We had hoped that this approach would

help industries to achieve their goals without incurring high data

collection costs. However, the low performance achieved by the

competitors is still an issue and needs to be improved. Because

only a single channel was used, they achieved a relatively lower

performance than results reported in previous literature, where

multiple channels were used. The competition highlighted the

potential of large-scale EEG data to detect micro-sleep but

also confirmed the significant difficulties associated with single-

channel EEG analysis. Further research could consider this novel

approach to recognize consciousness using large-scale EEG data

during night sleep.

2.3. Data Set-C

2.3.1. Background

People hope for a future in which BCI decodes what

one intuitively imagines and outputs it to the real-world

environment (Lee et al., 2019a, 2020a). Once the imagined word

or conversation is decoded by the BCI system, it can then

be used as a neural command to output user-imagined words

through speech synthesis or to control robots and devices based

on words (Herff et al., 2017; Moses et al., 2021). Consequently,

the effectiveness and utility of translating imagined speech are
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FIGURE 5

Experimental setup and protocol corresponding to validation and test data. (A) Provides an experimental environment that simulates 3D driving

while wearing the EEG cap. (B) Locations of electrodes for recording EEG. Pz and Oz were used to detect micro-sleep. (C) The experiment was

conducted for approximately 1 h, and the subjects were evaluated based on the Karolinska sleepiness scale (KSS) 13 times, which was used to

indicate their drowsiness level while driving.

FIGURE 6

Competition outcomes. (A) Micro-sleep detection results (kappa value) and achieved decoding performance indicating large deviations among

participants. All participants show relatively large decoding performance deviations for each sample. (B) For micro-sleep detection, despite

being the top-ranked models, detection accuracy is still insu�cient and there is a large deviation in the performance achieved by each

participant (based on Cohen’s kappa value).
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significant issues. To implement these types of BCI, relevant

features of the imagined speech paradigm were investigated,

aiming to improve the effectiveness of capturing speech-related

brain activity (Lotte et al., 2015; Brumberg et al., 2016). Recently,

researchers have investigated a variety of methods, especially

deep learning, which has evolved along with natural language

processing techniques, to precisely capture phoneme-level

speech from brain signals (Herff et al., 2015; Anumanchipalli

et al., 2019; Makin et al., 2020). In Supplementary Table 5,

the relevant studies to date on intuitive imagery analysis are

summarized. This allowed us to infer what trends and directions

are being used to implement intuitive BCI communication.

With the aim of decoding intuitive speech, BCI is evolving in

conjunction with analyses using various paradigms (Cooney

et al., 2018; Lee et al., 2020b; Lee S. H. et al., 2021).

2.3.2. Challenge

Imagined speech can be a key paradigm toward developing

intuitive systems that users can easily operate (Lee et al., 2019a).

Recognizing the user’s intuitive imagery and translating it to the

outside world is one of the critical functions of BCIs. Using

an imagined speech paradigm, communication using a BCI

could significantly improve because it could directly convey

the user’s intention through the imagined speech or word itself

instead of through the spelling of individual letters (Pei et al.,

2011; Herff et al., 2017; Lee et al., 2020a). Simultaneously,

this technology could apply this interpreted intuitive imagery

to control external devices. Imagined speech is an emerging

paradigm that can transfer a user’s intention to external devices

(Tankus et al., 2012; Nguyen et al., 2017; Tian et al., 2018;

Lee et al., 2020a). An imagined speech paradigm could provide

crucial advantages compared to conventional BCI paradigms

(e.g., MI). For example, enlarging the number of classes in MI

relies on the movement of body parts, which may naturally

overlap when many classes are necessary (Herff et al., 2017; Lee

et al., 2020a). Conversely, speech attributes of different classes

may allow more variations between classes without overlapping

concepts. Moreover, intuitive decoding directly matches the

interaction between user intentions and device feedback in

real-world environments (Moses et al., 2019). Eventually, this

characteristic of the intuitive paradigm could contribute to

the development of practical BCI systems that provide a high

degree of freedom to the user (Herff et al., 2015; Lee et al.,

2019b). Hence, BCI favors a technique that decodes human

intuitive imagery, and datasets were prepared with respect to

imagery speech paradigms to evaluate current models through

the competition. However, compared to the conventional BCI

paradigms (such as MI or ERP), the multiclass classification

performance of imagined speech is remaining at a relatively

inferior level (Lee et al., 2019a). An effective feature selection

or classification method for imagined speech may contribute

to improving the decoding performance (Lee et al., 2020a).

Therefore, we expected through this competition to improve

the multiclass classification performance of imagined speech to

the level of conventional BCI paradigms, thus enabling simple

communication or control of external environments via internal

speech.

2.3.3. Experimental protocols and paradigm

Data Set-C is a set of EEG data related to the imagination

of a person’s voice conversation. The composition of this

dataset represents what subjects would speak, but only in their

imagination (without speaking aloud). It includes various words

imagined by subjects, and the EEG signals expressed in the

process were recorded. Thus, the contestants analyzed the EEG

signals of the presented test dataset with the goal of classification

to infer which corresponding EEG signal pattern was associated

with a designated word or phrase (Figure 7).

The experimental protocol followed that of previous studies

(Lee et al., 2019a, 2020a). The purpose of this experiment was to

classify multi-class imagined speech with robust performance.

Imagined speech of five words/phrases for basic communication

(“hello,” “help me,” “stop,” “thank you,” and “yes”) was recorded

from 15 subjects (S1–S15; aged 20–30 years). During the

experiment, subjects were seated in a comfortable chair in front

of a 24-inch LCD monitor screen. The subjects were instructed

to imagine the silent pronunciation of the given word or phrase

as if they were performing real speech without moving any

articulators or making a sound. The subjects were directed not

to perform any brain activity other than the given task. They

were asked not to move and to avoid blinking while imagining

or receiving the cue. All imagination trials were performed using

a black screen so that subjects did not receive any stimulus

in order to avoid any other factors affecting brain activity. An

auditory cue representing one of the five words/phrases was

randomly presented for 2 s, followed by a 0.8–1.2 s presentation

of a cross mark. The subjects were instructed to perform

imagined speech of the given cue as soon as the cross mark

disappeared from the screen. Four cross mark (0.8–1.2 s) and

imagined speech (2 s) phases were sequentially performed per

random cue. After the four phases of imagined speech, a 3 s

relaxation phase was allowed to clear the subject’s mind for the

next word/phrase.

EEG data were recorded using an signal amplifier

(BrainAmp, BrainProducts GmbH, Germany). Raw data were

recorded using BrainVision (BrainProducts GmbH, Germany)

with MATLAB 2019a (The MathWorks Inc., USA) and 64 EEG

electrodes following a 10–20 international configuration were

used for the recording. The ground and reference channels

were placed on Fpz and FCz, respectively. The impedance of

all electrodes between the sensors and the skin of the scalp was

maintained below 15 k�. The data disclosed to the participants

for the competition were prepared by ourselves and the

experimental setup was reviewed by the Korea University IRB.
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FIGURE 7

Experimental setups and protocols. (A) The subjects were seated in a comfortable chair in front of a 24-inch LCD monitor screen and were

instructed to imagine the silent pronunciation of the given word as if they were performing real speech, without moving any articulators or

making the sound. (B) Five critical main words/phrases for basic communication (“hello,” “help me,” “stop,” “thank you,” and “yes”) were selected.

Seventy trials per class (70×5 = 350 trials) are released for training (60 trials per class) and validation (10 trials per class) purposes. (C) An auditory

cue was randomly presented for 2 s, followed by 0.8–1.2 s of a cross mark. The subjects were instructed to perform imagined speech of the

given cue as soon as the cross mark disappeared on the screen. Four cross marks and imagined speech phases were followed in a row per

random cue. After performing the imagined speech four times, 3 s of the relaxation phase was given to clear the mind.

2.3.4. Data configuration

EEGs of five-class imagined speech words/phrases were

recorded. In the experiment a total of 70 trials per class

(70×5 = 350 trials) were recorded and 60 trials per class

were used for training and 10 trials per class for validation

purposes. Using the given validation set was not obligated.

Validation of the training data could be performed not only

by the given validation set, but competitors could choose a

different validation method (example: N-fold cross-validation

using all data). The test data were released as 10 trials per class.

Detailed information regarding the released data is provided in

Supplementary Table 6.

2.3.5. Competition outcomes

The classification accuracy was relatively high compared

to that of other tracks. In particular, a classification accuracy

of 82.6% represented the best performance (Figure 8A). This

indicates the possibility of imagined speech BCIs being directly

used in real life in specific environments where greater

performance stability may be achieved through additional

models and experiments. The second-highest performance

achieved 75.5% accuracy, and the difference in performance

among other competitors was relatively small. Therefore, the

efficiency and performance of the model created by the first-

place competitor was extremely high, and the remaining

competitors developed models exhibiting similar performances

among their models. This indicates that the potential use of the

data set provided is very high with respect to imagined speech.

On the other hand, regarding the confusion matrices, true

positive rates for a particular class were high, but variation was

also high. In addition, the results showed different tendencies

regarding true positive rates according to each participant’s

model (Figure 8B).

2.3.6. Contribution

The competition results of imagined speech classification

display a significant development in the field of intuitive

BCI. Previous literature reported relatively inferior classification

performance when decoding imagined speech compared to

conventional and popular BCI paradigms (such as MI or

P300). However, the results of the competition imply the high

potential of imagined speech as another robust paradigm for

BCI. Because imagined speech is a powerful paradigm, especially

for conveying a user’s conversational intention, the possibility of

robust decoding may represent a significant milestone toward

more innovative future studies on imagined speech. Further

investigation of the intrinsic features of imagined speech may
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FIGURE 8

Competition outcomes. (A) Imagined speech BCI results (accuracy). (B) For imagined speech BCI, the true positive rate of every class

demonstrated a true positive rate above the baseline, however, high variation was found among the di�erent classes. In addition, the results

showed di�erent tendencies according to each participant’s model.

also contribute to improving the decoding performance along

with the development of deep learning techniques using a small

amount of data.

2.4. Data Set-D

2.4.1. Background

Implementing BCI systems in real-life scenarios for people

who truly need BCIs is a critical issue. BCIs require training

to create a robust, accurate model so that users can use the

system, and the model should be based on data collected from

the same session, that is, from the same person. Moreover,

consistent conditions and environments are required. Therefore,

a session-dependent large dataset is required for EEG learning to

produce practical BCIs. Thus, the latestmethodologies have used

various approaches to address these problems. Cross-session

BCI research has focused on applying different approaches

to solve the cross-session problem. Yang et al. implemented

a discriminative feature learning strategy based on GAN for

subject-independent MI data, achieving a classification accuracy

of 87.8% for binary classification (Yang et al., 2021), and

Kostas et al. implemented a model by applying a neural

data representation based on a transformer and cross subject-

oriented deep neural network model (Kostas and Rudzicz,

2020; Cao et al., 2021; Kostas et al., 2021) as described in

Supplementary Table 7.

2.4.2. Challenge

As mentioned above, better BCI training environments

should be designed because current training environments

impose a high cognitive workload on subjects owing to the

long calibration times required. The goal of Data Set-D focuses

on the cross-session classification of upper-limb movements.

The development of session-independent BCIs aims to achieve

a more accurate and robust performance even when using a

limited calibration dataset for learning the decoding model. The

intent is to accommodate users who must utilize a BCI system

for a long time, perhaps a lifetime. Therefore, the BCI system

requires technology to independently leverage such data when

learning a model based on user data collected over a long period

of time. In the BCI field, one of the crucial issues is solving the

cross-session problem.

Decoding cross-session of upper-limb movements data is

a significant challenge due to the complex dynamics of EEG

signals. In particular, this classification approach is necessary

for practical BCI development. The purpose of dataset D is

to classify data from different sessions using training data

from previous sessions based on session-independent learning.

Such decoding methodology aims to train well generalizing

Frontiers inHumanNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2022.898300
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Jeong et al. 10.3389/fnhum.2022.898300

classifiers using session-independent training data, contrary to

the common practice of using session-dependent data. The

expected baseline for this part was to achieve high classification

performance using only data from specific subjects recorded in

the past to develop practical BCI systems. For example, it is

essential to build a highly accurate method for human use of

BCIs. Still, simultaneously, the model must be mastered quickly

and used without a session-dependent dataset. As a result, we

support developing cross-session decoding techniques that are

required as a condition for participants to implement practical

BCIs by disclosing relevant data. To utilize the BCI system, users

must participate in training sessions across each class over long

periods of time. For this reason, some users performed well in

the training sessions, whereas they often performed poorly in

real-time sessions because of attention loss and fatigue (Abu-

Rmileh et al., 2019). To further evaluate and hopefully overcome

this limitation, we focused on cross-session classification using

motor imagery tasks.

2.4.3. Experimental protocols and paradigm

The subjects (S1–S15; 20–34 years of age; all right-

handed) were asked to imagine three different grasping tasks:

cylindrical grasp, spherical grasp, and lumbrical grasp. The

dataset released at the competition to train and validate cross-

session classification consisted of the following configurations

based on the experimental paradigm (Figure 9). These data

were collected by the authors and involved intuitive upper limb

motion. The entire experiment was performed in 3-day sessions,

and each session was conducted in 7-day intervals.

During a session, the subjects were asked to comfortably sit

in front of a 24-inch LCDmonitor (Figure 9A). Three designated

objects (cup, ball, and card) were placed on the screen, and visual

instructions indicated what type of grasping motion the subject

should imagine. The subjects were asked to perform three

intuitive imaginary grasping motions by following the visual cue

(Figure 9B). The locations of the objects were randomly changed

to avoid the effects of artifacts. Each subject performed 50 trials

per grasping action (150 trials: 3 classes × 50 trials). We asked

the subjects to imagine a specific grasp only once during the

motor imagery period of 4 s.

A single trial comprised three continuous stages, which

posed a designated task to each subject. These stages were rest,

preparation, and performance of the motor imagery cue. A

single trial lasted for 10 s and consisted of three sub-stages,

which were 3, 3, and 4 s in length, respectively. The subjects

performed motor imagery during the final stage for 4 s after the

visual cue was provided (Figure 9C).

The EEG data were recorded using an EEG signal amplifier

(BrainAmp, Brain Products GmbH, Germany), sampled at 250

Hz with a 60 Hz notch filter. Raw data were recorded using

BrainVision (Brain Products GmbH, Germany) with MATLAB

2019a (The MathWorks Inc, USA). Sixty EEG electrodes were

selected by following the 10–20 international configuration

(Fp1-2, AF5-6, AF7-8, AFz, F1-8, Fz, FT7-8, FC1-6, T7-8, C1-6,

Cz, TP7-8, CP1-6, CPz, P1-8, Pz, PO3-4, PO7-8, POz, O1-2, Oz,

and Iz). The ground and reference channels were placed on Fpz

and FCz, respectively. The impedance of all electrodes between

the sensors and the skin of the scalp were maintained below 15

k�. Data disclosed to competition participants were prepared

by the authors and the experiment was reviewed by the Korea

University IRB.

2.4.4. Data configuration

Data Set-D was recorded over three sessions, and data from

the first two sessions (day 1 and day 2) were released for

training and validation purposes, respectively. The test data were

obtained from the third session (day 3). Because the purpose of

this stage of the competition was to evaluate the performance

between sessions, the size of the training and verification data

was the same. That is, data from 150 trials obtained in the

day 1 session were designated as training data, and data from

another 150 trials obtained on day 2 were used as the verification

data. Data obtained on day 3 were released later during the

competition as the test data. Participants were allowed to use

data obtained from the second day for validation purposes, but

were also allowed to combine the data with the original training

data obtained on day 1 to prepare 300 trials as the training

dataset. In total, including data from day 1 and data from day

2, the dataset consisted of 150 trials for training and 150 trials

for the validation set. Finally, we evaluated the cross-session

classification results using data from the day 3 session (150

trials) as the test set. The description of the data is presented in

Supplementary Table 8.

2.4.5. Competition outcomes

Consequently, contestants were given the opportunity to

challenge not only data from the cross-session subjects, but also

data that had previously produced good results independently

of the three sessions using their proposed decoding method. All

participants competed in their own independent environments,

but the performances of the models created by most participants

were similar, as shown in Figure 10A. The results were judged

up to the top-5 competition groups who developed meaningful

decoding models and their results were analyzed in depth.

The performance of the models created by the participants

to develop the cross-session BCI showed the following

classification results. For the top two competitors, the decoding

models achieved significantly higher classification performance

between classes compared to other competitors. The other

participants created a model using the training set that was

provided, and later used the test set to validate the models

that they created, and scores were relatively similar among

participants. For example, in the data involving samples from
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FIGURE 9

Experimental setup and protocols. Dataset was recorded under three sessions, and the datasets from the first two sessions (day 1 and day 2) was

released for training purposes. The test data released later to competitors was obtained in the third session. (A) During a session of the

experiment, subjects were seated in a comfortable chair in front of a 24-inch LCD monitor screen. (B) Three designated objects (cup, ball, and

card) were placed on the screen, and a visual cue (a flashing green circle around the targeted object) indicated what grasping motion the

subject should imagine. (C) A single trial comprised three continuous stages, which posed a designated task to the subjects. These experimental

stages were rest, preparation, and performance of movement imagery. A single trial lasting 10 s consisted of three sub-stages, which were 3, 3,

and 4 s in duration, respectively. The subject performed motor imagery during the 4 s stage after the visual cue was provided.

15 subjects, the participants created models that exhibited high

levels of performance for samples 2, 3, 13, and 15 (> 0.60),

but all models exhibited low performance for the remaining

samples (Figure 10B). However, in the case of the participant

who achieved first place, classification performance was achieved

well for all subjects, which indicates that they created a model

that performed more reliably. In addition, true positive rates

were fairly distributed for each class across all models in the

top-5 rankings.

2.4.6. Contribution

Robust decoding performance in cross-session problems is

critical toward developing practical BCI technology because

general users do not wish to have to train or calibrate a BCI

system every time that they use it in real life. The main problem

in creating robust models for cross-session purposes is that

models learned based on data obtained over a specific period of

time do not work as well on data obtained over other periods

owing to uncertainties and inconsistent features in EEG data.
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FIGURE 10

Competition outcomes. (A) Cross-session BCI results (Accuracy). Compared to other disciplines, all participants achieved relatively good

decoding performance. For cross-session BCI, various grasping MIs using a single-arm were performed, and the top-3 BCI model performances

during various sessions were acceptable per each class. (B) Confusion metrices for each class and candle plot for comparison. Based on the

results of the top-3 participants, the prediction by class and the true answer rate are organized into confusion metrics. From the left, metrices

showing which class was predicted more accurately by Rank 1, Rank 2, and Rank 3 participants. The candle plot on the far right corresponds to

classes Cylindrical, Spherical, and Lateral, respectively, from the left, and representing the mean and standard deviation of the classification

results achieved by the top-3 participants by class.

Therefore, the competition conducted using Data Set-D deals

with critical approaches to create a stable decoding model or

methodology for the development of practical BCI devices that

can be worn by users in their daily lives.

2.5. Data Set-E

2.5.1. Background

Making BCI available in amobile environment is an essential

requirement for creating a practical BCI system. For BCI

technology to be deeply incorporated into our daily lives,

reliable performance must be achieved in situations involving

movement, and the ability to use the system continuously must

be secured. Noninvasive BCIs are necessarily susceptible to noise

because they are based on the principle of collecting various

distorted EEG signals with electrodes attached to the scalp and

removing the noise to analyze the signals. During movement

involving EEG recorders, noise occurs primarily because of

the movement of the EEG electrodes due to poor contact,

vibration, and muscle movement, which hinder performance of

the BCI. However, newer BCI techniques have been developed

that allow the construction of models that effectively eliminate

noise in mobile environments and achieve stable and accurate

decoding performance (Lee Y. E. et al., 2021). Moreover,

comfortable hardware interfaces have been developed, such as

an ear-EEG, which compensate for the shortcomings of scalp-

EEGs (requiring annoying gels that are difficult to wash out)

(Debener et al., 2015; Bleichner andDebener, 2017). Ambulatory

BCI for stable performance in mobile environments has been

discussed in recent studies (Lee et al., 2020c; Chuang et al., 2021).

Supplementary Table 9 lists some of the systems developed.

2.5.2. Challenge

Ambulatory BCI and practical BCIs outside the laboratory

are essential issues in BCI technology. Decoding EEG signals

under ambulatory environments are challenging due to the

numerous artifacts. Moreover, decoding a small number of

channel EEG signals for higher practicality is a challenge

due to its low performance. Ear-EEG is a representative of

simple and practical hardware that records brain signals,

which has poor performance compared to typical scalp-

EEG. Therefore, in this section, the issue of ambulatory and

practical BCI was investigated by decoding EEG including ear-

EEG during ERP tasks in the ambulatory environment. To

widely spread practical BCI technology, we should consider

the use of EEG in the real world. Several state-of-the-art
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BCI systems have demonstrated increased system performance

using deep learning (Lee and Lee, 2020; Lee et al., 2020d;

Mammone et al., 2020; Sun et al., 2020), but generally evaluate

the system only in laboratory environments. However, some

technical problems with external and internal artifacts have

been addressed in real-world environments. That is, even

if a BCI system with stable performance is developed, a

system that can be used only in a laboratory environment

is not suitable for real-world use. Therefore, the problem

of improving decoding performance through artifact removal

in an ambulatory environment has always been a challenge

for advancing BCIs and has not yet been completely solved

(Lee et al., 2020c). Thus, for practical BCIs, it is necessary

to develop artifact removal techniques in the preprocessing

stage and create robust decoding models while using simple

hardware such as an ear-EEG system. Hence, in the competition,

one of the goals was for participants to propose novel

approaches for an ambulatory environment. More specifically,

enhancing the performance of the event-related potential (ERP)

classification using scalp-EEG and ear-EEG during walking at a

1.6 m/s pace.

2.5.3. Experimental protocols and paradigm

This dataset consists of scalp-EEG, ear-EEG, and inertial

measurement unit (IMU) data from 15 subjects. The subjects

(S1–S15, aged 19–32 years, 11 males and 4 females) were asked

to perform ERP paradigm and walk in 1.6 m/s (Figure 11A).

We recorded scalp-EEG, ear-EEG, EOG, and IMU sensor

data. The data using these devices were collected as follows:

scalp-EEG electrodes (channel numbers: 1–32), EOG electrodes

(channel numbers: 33–36), ear-EEG electrodes (channel

numbers: 37–50), and IMU sensor (channel numbers: 51–56)

(Figures 11B,C).

In the controlled environment, the subjects could walk and

move on a treadmill, and we collected EEG signals that occur

in moving environments from a sufficient number of subjects

(Figure 11A). The participants repeatedly stood and walked at

1.6 m/s when using the treadmill placed in front of a 24-inch

LCD monitor screen.

ERP is an electrical potential induced in the central and

parietal cortices in response to particular cognitive tasks.

Attention to the target induces P300 components that have task-

relevant peaks that occur 300 ms after a target stimulus. In this

experiment, this paradigm was executed using target (‘OOO’)

and non-target (‘XXX’) characters. The target ratio was 0.2,

and the total number of trials was 300. In a trial, the stimulus

was presented for 0.5 s and a cross was shown to indicate a

rest period randomly lasting 0.5–1.5 s (Figure 11D). The data

provided to the participants for the competition were prepared

by the authors.

2.5.4. Data configuration

Each trial was segmented from –200 to 800 ms, depending

on the stimulus presentation time. The data from 300 trials were

divided into training, validation, and test sets using 0.6, 0.2, and

0.2 ratios, respectively. Of the 300 trials, we divided the first 180

trials as training, the next 60 trials as validation, and the final

60 trials as test sets. Only the training and validation sets were

provided to competitors in order to obtain a fair evaluation. The

data configurations for both the scalp-EEG and ear-EEG were

obtained under the same conditions. The data are presented in

Supplementary Table 10.

2.5.5. Competition outcomes

The competitors performed the task of decoding ERP signals

in an ambulatory environment at a speed of 1.6 m/s and

detection performances were evaluated based on area under

the curve (AUC) using a reliable noise abatement method. The

highest AUC was 0.728, and the lowest was 0.506, in the top-

3 ranks. The performances among the models created by the

participants showed large variations (Figure 12A). In addition,

the two top models exhibited large differences among subject

samples (Figure 12A). However, the top model achieved a high

true positive rate between the target and non-target classes,

which were classified on an imbalanced dataset (Figure 12B).

Compared to other tracks, there was no significant difference

among the performances of the models developed by the

participants. The top-scoring model achieved the highest true

positive rates of 0.794 and 0.557 for each class, but the differences

in average performance were not significant among participants

with the best performances.

2.5.6. Contribution

Although EEG is the simplest way to record brain activity,

EEG data are vulnerable to noise and devices are annoying

and inconvenient to wear. Ambulatory BCI research is essential

for developing practical BCI systems based on artifact removal

methods, robust decoding models, and a simple hardware

interface. The BCI competition involving Data Set-E can

provide a foothold for the development of useful practical BCI

technologies. Through this competition, the importance of the

mobile environment BCI technology was further promoted,

and the technological performance of the participants was

significantly increased owing to the significant developments

regarding this technology. The decoding technology based on

a simple hardware interface has improved in performance to

the point that it is not inferior to conventional scalp-EEG

decoding technology, which demonstrates the possibility of real-

life applications. Therefore, we expect the development of a

system using EEG that achieves high performance in real-world

ambulatory applications.
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FIGURE 11

Experimental setups and protocols. (A) Experimental setup showing a subject walking on a treadmill. (B) In this experiment, we simultaneously

collected data from various devices: EEG signals from the scalp (actiCap, BrainProducts GmbH, Germany), EEG signals from around the ear

(cEEGrid, TMSi, USA), forehead IMU signals (APDM, APDM wearable technologies, USA), and from the treadmill. (C) Channel labels: 32 scalp-EEG

electrodes, 3 EOG electrodes, and 6 IMU sensors. (D) The experimental paradigm was executed with target (“OOO”) and non-target (“XXX”)

characters. The ratio of targets was 0.2 and the number of total trials was 300. In a trial, a stimulus was presented for 0.5 s followed by the cross

symbol indicating a random rest period lasting 0.5–1.5 s.

3. Discussion

In this review, we evaluated possible solutions to these five

aforementioned issues, including few-shot EEG learning for

short-calibration, Micro-sleep detection from a single channel,

Imagined speech decoding for intuitive BCI communication,

Cross-session classification of upper-limb movements, and

EEG(+ear-EEG)-based ERP detection under ambulatory
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FIGURE 12

Competition outcomes. (A) Ambulatory BCI results (AUC score). Rank #1 and #2 show relatively large performance deviation for each sample. (B)

Overall, the results tended to distinguish between target and non-target class, and rank #1 showed high AUC scores in the ambulatory

environment.

environment, throughout the 2020 International BCI

competition conducted jointly with the 9th International Winter

Conference on Brain–Computer Interface 2021. Through

the competition, we have confirmed that the presented issues

were appropriate for assessing advances in BCIs; nevertheless,

several technical concerns remain. For example, many scholars

have solved few-shot learning, domain generalization, and

cross-session problems with high levels of performance in

other disciplines (Seo et al., 2020; Zhou K. et al., 2020; Kim G.

et al., 2021; Kwon and Im, 2021; Li et al., 2021). BCI systems

using intuitive speech imagination, also compared to those

that require the imagination of existing behavior or visual

external stimuli, have been found to lack sufficient decoding

performance (Cooney et al., 2018; Lee et al., 2020a).

To adapt BCI technology to real-world applications,

many investigators have applied advanced machine learning

to improve BCI performance and solve chronic problems

(e.g., the number of classes, real-time implementation, and

invariance between subjects) (Kwon et al., 2019; Vidaurre

et al., 2021; Zhang et al., 2021). In fact, to solve the problems

presented in the competition, only one group implemented a

revised machine learning technique, whereas other participants

presented their own deep learning architectures. Recent research

demonstrating improved classification accuracy using deep

learning methods has been reported. The most recent work

applying neural networks has focused on the development of

various architectures and algorithms while testing them on a

standard benchmark (Craik et al., 2019; Stieger et al., 2021) or

datasets gathered by individual researchers. Some researchers

have recently begun to validate these methods on their own

datasets in online scenarios (Tabar and Halici, 2016; Jeong et al.,

2020c). However, compared to traditional machine-learning

methods, deep learning-based approaches still have several

problems when applied to BCI. Among the concerns are lack

of high-quality data and large amount of data requirements,

long training time, and developing methods that can be used

to improve performance (Jeong et al., 2020c). Therefore, the

use of BCI technology in daily life based on machine/deep

learning models that achieve high performance should consider

designing simple, compressed models. Furthermore, these more

advanced models and architectures need to be explainable

(Sturm et al., 2016) and tested for artifacts and Clever Hans

effects (Lapuschkin et al., 2019; Anders et al., 2022). Through

this review, we hope that many investigators will be motivated to

focus on these aspects in the future and that they utilize both the

advantages of machine learning and deep learning to contribute

to further BCI advances.

In addition, it is essential to ensure the portability of

hardware to conveniently use applications equipped with BCI

technology in real-world environments. Difficulties involve not

only portability issues but the types of signal sensing devices

(e.g., wet, dry, and semi-dry) and difficulties associated with

wearing sensor caps (Popescu et al., 2007; von Lühmann et al.,

2016; Schwarz et al., 2020a; Kim J-Y. et al., 2021). Therefore,

BCI investigators will have to consider not only software but

hardware aspects for advancing BCI in the future.
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This review also aims to show some of the limitations of the

current technology and provide open problems for researchers

in the field. Furthermore, the competition was viewed as

an opportunity to provide a standardized assessment of the

progress of current BCI technologies.

4. Conclusion

In conclusion, this review presents some of the prominent

BCI challenges faced by investigators. We evaluated the

technical level of the models applied to highly complex

problems that BCIs face through the 2020 International

BCI competition. Based on these results, it is apparent that

further developments are necessary for broader use of BCI

and its commercialization. A sustained advancement in BCI

technology will furthermore help to obtain insights into

fields such as cognitive neuroscience and clinical diagnostics.

Thus, we hope that BCI investigators will be inspired to

explore future development directions and advance current

levels of BCI technology through the released datasets.

BCI technology, which is still in a relatively adolescent

phase compared to other scientific fields, requires significant

exploration for further development. Through competitions,

we believe that convergence between various interdisciplinary

fields will occur naturally and will thus contribute to the

exchange of new techniques and ideas that will benefit different

scientific fields.
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