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Abstract: Melanoma is easily detectable by visual examination since it occurs on the skin’s surface. In
melanomas, which are the most severe types of skin cancer, the cells that make melanin are affected.
However, the lack of expert opinion increases the processing time and cost of computer-aided skin
cancer detection. As such, we aimed to incorporate deep learning algorithms to conduct automatic
melanoma detection from dermoscopic images. The fuzzy-based GrabCut-stacked convolutional
neural networks (GC-SCNN) model was applied for image training. The image features extraction
and lesion classification were performed on different publicly available datasets. The fuzzy GC-
SCNN coupled with the support vector machines (SVM) produced 99.75% classification accuracy
and 100% sensitivity and specificity, respectively. Additionally, model performance was compared
with existing techniques and outcomes suggesting the proposed model could detect and classify the
lesion segments with higher accuracy and lower processing time than other techniques.

Keywords: fuzzy logic; GrabCut; convolution neural network; support vector machine; skin lesion

1. Introduction

The skin’s vital role is to regulate body temperature as well as to protect against
infections and injuries. Melanoma is a malignant growth of skin cells that typically develops
on body parts that receive little or no sun exposure [1]. The number of skin cancer cases
across the globe is reported to be around 5.4 million every year [2]. Several studies report
an increase in the number of skin cancer cases in the United States from 95,360 in 2017 to
207,390 in 2021 [3,4].

Early detection and prevention of skin cancer reduce mortality rates [5]. The diagno-
sis of skin cancer is dependent on dermatoscopic training and experience. The patient’s
clinical information is needed to screen the skin lesion due to the need to visualize mor-
phological features not visible to the naked eye because of similar pixels and textures [6–8].
Dermatologists diagnose skin cancer based on conventional approaches such as color,
diameter, and asymmetry. In comparison to conventional models, imaging technology
allows more accurate and manual inspection of images while reducing time consumption
and costs [9,10].

Each skin lesion has its shape, size, and border. Due to their intrinsic naivety, locality,
and lack of adaptability, low-level hand-crafted features used by traditional methods and
machine learning (ML) methods have limited discriminative properties. The existing
literature highlighted the automatic detection of skin lesions by different ML models
including gradient boosting [11], support vector machine (SVM) [12], and Quadtree [13].
SVM is used to classify the features extracted from the grey level co-occurrence matrix [14].
In [15], K-Nearest Neighbor (KNN) with a Gaussian filter is used to extract the region of
interest (ROI) which is classified using SVM [15].
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In the framework of medical image analysis, deep learning (DL) automates systems to
detect, classify, and diagnose several diseases. These DL models are very effective for large
sample datasets and, especially, they have become more viable for skin image analysis [16].
Some studies have compared the performance of DL models in the detection of skin lesions
in several categories [17]. It is highlighted from the reports of [18,19] that the convolution
neural network (CNN) is better performed than dermatologists in the segmentation of
skin lesions [19–21]. These studies involved feature extraction techniques from segmented
images that enabled quick diagnosis.

Other models such as deep neural networks (DNN), CNN, long short-term memory (LSTM),
and recurrent neural networks (RNN) also help to detect malignant skin cells [22,23]. It is
highlighted that CNN helps to detect dangerous skin cells from dermoscopy images which
were found to be difficult to screen for nonmelanocytic and non-pigmented lesions [22].
In [23], a stacked CNN model with improved loss function was proposed to detect skin
lesions from given datasets, and 94.8–98.4% classification accuracy was reported. The main
drawbacks of previous approaches are that visual characteristics of skin lesion images
contain inhomogeneous features and fuzzy boundaries, and the processing time.

Therefore, in this paper, we proposed an approach called fuzzy-based GrabCut-stacked
convolutional neural networks (GC-SCNN) model with enhanced loss function in support
vector machines (SVM). Additionally, we test the accuracy of the generated model and
compare the outcomes of the enhanced Fuzzy GC-SCNN with existing techniques in lesion
classification. Furthermore, this study aimed to understand the model’s effectiveness in
the detection and classification of the lesion segments with better accuracy and lower
processing time than other models.

2. Methods
2.1. Dataset

Various datasets of skin images were used including PH2 (http://www.fc.up.pt/
addi/, accessed on 18 March 2022), and International Skin Imaging Collaboration (ISIC)
2018–2019 archives (http://isic-archive.com, accessed on 18 March 2022) for skin melanoma
detection. There are 10,015 training images and 1512 test images in ISIC 2018, including
lesion categories of melanoma, melanocytic nevus, basal cell carcinoma, actinic kerato-
sis, benign keratosis, dermatofibroma, and vascular regions. The ISIC 2019 dataset con-
tains 25,531 training images and 8238 test images divided into nine categories, including
melanoma, melanocytic nevus, basal cell carcinoma, actinic keratosis, and benign keratosis,
dermatofibroma, vascular regions, and an unknown class. PH2 datasets aimed at melanoma
diagnosis and ISIC datasets are biased towards melanocytic lesions. They both focus on
melanocytic lesions and disregarded the non-melanocytic lesions. The images available in
the datasets are clinical images of skin images but not the dermoscopic images, so there is
a mismatch between the available training images and the real-life data, which deviates
the automated diagnostic system’s performance and builds a classifier for multiple skin
diseases that is more challenging.

HAM10000 (Human Against Machine) serves as a benchmark dataset for comparing
humans and machines. This dataset consists of 10,015 dermatoscopic images of pigmented
skin lesions with seven different categories: Actinic Keratoses and Intraepithelial Carcinoma
(AKIEC), Basel Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL), Dermatofi-
broma (DF), Melanoma (MEL), Melanocytic Nevi (NV), and Vascular Lesions (VASC) [24].
We decomposed the image dataset into an 80:20 ratio where 80% was used for training and
20% for testing.

2.2. Data Preprocessing

The original dermoscopy image sizes varied from 540× 576 to 2016× 3024. We applied
the image resizing and maintained the uniform image size of 256× 256. The morphological
filtering and marker concepts were adopted to highlight the melanoma region and skin hair
removal. These morphological filters are used for image sharpening. Erosion and dilation

http://www.fc.up.pt/addi/
http://www.fc.up.pt/addi/
http://isic-archive.com
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are the two basic morphological operators, where dilation selects the brightest value near
the structuring element. The membership functions of dermoscopic images with different
channels can be observed in Figure 1. The preprocessing of the dermoscopy images (Refer
to Figure 2) for enhancement and detection of the lesion boundaries was conducted as
mentioned below.
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v The pixels of the skin lesion domain are taken to a fuzzy domain. Let M be an image
of p × q, and M (p,q) represent the intensity of the skin lesion image pixels that
must be mapped to the fuzzy characteristic plane. It can be expressed as follows
M(p, q) = ∑m

p=1 ∑n
q=1

µM(i,j)
M(i,j) , p = 1, . . . , m and q = 1, . . . , n; where µM(i,j)

M(i,j) represent
the pixels and µM (p, q) is the intensity level degree of the image ranging from zero
to one.
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v Assign the fuzzy plane pixels to the logarithmic function to map to the fuzzy domain

f (M (p, q)) = log2((1 + M(p,q)−Mmax
Mmax +Mmin

); where Mmax and Mmin are the maximum and
minimum intensity of the skin lesion image pixels.

v To enhance the portions of the skin lesion images, transform the image using the trigono-
metric series with fuzzy principles as mentioned f (T (p, q)) = T (p, q) + f (M (p, q))2 where
0 ≤ f (M (p, q)) ≤ 0.5; where T (p, q) = tan(a)

4 + cos(a)
3 and a = π (f (M (p, q) − 0.5) + 1.

v The defuzzification can be expressed as D = Mmin + ((Mmax −Mmin) × 2 T(p, q) − 1)
v Later, enhance the image quality by skin lesion image channel-wise.

2.3. Image Segmentation

In this work, the segmentation phase has done by the GrabCut (GC) segmentation that
is used to segment the fuzzy preprocessed image. Figure 3 shows the results of segmenting
the data and identifying the necessary areas.
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Figure 3. Segmented lesions.

Let the color image be represented with x and the array of pixels represented as the
y = (y1, y2, . . . , yn) where each zi = (Ri, Gi, Bi), i ∈ [1, . . . , n]. During the segmentation, the
label of the pixels is represented as the β = (β1, β2, . . . , βn) where βi ∈ {0,1}. The trimap
with a semiautomated direction can be applied to three regions called the background,
foreground, and the uncertain pixels and they can be represented as ZB, ZF, and ZU. The
covariance of the gaussian mixture model of n elements is determined using the background
pixels and the foreground pixels.

α = {Π(β, k), µ(β, k), Σ(β, k)}; where Π, µ, Σ are the weight, mean and covariance
matrices and k = {k1, k2, . . . , kn} where ki ∈ {1, . . . , n} for the elements of the gaussian
mixture model of the pixels yi.

The function for the segmentation can be expressed as F(β, k, α, y) = P(β, k, α, y) + R
(β, y); where P represents the probability distribution Z of the gaussian mixture model
and R represents the regularizing of the segregated regions concerning the color and the
neighborhood pixels and R assumes the neighborhood E over the pixels

P(β, k, α, y) = ∑m−log z(ym|βm, km, α)− log Π(βm, km)

R(β, y) = ϑ ∑{i,j}∈E

[
βi 6= β j

]
exp

(
θ‖yi − yj‖2

)
2.4. Feature Extraction

After performing the segmentation, we applied the stacked CNN technique to ex-
tract the corresponding features in the segmented image. The proposed hybrid approach
learns nonlinear discriminative features from the dermoscopy images at different levels.
Algorithm 1 discusses the GC-SCNN Algorithm. CNN automatically learns the valuable
features, and we integrated three modules, Inception-V3 [25], Xception [26], and VGG-
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19 [27]. In the first module, pre-trained Inception-V3, Xception, and VGG-19 models are
tuned for dermoscopy images to extract features from the segmented image. The second
model of the stacked CNN obtained six sub-models during the training of the CNN models.
We stacked together all the sub-models and then applied the SVM classification to build a
model to classify the lesions. The Algorithm 1 for GC-SCNN is written as

Algorithm 1: GC-SCNN.

Input: Segmented Images
Output: Skin cancer Classification results
for k = 1 to length (segmented images) do
for j = 1 to 3 do
sub-model j. predicts (segmented image)
end for
final = concatenation (P1, P2, P3)
end for
assess the SoftMax classifier on the feature vector final
stacked CNN = Train (final, label)
classification of skin cancer images
prediction = classification (stacked CNN, testset)
return prediction

2.5. Lesion Classification

The SVM classifier takes the extracted features and classifies the lesion. First, the SVM
calculates the feature score by using the linear mapping on feature vectors and uses this
feature score to calculate the loss. The loss should be minimal to get better accuracy; we
use an improved loss function [28] to calculate the weighted score for each pixel in the
segmented lesion image. The Algorithm 2 for the enhanced SVM is described as

Algorithm 2: Enhanced SVM algorithm.

Initialize the values in the training set
Repeat for every i = 1 to N
calculate the loss function for all values
compare the extracted patches in the images
end for
Repeat for every score vector i- 1 to N
Compute SVM with imputed labels
argmax((w × xi) + b), i
end for
Evaluate for different weights and compute output.

Enhanced SVM reduces the number of neurons, leading to overfitting minimization,
increasing accuracy, and reducing processing time. The enhanced loss function reduces
the load of the segmented dermoscopy images fed to the enhanced SVM classifier, which
reduces the processing time. The improved loss function in the existing SVM algorithm
improves the performance in classifying the lesion segments depending on the intensity
and the score vectors.

2.6. Experimental Framework

The proposed methodology discusses the classification of skin lesions. First, we fed
the input data for preprocessing using fuzzy logic to enhance the image and identify the
lesion boundaries. We then applied the morphological operators to remove the hair on the
skin. Then the images were sent for segmentation using the GrabCut technique. Later, the
features were selected using the stacked CNN. Finally, to classify the lesions, we used the
improved SVM classifier. The proposed experimental framework is illustrated in Figure 4.
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2.7. Performance Metrics

The performance metrics can help measure the model presented in terms of the
different parameters mentioned below. For instance,

v Accuracy measures the portion of the true results among the total number of the cases
and is written as accuracy = TP + TN

TP + TN + FP + FN ; Where FP-False positive, FN-False
Negative, TP-True Positive, TN-True Negative

v Sensitivity is the portion of the positive outcomes among the actual positive and it is
defined as sensitivity = TP

TP + FN
v Specificity is defined as the portion of the true negative outcomes among the negative

outcomes and it is written as specificity = TN
TN + FP

3. Results

The performance of the stacked CNN frameworks is assessed in this section and
compared to the performance of the existing models, and the dataset is decomposed into
an 80:20 ratio. For simulation, the enhanced fuzzy-SCNN was implemented in Python with
IDE Anaconda on the Intel Core i5 3.4 GHz processor.

Deep learning models require a robust set of hyperparameters. Hyperparameter
tuning enhances deep learning performance. Various optimization techniques exist for
hyperparameters and the manual search technique is one of them. A variety of hyperpa-
rameter combinations have been tested and the best model has been selected. Various
hyperparameters were set for optimizers, learning rate, weight decay value, and dense
layers. Hyperparameters in the network include the learning rate, optimizer, dense layers,



Healthcare 2022, 10, 962 7 of 14

and decay constant. A stacked CNN is tuned by varying its hyperparameters, as shown
in Table 1. Optimizing algorithms affect both training speed and prediction accuracy. The
popular optimizer algorithms in deep learning are the Root Mean Square Propagation
(RMSProp), adaptive Moment Optimization (Adam), Stochastic gradient descent (SGD),
and Adaptive Gradient (AdaGrad), Adadelta.

Table 1. Different hyperparameter tuning effects.

Batch Size Optimizer Dense Learning Rate Weight Decay Values Epoch Loss Processing Time (ms)

32

RMSProp 4 0.0001 0.0001 50 6.50 4
RMSProp 4 0.0001 0.001 100 6.56 5
RMSProp 4 0.001 0.0001 50 6.25 4
RMSProp 4 0.001 0.001 100 6.57 5

64

RMSProp 4 0.0001 0.0001 50 7.27 5
RMSProp 4 0.0001 0.001 100 7.37 6
RMSProp 4 0.001 0.0001 50 7.52 5
RMSProp 4 0.001 0.001 100 7.79 7

32

RMSProp 5 0.0001 0.0001 50 8.46 6
RMSProp 5 0.0001 0.001 100 8.63 7
RMSProp 5 0.001 0.0001 50 8.21 6
RMSProp 5 0.001 0.001 100 8.35 7

64

RMSProp 5 0.0001 0.0001 50 8.32 8
RMSProp 5 0.0001 0.001 100 8.34 7
RMSProp 5 0.001 0.0001 50 8.25 7
RMSProp 5 0.001 0.001 100 8.31 7

32

ADAM 4 0.0001 0.0001 50 6.26 3
ADAM 4 0.0001 0.001 100 6.28 4
ADAM 4 0.001 0.0001 50 6.27 4
ADAM 4 0.001 0.001 100 6.55 5

64

ADAM 4 0.0001 0.0001 50 7.04 4
ADAM 4 0.0001 0.001 100 7.06 5
ADAM 4 0.001 0.0001 50 7.26 4
ADAM 4 0.001 0.001 100 7.27 6

32

ADAM 5 0.0001 0.0001 50 7.67 4
ADAM 5 0.0001 0.001 100 7.63 5
ADAM 5 0.001 0.0001 50 7.21 4
ADAM 5 0.001 0.001 100 7.35 6

64

ADAM 5 0.0001 0.0001 50 8.02 4
ADAM 5 0.0001 0.001 100 8.14 5
ADAM 5 0.001 0.0001 50 8.05 5
ADAM 5 0.001 0.001 100 8.10 6

32

AdaGrad 4 0.0001 0.0001 50 6.47 4
AdaGrad 4 0.0001 0.001 100 6.74 4
AdaGrad 4 0.001 0.0001 50 6.25 5
AdaGrad 4 0.001 0.001 100 6.55 5

64

AdaGrad 4 0.0001 0.0001 50 7.14 5
AdaGrad 4 0.0001 0.001 100 7.06 6
AdaGrad 4 0.001 0.0001 50 7.16 6
AdaGrad 4 0.001 0.001 100 7.29 7

32

AdaGrad 5 0.0001 0.0001 50 7.77 5
AdaGrad 5 0.0001 0.001 100 7.61 6
AdaGrad 5 0.001 0.0001 50 7.23 6
AdaGrad 5 0.001 0.001 100 7.32 7
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Table 1. Cont.

Batch Size Optimizer Dense Learning Rate Weight Decay Values Epoch Loss Processing Time (ms)

64

AdaGrad 5 0.0001 0.0001 50 8.06 5
AdaGrad 5 0.0001 0.001 100 8.18 5
AdaGrad 5 0.001 0.0001 50 8.09 6
AdaGrad 5 0.001 0.001 100 8.11 7

32

Adadelta 4 0.0001 0.0001 50 6.69 4
Adadelta 4 0.0001 0.001 100 6.56 5
Adadelta 4 0.001 0.0001 50 6.28 4
Adadelta 4 0.001 0.001 100 6.47 4

64

Adadelta 4 0.0001 0.0001 50 6.85 4
Adadelta 4 0.0001 0.001 100 7.44 4
Adadelta 4 0.001 0.0001 50 7.16 5
Adadelta 4 0.001 0.001 100 7.26 5

32

Adadelta 5 0.0001 0.0001 50 7.67 6
Adadelta 5 0.0001 0.001 100 7.77 6
Adadelta 5 0.001 0.0001 50 7.73 5
Adadelta 5 0.001 0.001 100 7.31 7

64

Adadelta 5 0.0001 0.0001 50 7.55 6
Adadelta 5 0.0001 0.001 100 8.08 7
Adadelta 5 0.001 0.0001 50 8.19 5
Adadelta 5 0.001 0.001 100 8.12 6

Different hyperparameters were varied for each optimizer and accuracy was compared.
With both Adam and RMS prop tuned with various hyperparameters, the Adam optimizer
had the best performance, followed by AdaGrad and Adadelta. We used two values of
the learning rates, 0.01, 0.001, weight decay constants of 0.01 and 0.001, and dense layers
of 4 and 5, which required a batch size of 64. With all of these settings, the performance
was highest with the least amount of computing resources. With batch size 32, optimizer
ADAM, dense layers 4 with learning rate and weight decay constants of 0.0001 and 0.0001,
we achieved low loss. These hyperparameters were used to classify skin lesions. The model
training included seven categorical skin lesions and the model performance was assessed
with the confusion matrix outcome shown in Figure 5. AKIEC, BCC, and BKL lesion classes
were predicted with 99.21%, 99.34%, and 100% accuracy, respectively. In contrast, DF, MEL,
NV, and VASC had 98.437%, 99.83%, 99.78%, and 100% prediction accuracy. The overall
model accuracy was reported as 99.75%. Other metrics such as sensitivity (true positive
rate) and specificity (true negative rate) were achieved at 100% which is higher than other
previous studies.

Table 2 presents the comparison of different existing models with the GC-SCNN over
the test dataset. In Tables 3 and 4, we compare the proposed model to the state-of-the-art
approaches to the ISIC2018 and ISIC2019 datasets. Based on the accuracy figures of 99.78%
(for ISIC 2018) and 99.81% (for ISIC 2019), as a result, the proposed model outperforms by
1% and 2.5%.
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Table 2. HAM10000 comparison of classification.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

DCN transfer
learning [29] 94.92 80.36 79.8

Mobile Net [30] 83.1 89 83

Kernel extreme
learning machine [31] 90.67 90.20 89.43

DilatInceptV3 [32] 90.10 87 87

Proposed 99.75 100 100

Table 3. ISIC2018 comparison of classification.

Project Accuracy (%) Sensitivity (%) Specificity (%)

Gessert et al. [33] 98.70 80.9 98.4

Ailin et al. [34] 98.20 89.5 98.1

Khan et al. [35] 89.80 89.7 94.5

Mohamed et al. [36] 92.70 72.42 97.14

Huang et al. [37] 85.80 69.04 95.92

Liu et al. [38] 92.54 71.47 92.72

Gu et al. [39] 91.4 83.74 93.24

Zhou et al. [40] 92.55 84.67 93.63

Gan et al. [41] 93.81 90.14 98.36

Proposed 99.78 100 100
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Table 4. ISIC2019 comparison of classification.

Project Accuracy (%) Sensitivity (%) Specificity (%)

Gessert et al. [33] 92.3 80.9 98.4

Ailin et al. [34] 91.5 89.5 98.1

Ahmed et al. [42] 94 89.7 94.5

Pacheco et al. [43] 92 72.42 97.14

Molina et al. [44] 97 69.04 95.92

Kaseem et al. [45] 94 71.47 92.72

Iqbla et al. [46] 90 83.74 93.24

Pulgarin et al. [47] 92 89.53 93.57

Proposed 99.51 100 100

4. Discussion

An automatic skin lesion detection method based on fuzzy GC-SCNN is presented
in this paper. For boundary detection and segmentation, we used fuzzy logic, stacked
CNNs for feature extraction, and enhanced SVMs for lesion segmentation. At different
stages of lesion classification, the enhanced fuzzy GC-SCNN with SVM was compared with
existing techniques. It was proven that the proposed model was more accurate and faster
at classifying the lesion segments than other models, and produces very few false positives
and false negatives.

A skin lesion’s detection and classification performance are typically affected by dis-
criminant feature selection [48]. Existing literature on this topic does not elaborate on
image processing steps and does not address the uncertainty of detecting lesion boundaries.
For example, in [49], the authors proposed the use of orthogonal matching with a fixed
wavelet grid network to enhance, segment, and classify demographic images and obtained
an accuracy of 91.82%. By combining SVM, SMOTE, and ensemble classifiers in combina-
tion with extracting color texture features from dermoscopy images, 93.83% accuracy was
achieved [50]. It was also possible to extract color, texture, and SVM features by using the
Gray Level Co-Occurring Matrix (GLCM) technique [51].

Some studies have achieved improved accuracy in skin malignant cell prediction
through threshold-based segmentation, ABCD feature extraction, and multiscale lesion-
biased techniques [52–54]. A CNN model comprised of multiple tracks was developed
to resolve the issue of skin lesion classification. The model achieved 85.8% and 79.15%
accuracy over five and ten classes respectively [55,56]. In contrast, ensemble-based deep
learning demonstrated improved performance in skin lesion classification and reported
approximately 90% accuracy [57,58]. Despite this, all of the above-mentioned studies
applied a single model, which can affect the accuracy of the model. By stacking different
models, we could improve the accuracy.

Based on the Delaunay triangulation, a study with two parallel processes was able
to detect skin lesions [59]. The backpropagation multilayer neural network was used to
detect and classify melanoma using 3D color texture features from dermoscopy images [60].
On ImageNet datasets, the transfer learning approaches with the CNN model produced
88.33% of accuracy thanks to pre-trained models like Resnet-101, BASNet large, and Google
Net [61]. All of these approaches have the disadvantage that in medical diagnosis they
require prolonged real-time analysis. Our method of detecting lesion boundaries via fuzzy
image processing overcame these limitations.

Additionally, our study is in line with [62] as the authors applied transfer learning to
train the model with the HAM1000 dataset. They implemented Resnet50 models with no
data preprocessing and manual feature selection which resulted in a significant decrease
in the model accuracy and high processing time. The enhanced fuzzy-SCNN with SVM
improved the classification accuracy by reducing the loss and achieved 99.75% accuracy.
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By minimizing the overfitting of training datasets in the SVM classifier, we improved the
classification performance by using the same data set for the newly developed and existing
models. A modified loss function improved lesion classification by reducing processing
time by 25–35 milli seconds and increasing accuracy by 2–5%.

Identifying and classifying seven significant lesions in dermoscopy images was possi-
ble with the proposed solution. Although our solution produced the best possible accuracy,
we have focused on only a limited set of lesions while neglecting minute lesions. Future
work will involve improving the feature extraction techniques with latent factor analysis to
detect negligible minute lesions [63,64]. Incorporating more lesion types with lower noise
by neural network architecture can enhance the model’s significance.

5. Conclusions

Human beings are protected by their skin against environmental pollution, but the
adverse effects of ultraviolet radiation increase the risk of melanoma. We propose a deep
learning framework to segment, detect, and classify skin lesions in dermoscopy images for
melanoma detection. Based on the publicly available dataset HAM10000, which consists of
seven lesion categories, we evaluated the proposed framework. Our model outperformed the
existing models in terms of performance. As a result of the current study, the uncertainties in
boundary detection were removed, reducing the loss and the processing time. We calculated
the prediction time of the proposed model and lesion detection takes 2.513 ms. In conclusion,
the results suggest that the proposed model is computationally efficient.
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