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A central goal in neuroscience is to understand how processing within the
ventral visual stream enables rapid and robust perception and recognition.
Recent neuroscientific discoveries have significantly advanced understand-
ing of the function, structure and computations along the ventral visual
stream that serve as the infrastructure supporting this behaviour. In parallel,
significant advances in computational models, such as hierarchical deep
neural networks (DNNs), have brought machine performance to a level
that is commensurate with human performance. Here, we propose a new fra-
mework using the ventral face network as a model system to illustrate how
increasing the neural accuracy of present DNNs may allow researchers to
test the computational benefits of the functional architecture of the human
brain. Thus, the review (i) considers specific neural implementational fea-
tures of the ventral face network, (ii) describes similarities and differences
between the functional architecture of the brain and DNNs, and (iii) pro-
vides a hypothesis for the computational value of implementational
features within the brain that may improve DNN performance. Importantly,
this new framework promotes the incorporation of neuroscientific findings
into DNNs in order to test the computational benefits of fundamental
organizational features of the visual system.

1. Introduction

A central goal in cognitive and computational neuroscience is to understand
how processing within the ventral visual stream enables rapid and robust rec-
ognition and classification of the visual input. Visual recognition is thought to
be mediated by a series of serial computations that form a processing stream
referred to as the ventral visual processing stream [1,2]. The ventral visual pro-
cessing stream emerges in V1—the first cortical visual area that resides in the
calcarine sulcus [3]—through a series of occipital visual areas, and ends in
high-level visual regions in ventral temporal cortex (VTC), whose activation
predicts visual perception and recognition [4-8].

Recent neuroscientific discoveries have significantly advanced understand-
ing of the function, structure and computations along the ventral stream
processing hierarchy, revealing rich detail about their anatomical implemen-
tation, representations and computations (see reviews [9-13]). By anatomical
implementation, we mean the physical features of the cortical tissue that act
as the substrates performing the computation that produces accurate behaviour.
Two important insights have emerged from neuroscience research: (i) the func-
tional organization of the ventral visual stream is structured and (ii) it is reliable
across individuals. That is, functional regions are consistently organized with
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respect to the cortical folding not only in V1 [3], but
across the ventral stream more generally [14-17]. For
example, the locations of retinotopic areas that contain
maps of the visual field (V1-VO1, figure 1a—c) and face-selec-
tive regions (IOG-faces, pFus-faces, mFus-faces, figure 1c) are
consistently arranged relative to the cortical folding and rela-
tive to each other [16,19,20]. These types of findings have led
researchers to ask new questions such as (i) how do structural
factors such as the underlying microarchitecture and white
matter connections constrain the functional organization of
the ventral stream? (ii) What is the computational purpose
of this functional neural architecture?

In parallel, significant advances in computational models
including hierarchical deep neural networks (DNNs) and
technological advances that enable training DNNs using
large and labelled image sets [21] have brought machine per-
formance in recognition and classification of visual images to a
level that rivals human performance [18,22-24]. This compu-
tational work has led to two important insights: (i) neurally
inspired architectures trained with millions of images can
produce optimal, human-like performance [22,23] and (ii)
DNNs that learn by optimizing a behaviourally relevant cost
function—such as categorization—better predict neural
responses and representations in the primate and human
brain, respectively, compared to other DNNs [18,25,26].

Because of these exciting recent advancements, this is an
excellent time for the field of computational neuroscience to
leverage advances in DNNs and to use them as a tool to
probe the human visual system [27]. This will allow for a
more mechanistic understanding of particular computations
at different stages of the processing hierarchy and will pro-
vide crucial insights to the computational benefits of
specific neural implementational features. Furthermore, per-
turbing aspects of the computational architecture will
enable probing the necessity and sufficiency of specific
neural implementational features for particular behaviours.
Together, this can lead not only to foundational knowledge,
but also to new approaches that could build predictions
from computational models that may help rectify deficiencies
and maldevelopment of the visual system.

To achieve these important goals, it is necessary for the
field to implement and test neurally accurate computational
models of the human visual system rather than models that
are loosely ‘neurally inspired’. Therefore, the goal of this
review is to use a model system within the ventral steam—
the ventral face network—to illustrate how this goal can be
achieved. We chose to focus on the ventral face network for
several reasons: (i) it is a well-understood and studied
system in both human [10,11,28-45] and non-human primates
[46-56], (ii) functional regions in VTC which are causally
involved in face recognition can be identified within each indi-
vidual using functional magnetic resonance imaging (fMRI)
[19,20,28,30], and (iii) the output computation of this system
can be well defined in several levels of specificity ranging
from categorizing a stimulus as a face to identifying a particu-
lar person (e.g. ‘this is Angela Merkel’). Thus, this review
begins with a brief overview of the face recognition system
in the human brain. The rest of the review is arranged in sec-
tions that describe specific neural implementational features
of the ventral face network. For each feature, we consider simi-
larities and differences between the functional architecture of
the brain and DNN, as well as provide a hypothesis for the
computational value of this feature.

2. The ventral face network

To identify face-selective regions in the brain, participants are
scanned in an fMRI scanner as they view faces and a variety
of other stimuli such as body parts, objects, places and
printed characters. In each subject, voxels in the ventral
aspects of occipital and temporal cortex that respond signifi-
cantly more strongly to faces than other stimuli are identified
as face-selective. As shown in an example subject’s inflated
cortical surface (figure 1c), there are three face-selective clus-
ters in the ventral visual stream, found bilaterally. One cluster
is located in the inferior occipital gyrus (IOG) and is called
I0G-faces (also referred to as the occipital face area [57]). A
second cluster is located on the posterior-lateral aspect of
the fusiform gyrus and is called pFus-faces [19]. A third
patch is located on the lateral fusiform gyrus, about 1-
1.5 cm anterior to pFus-faces, and tends to overlap the
anterior tip of the mid-fusiform sulcus (MFS). This patch is
referred to as mFus-faces [19]. In fact, in the right hemisphere,
a 1 cm disc aligned with the anterior tip of the right MFS
identifies approximately 80% of the face-selective voxels in
the right mFus-faces [16]. pFus-faces and mFus-faces are
often lumped together and referred to as the fusiform face
area (FFA [28]). A characteristic of these ventral face-selective
regions is that they respond to faces significantly more
strongly compared to other stimuli [28,30], and this prefer-
ence for faces is maintained across formats [29,58—-61]. That
is, both photographs and line drawings of faces evoke
higher responses than photographs and line drawings of
common objects. Selectivity to faces is also maintained
when low-level features of the visual input are matched
across faces and control stimuli (e.g. face silhouettes generate
higher responses than shape silhouettes that are matched in
contrast and area).

Ventral face-selective regions are thought to receive
inputs from earlier retinotopic areas V1, V2, V3 and hV4
[62—-64]. These earlier areas are labelled by their order in
the visual processing hierarchy [62]. Each of these visual
areas contains a map of the visual field (where the left hemi-
field is represented in the right hemisphere and vice versa).
Retinotopic visual areas are thought to be connected to
each other and also to the ventral face regions via axons
[62,63]. Long-range axonal connections tend to be myelinated
and form white matter tracts. Thus, some of the inputs from
earlier visual areas to face-selective regions include portions
of the inferior longitudinal fasciculus [65-67] (a large tract
that connects the occipital lobe to the inferior aspect of the
temporal lobe [68]). Additionally, ventral face-selective
regions also have white matter connections to visual regions
in the parietal cortex through vertical fasciculi such as the
vertical occipital fasciculus (VOF [69-71]) and posterior arcu-
ate fasciculus [70]. These vertical connections are thought to
facilitate top-down modulations from the parietal-attention
network to ventral regions [72]. However, in this review,
we will concentrate on the feed-forward connections of the
ventral face network.

Understanding this organization is useful for generating a
tentative schematic of the processing hierarchy of the ventral
face network (figure 1b). However, this is not often how the
ventral stream processing hierarchy is portrayed in ‘neurally
inspired” DNNs. A typical DNN of the ventral stream based
on the macaque visual system (shown in figure 1a) is por-
trayed as a feed-forward architecture progressing from V1
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(a) common implementation of ventral visual stream hierarchy:
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(b) ventral stream processing hierarchy for face recognition in humans

(c) ventral face network
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Figure 1. Ventral stream processing hierarchy for face recognition in humans. (a) A common ventral visual stream hierarchy based on the macaque visual system,
implemented or referred to in the DNN literature. This hierarchy is adapted from [18], though some models begin in the retina [13]. (b) The ventral stream visual
hierarchy of the human ventral face network. In the manuscript, we will only describe cortical regions starting from V1. This is a tentative suggestion based on
present understanding of visual areas in the human brain (see 1¢), but could be refined in future research when new knowledge (such as understanding the full
connectivity pattern including feedback connections and bypass routes) will update this schematic. (c) Visualization of the ventral face network on an inflated cortical
surface of an example participant showing the ventral aspect of occipito-temporal cortex (sulci in dark grey, gyri in light grey). Retinotopic areas are shown in shades
of blue and labelled V1 to VO1. Face-selective regions are shown in shades of red and include 10G-faces (on the inferior occipital gyrus), pFus-faces (on the posterior
fusiform gyrus) and mFus-faces (on the mid-fusiform gyrus). (Online version in colour.)

to V2 to V4 to IT (IT, or infero-temporal in the macaque, is
thought to be homologous to human VTC). However, there
are two main differences between the commonly
implemented DNN and the human ventral stream. First, V3
is missing. This omission may be due to the fact that in maca-
que, V3 is substantially smaller than either V2 or V4 and
there are direct white matter connections from V2 to V4.
However, in the human brain, V3 is both equivalent in size
to V2 [73,74] and larger than hV4 (figure 1c). Second, IT is
often represented in DNN schematics as a single area. In
the macaque, IT contains multiple subdivisions [55,75-80],
and in humans, VTC is divided into several cytoarchitectonic
areas [16,81-84], which contain more than 10 visual regions
including: (i) two face-selective regions, pFus and mFus,
figure 1c, (ii) additional domain-specific regions selective
for places [85,86], bodies [87,88], objects [89] and charac-
ters/words [90], and (iii) several retinotopic areas: VO1/2
[91]; PHC1/2 [92]. Thus, we propose that the first step in
building a neurally accurate feed-forward DNN for the
human face recognition system is to include all the relevant
areas in the human brain. Consistent with this idea, in the
present manuscript, we will consider the following ventral
face network: V1 —V2—V3— hV4—IOG — pFus —
mFus (figure 1b).

Why are we focusing only on the feed-forward aspect of
this network? There are several reasons. First, humans can
classify a stimulus as a face in less than 100 ms and recognize
the identity of the face in approximately 150 ms [93,94]. This
fast processing has prompted researches to suggest that face
recognition does not necessitate top-down information and
can be accomplished with fast, feed-forward processing.
Second, face-selective responses in the fusiform gyrus
emerge within 100-170 ms [38,95-98]. Third, as standard
DNNs have a feed-forward architecture, we first compare
them to the feed-forward components of the human visual
system. Once these are well-understood, subsequent analyses
will elucidate the role of non-hierarchical connections includ-
ing the modulatory role of top-down connections from the

parietal lobe [69,70,72] to the ventral stream, as well as the
role of bypass connections [64].

As illustrated in table 1a,b and figure 1, there are some
commonalities in the basic neural implementation of the ven-
tral face network and DNNSs. Critically, both types of
networks enable hierarchical and feed-forward processing,
which are thought to support two important computational
benefits. First, the universal approximation theorem [99] has
shown that these types of architectures can approximate
any complex continuous function relating the input (here,
the visual input) to the output (here, face recognition).
Second, feed-forward processing with simple linear—non-
linear operations (which we will elaborate below) allows
fast computations and, consequently, rapid performance (in
our case, face recognition). Now that we have a foundation
regarding the architecture of the ventral face network, we
next turn to the computations that this structure produces.

3. Basic computational unit in the visual system:
receptive fields

In the human visual system, the basic computation is per-
formed by receptive fields. A receptive field (RF) is the
region in visual space that is processed by a neuron. Since neur-
ons with similar RFs are spatially clustered, with fMRI we can
measure the population receptive field (pRF)—the region in
the visual field that is processed by the population of neurons
in a voxel. RFs are often modelled by spatial filters that have
linear—nonlinear operations. Example receptive fields that
have been used to model responses in the visual system include
Gaussians, difference of Gaussians and Gabor filter banks.
These filtering operations are often followed by a nonlinearity
such as a normalization, rectification or a compressive
exponential nonlinearity [100—102].

These types of RF models have inspired the implementation
of filters within DNNs. Indeed, each layer of a DNN contains a
series of linear filter banks. Filters in each layer are applied
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Table 1. Comparison between several major characteristics of human ventral face network and deep neural networks.

property human brain

a. hierarchical processing

<<

b, feed-forward processing

- Iovcélﬂcovmvputativohsv N
. pRF/filter size increases along hierarchy
e. pRF/filter size increases with eccentricity

- adJustabIepRFs/ﬁIters Mttt AR
g. learned pRFs/filters

NN

h. spatio-temporal pRFs/ﬁIters .

uniformly on the input (image or output of prior layer) using a
convolution operation. The output of the convolution can be
followed by several mathematical operations to mimic neural
responses: a thresholding nonlinearity (e.g. rectification or
sigmoid), then pooling and, finally, normalization. Thus, filters
in DNNSs perform local operations on the image akin to those
of receptive field models. The computations by pRFs/filters
enable local, parallel processing of the image, which, in turn,
increases computational efficiency (table 1c).

PRFs in the human brain have four fundamental charac-
teristics that are interesting to consider when comparing to
filters in DNNs. First, pRFs in the right hemisphere are
centred in the left visual field, and those in the left hemi-
sphere are centred in the right visual field. This is referred
to as processing of the contralateral visual field. In other
words, to increase parallel processing, the brain splits the
visual input into two halves, each processed in a different
hemisphere. DNNSs typically process the entire image,
though some implementations split processing across more
than one graphics processing unit [22].

Second, mean pRF size increases across the hierarchy of the
ventral face network (figure 2a). The smallest pRFs are in V1
and the largest pRFs are in face-selective regions. For example,
PRFs in face-selective regions are on average four times larger
than those in V1 (figure 2a). This characteristic is also present
in DNNs due to both the pooling operation and the repeated
use of local convolutional filters. This results in a systematic
increase in the extent of the visual image processed by filters
as one ascends stages of the DNN. This increase in pRF/filter
size is hypothesized to allow neurons/filters in higher stages
to process information across several features, and perhaps
even the entire object, rather than just local features as is the
case for processing in lower stages of the network.

To give the reader an intuition of how mean pRF sizes in
the ventral face network (figure 2a) relate to a real-life example,
let us consider an example in which a face is viewed from a
typical viewing distance (approx. 1 m away) and determine
what facial features are processed by pRFs in different visual
regions of the ventral face network. In this example, illustrated
in figure 2c, a V1 pRF processes only the corner of the eye, a
hV4 pRF processes the eye and the top of the nose, and a
mFus-faces pRF processes the entire face. This example
shows that the increase in pRF/filter size across the ventral
visual hierarchy allows higher stages of the hierarchy to
process more useful features for recognition (table 1d).

Third, in both the human and non-human primate visual
system, RF size and consequently pRF size, increase with

deep neural network

X 2% X 2 22

hypothesized utility
enables computing of complex functions
speed
B parallél prbcéssing
e
solution to limited brain size
. taskopt|m|zedprocessmg S
flexibility; optimization for task and natural statistics
 apture dynamics of natural envionment

eccentricity [102-104] (figure 2c). That is, starting from the
retina, and continuing throughout the entire processing hierar-
chy, RF size is not constant in a given region. Rather, both RFs
and pRFs are smallest near fixation (centre of gaze) and increase
roughly linearly with eccentricity (figure 2b). By contrast, filter
size in DNNs is constant across each layer of the network. One
reason why pRF size scales with eccentricity in the human and
primate brain, but not in DNNs, may be limited resources. That
is, the brain may need to optimize visual resolution given lim-
ited physical space as well as limited metabolic resources. The
brain’s solution to these limitations is to provide more resol-
ution (smaller RFs) at the centre of gaze at the expense of less
resolution (larger RFs) in the periphery (table 1e).

Fourth, in the human brain, pRFs in face-selective regions
have a foveal bias. In face-selective regions, like in earlier
visual areas, pRF centres are in the contralateral visual field
(e.g. pRFs in the left hemisphere are centred in the right visual
field, figure 3a). However, in face-selective regions, almost all
of these pRFs overlap the fovea (figure 3a). We refer to this
phenomenon as foveal bias. Given that pRFs in face-selective
regions are large and overlap the fovea, this enables them to pro-
cess information across both visual fields. Additionally, as one
ascends from face-selective IOG, to pFus, to mFus, the foveal
bias increases as pRF centres become more concentrated
around fixation. Consequently, in face-selective regions, the
centre of the visual field is more densely covered by pRFs
than the periphery of the visual field [36,106—-108].

It is appealing to hypothesize how this tiling of the visual
field by pRFs in face-selective regions may relate to behav-
iour. One interesting behaviour is how people look at faces.
A large literature indicates that during recognition, people
tend to fixate on the centre of the face [109-113], as shown
for the example in figure 3b (but see [114,115]). This fixation
behaviour places pRFs in face-selective regions on the part of
the face that has the most informative features for recognition
[116-118]—that is, the eyes and nose.

4. PRFs in face-selective regions are modulated
by the task

One interesting question is whether pRFs in the visual system
are fixed or are modulated by task and behavioural goals.
Several results show that attention and task may modulate
PRF properties and this modulation seems to increase
across the visual processing hierarchy [36,119,120]. Namely,
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(a) pRF size across the hierarchy
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(c) example face features processed by pRFs across the ventral stream hierarchy
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Figure 2. pRF properties across the ventral face network hierarchy. (@) Mean pRF size measured across the central 7° of each visual area. (b) There is a linear
relationship between pRF size and pRF eccentricity across the ventral face network hierarchy. The slopes of lines relating pRF size and eccentricity increase across the

processing hierarchy. () Example pRFs from the ventral face network. In each region, we illustrate a pRF centred at a 2° eccentricity on a face that is at typical
viewing distance (approx. 1 m). The crosshair indicates the fixation point. Figure is adapted from [34].

(a) pRFs in face-selective regions

(b) fixations on a face
during a recognition task

left hemisphere
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Figure 3. pRF properties in face-selective regions may affect the way people look at and fixate on faces. (a) Tiling of the visual field by pRFs in face-selective
regions. pRFs are indicated by the grey circles, and their centres by the red dots. Ascending from face-selective 10G, to pFus, to mFus, pRFs become larger and
become more concentrated on the centre of gaze. Adapted from [36]. (b) Fixation density on an example face during a face recognition task. Data are averaged
across 11 adults. Colourbar indicates average maximum fixation density. Adults tend to fixate on the centre of the face when performing face recognition tasks. This
behaviour puts the combined visual field coverage of pRFs in face-selective regions on informative facial features. Adapted from [105].

attention has a more profound effect on pRFs in higher levels
than lower levels of the hierarchy.

In our experiments, we tested if pRFs in the ventral face
network are modulated by the task [36]. To do so, we
measured pRFs by showing faces randomly in 25 locations
while subjects centrally fixated on a stream of digits under
two tasks: a digit task and a face task. In the digit task, par-
ticipants indicated via a button press if two successively
presented digits were the same, and in the face task, partici-
pants indicated if two successively presented images were of
the same person.

Our results revealed three findings. First, attention to per-
ipheral faces relative to central fixation increased pRF

eccentricity in face-selective regions, but not early visual
areas. That is, during the face task, pRFs in face-selective
regions were further from fixation than during the digit
task. In contrast, there were no changes to pRF eccentricity
across tasks in early visual areas (V1-V3). Second, attention
to faces increased pRF size in face-selective regions, but not
early visual areas. In face-selective regions, pRF sizes
were substantially larger during the face task than the
digit task. For example, in mFus-faces, median pRF size
increased from 1.8° in the digit task to 3.4° in the face task.
Third, pRF gain in face-selective regions was larger in the
face than digit task, but this was not apparent in early
visual areas.
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Figure 4. Attention to faces enhances representation and spatial precision in the periphery. (a) pRFs of left pFus-faces under the digit task, (b) pRFs of left pFus-
faces under the face task. In a and b, pRFs are indicated by the circles, their centres are indicated by black dots, and their gain is indicated by the grey-level intensity
(see colourbar). The black square indicates the size of a 5° image. () Spatial uncertainty in decoding the location of a face compared to an anchor face placed at 5°
eccentricity based on the collection of pRFs in each task. Spatial uncertainty is lower during the face task (grey) than the digit task (black). Adapted from [36].

(Online version in colour.)

The combined effects of task on pRF size and eccentricity
have a profound impact on the spatial representation of
visual space by the collection of pRFs spanning each of
the face-selective regions. This effect is illustrated in
figure 4a,b: figure 4a illustrates the visual field coverage by
PpRFs of pFus-faces under the digit task, and figure 4b shows
the pRFs of the same voxels during the face task. Notably,
during the face task, pRFs are more scattered and extend further
into the periphery than during the digit task. Thus, the conse-
quence of attention to faces is enhanced representation of the
periphery by pRFs of face-selective regions.

To quantify the effect of task on spatial acuity of the
neural representation, we used a model-based decoding
approach to quantify the spatial uncertainty obtained by
pRFs measured under the different tasks. We found a signifi-
cant four-fold reduction in spatial uncertainty in the
periphery (5° eccentricity) in face-selective regions during
the face task compared to the digit task (figure 4c). In con-
trast, spatial uncertainty obtained by pRFs in early visual
areas remained stable across tasks. Interestingly, the spatial
uncertainty obtained by pRFs in face-selective regions in
the face task was no greater than that of V1 even though
PRFs were substantially larger (figure 4c).

Thus, another difference between the human brain and
DNNs is the finding of task-adjustable pRFs in higher
stages of the hierarchy (table 1f). We speculate that this
implementational feature allows the brain to adjust pRFs
according to task demands and to enable more effective
task-relevant processing. This task-based modulation is
likely implemented in the brain via top-down connections.
One candidate pathway that may facilitate such task-based
modulation is the VOF. This white matter tract connects
regions in the IPS that are involved in attentional gating
with ventral stream regions, such as pFus-faces, thereby mod-
ulating responses in the ventral stream [72]. In addition to
task-based modulations, experience and development also
modify pRFs, which we address in the next section.

5. Both cortical and artificial networks are

shaped by experience

One of the big contributions of the DNN literature for under-
standing biological visual systems is elucidating what types of

filters are learned under different tasks. For example, in their
seminal paper, Krizhevsky et al. [22] showed that training a
DNN to categorize natural images generated V1-like oriented
and colour-opponent filters in the first stage of their neural
network. In other words, training the network to perform a
categorization task using real images during training (Ima-
geNet [21]) generated filters in the first convolutional layer
that had similar properties to V1 receptive fields (RFs). Like-
wise, a large body of literature has examined the role of
experience in shaping RF properties in V1 in species other
than humans [121-124]. While the general retinotopic prefer-
ence is present in infancy, likely due to wiring, experience is
thought to be necessary to fine-tune RF properties of V1 neur-
ons to obtain the adult-like specificity of their size, position
and orientation tuning. This ability of DNNs and of the
human brain to learn is key, as it gives the system considerable
flexibility to learn the natural statistics of the visual world
as well as to optimize the filters for extracting task-relevant
properties (table 1g).

Presently, most DNNs use supervised learning (e.g. by
labelling the category of training images) and algorithms
such as back-propagation [125], which optimize a task-
relevant cost function to learn relevant information. While
humans may receive some supervised learning (e.g. a
mother may name objects as they speak to their babies), it
is thought that neurons in the brain can also fine tune their
response properties via unsupervised learning from the
natural statistics. Thus, a goal for computational modelling
would be to develop a family of DNNs that learns from
unsupervised training to better model biological visual systems.

Notably, recent evidence suggests that the development of
PRFs in higher visual areas, such as face-selective regions,
continues well past infancy and during childhood [105] even
as pRFs in V1 and other early visual areas are adult-like by
age 5 [105,126,127]. In a recent study, we measured pRF prop-
erties and the visual field coverage of pRFs in face-selective
regions of school-age children and adults [105]. We found
substantial developmental changes in the visual field cover-
age in face-selective regions from childhood to adulthood.
As illustrated in figure 54, the right pFus-faces of children
shows a foveal bias (higher density of the visual field coverage
around the centre of gaze), and a coverage of the left, lower
visual field. In adults, right pFus-faces also shows a foveal
bias. However, compared to children, the visual field coverage
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(a) visual field coverage by pRFs in right pFus-faces in children and adults
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Figure 5. Development of visual field coverage in face-selective regions correlates with fixation patterns on faces. Adapted from [105]. (a) Visual field coverage by
pRFs in right pFus-faces averaged across 14 children (left) and 18 adults (right). Colour indicates the average maximum pRF coverage in the central 7°. Crosshairs
indicate fixation. (b) Placing the visual field coverage of right pFus-faces in children on the centre of the face would place pRF resources in a region without
informative features. (¢) Moving fixation upwards and rightwards (indicated by the red vector) places the visual field coverage of children’s pRFs on the region
of the face containing informative features. (d) Child fixation patterns on 16 faces compared to adults. Fixations are significantly shifted rightwards and upwards.

in adults” right pFus-faces (i) expands to the upper and right
(ipsilateral) visual field and (ii) the foveal bias increases.
These data show that pRF properties in face-selective regions
continue to develop after age 5.

What are the implications of the development of visual
field coverage by pRFs? One prediction from our findings
is that face viewing behaviour should differ across age
groups. In other words, we predict that if pRFs in face-
selective regions guide viewing behaviour, then the differing
visual field coverage of pFus-faces across age groups would
result in differing fixation patterns on faces across age
groups. To illustrate this point, consider figure 5b, which
shows the pRF coverage of children’s right pFus-faces super-
imposed on an example face. Central fixation, as performed
by a typical adult, will put the visual field coverage of the
child’s pFus-faces on the edge of the nose and cheeks,
which do not contain useful information for face recognition.
In other words, a child presented with the example face
should not fixate on the centre of the face as it will place
the visual field coverage of pFus-faces outside the region
with useful features. Instead, the child should shift their fix-
ation upwards and rightwards (figure 5c), as this fixation
behaviour will place the visual field coverage of right pFus-
faces on informative features for face recognition. It turns
out that this is precisely what children do. Comparison of fix-
ation patterns on faces in children and adults indicate that
children’s fixations on faces are indeed consistently shifted
upwards and rightwards compared to adults (figure 5c),

thus putting the pRFs of face-selective regions on the infor-
mative features. A second implication from our results is
that fixation patterns on faces, as well as pRFs in face-
selective regions, may be shaped by lifelong experience
and consequently, may vary across cultures with different
stereotypical viewing of faces (e.g. [115]. Future research
comparing pRFs across cultures with distinct face viewing
norms can address this question.

6. Neural sensitivity to face identify develops
from childhood to adulthood

While development of pRFs in face-selective regions is related
to face viewing patterns, this development does not explain
why face recognition performance in adults is better than in
children. We hypothesized that another facet of functional
development may be increased neural sensitivity to face
identity. Increased neural sensitivity may lead to increased per-
ceptual sensitivity and consequently, better face recognition
performance.

To test if neural sensitivity to face identity develops from
childhood to adulthood, in a different study [128], we used a
parametric fMRI-adaptation (fMRI-A [89,129]) experiment. In
adults, responses to repetitions of the same face are lower
than responses to different faces, due to neural adaptation
[89,129]. Importantly, the level of fMRI-A is dependent on
the level of face similarity [130-132]. That is, the more similar
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Figure 6. Sensitivity to face identity develops from childhood to adulthood. (

b)
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0.004 |
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1

a) Average response in mFus-faces across 12 adults (19—34 years old, black) and 19

children (5—12 years old, grey) to faces that vary in their level of d|55|m|Iar|ty. The slope of this line indicates sensitivity to face identity. The x-axis indicates the
dissimilarity between faces in a trial starting from 0 (identical) to 100 (different real-world individuals) in increments of 20%. In order to systematically vary
dissimilarity among faces, Natu et al. [128] morphed a target face to six different identities and varied the weighting of the source and target faces. In each
4-s trial, subjects viewed six faces from these morphs. In different trials, subjects viewed male and female faces as well as adult and child faces. (b) Slope of
the line relating amplitude of response to face-dissimilarity in children (grey) and adults (black) as they viewed adult and child faces. Data in this figure are

adapted from [128]; Error bars: standard error of the mean.

the faces are, the larger the fMRI-A. Therefore, we designed
an experiment in which we systemically varied face similarity
and tested if the slope of the function relating neural
responses to face dissimilarity (defined as neural sensitivity)
varies across age groups [128]. We predicted that if neural
sensitivity to faces develops, the slope of this line will be stee-
per in adults than children. Indeed, that is precisely what we
found. Interestingly, this development was specific to the
face-selective regions of the ventral face network (figure 6a).
Further analyses indicated that the neural sensitivity to face
identity is also influenced by recent experience and the
social salience of faces. In pFus-faces, children had higher
neural sensitivity to child than adult faces, and in mFus-
faces, adults had higher neural sensitivity to adult faces
than child faces (figure 6b). Notably, the degree of neural sen-
sitivity was correlated to perceptual discriminability of face
identity. That is, subjects with higher neural sensitivity to
faces in pFus- and mFus-faces had higher perceptual sensi-
tivity. Together, these data show that both pRFs and the
neural sensitivity to face identity develop from childhood
to adulthood. Furthermore, this development was coupled
with improved perceptual discriminability.

7. Receptive fields in the visual system process
changes across both space and time

Finally, another key difference between processing by filters
in the brain and filters in DNNs emulating the ventral
stream is their temporal sensitivity. Typical DNNs for recog-
nition, categorization and face identification contain
temporally-static filters. In contrast, the visual system has
dynamic RFs (table 1h). For example, electrophysiological
recordings in macaque V1 have found that V1 RFs are best

understood as spatio-temporal filters [133—-137] in which
RFs process changes in the visual input across both space
and time.

Electrophysiology studies commonly report two types of
temporal filters in V1: monophasic and biphasic filters
[138-140]. Monophasic temporal filters compute the ongoing
sustained visual response—that is, they produce elevated
firing when a visual stimulus is present. In contrast, biphasic
temporal filters compute the temporal derivative of the visual
input, indicating when there is a change in the visual stimulus.
Thus, spatio-temporal filters compute time-varying aspects of
the visual stimulus. For instance, in V1 they process changes
in contrast and/or orientation over time (figure 7).

While spatio-temporal filters
[133,137,138] was focused on understanding properties of
neurons that code the direction of visual motion (which are
found in V1 and MT), recent evidence suggests that such
transient and sustained temporal channels are found not
only in V1, but also across the visual system [101,141] includ-
ing the ventral stream [141]. This finding is somewhat
surprising because recognition can be done from brief,
static images [93,94,142] and visual motion does not strongly
modulate responses in ventral face-selective regions [143].
The combination of this recent evidence leads to the follow-
ing intriguing question: What is the computational purpose
of spatio-temporal filters in the ventral face network and
the ventral visual stream more broadly?

initial research on

We speculate that spatio-temporal filters may serve sev-
eral computational goals. First, in contrast to artificial
DNN s in which the visual input is introduced one image at
a time, the visual input in the natural worlds is continuous,
except for discontinuities introduced by eye movements.
Therefore, spatio-temporal filters may parse the visual
input. For example, biphasic temporal filters may be useful
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Figure 7. Example spatio-temporal receptive fields (RF) in macaque V1. (a) Example spatio-temporal receptive field recorded in macaque V1. This filter has both
spatial (x-axis) and temporal (y-axis) tuning. (b) Example temporal characteristic of a monophasic (black) and biphasic (grey) temporal RF in macaque V1. Adapted

from [138]. (Online version in colour.)

for detecting novel stimuli (e.g. a new face) and monophasic
temporal filters may code sustained aspects of the visual
input [141]. Second, spatio-temporal filters may compute cor-
relations across space and time from the visual input that
may function to bind incident two-dimensional views of
the same object together [144,145] (e.g. linking among differ-
ent face views belonging to the same individual), which is a
process that may be particularly useful for unsupervised
learning [145-147]. Third, some items in the world, such as
bodies and animate beings, are non-rigid [148]. Thus,
spatio-temporal filters may aid in computing dynamic fea-
tures, which may be particularly useful for recognition of
non-rigid stimuli. Therefore, a productive avenue for future
DNN research would be to implement dynamic spatio-
temporal filters within the DNN architecture to test these
hypotheses and to determine the added value of dynamic
compared to static filters.

8. Using deep neural networks to test the
computational utility of implementational
features of the neural architecture

Throughout this review, we described important implemen-
tational features of the human ventral face network,
compared these features with present DNN architectures,
and proposed hypotheses for the computational utilities of
various implementational features. These ideas are summar-
ized in table 1. We are hopeful that these neural features
will be incorporated into modern DNNSs to generate a new
class of neurally accurate computational models of the ventral
stream and specifically of the face network. To make DNNs
neurally accurate, there is a need to implement neural fea-
tures that are presently absent including: (i) filters that
sample the visual field in a non-uniform manner, (ii) filters
that can be adjusted to accommodate varying task demands,
(iii) temporally dynamic filters, (iv) a correct number of pro-
cessing stages, and (v) recurrent and top-down connections.
Adding these features into DNNs may (i) enhance under-
standing of the computations along the ventral stream,
(ii) likely improve the predicted brain responses to a variety
of stimuli, and (iii) provide important insights to the hypoth-
esized utility of various architectural features of the human

brain. As the interplay between neuroscience and computer
science increases, it is important to consider that comparisons
between DNNs and the human brain can be done at many
levels. For example, DNNs can be used to predict responses
of single neurons or fMRI voxels. Alternatively, one can com-
pare the types of representational spaces emerging in DNNs
compared to the brain, or examine if the spatial layouts of
these representations are similar to the spatial layouts
across the cortical sheet [18,25,26]. We believe that each of
these different comparison levels (as well as others that we
have not considered) are useful, because they will provide
important insights to cortical computations, as well as ana-
tomical and functional constraints that serve as the
infrastructure for these computations.

Critically, if these neurally accurate DNNs prove to be
better models of brain responses as well as human behaviour
compared to standard DNNs, we can use these compu-
tational models to test the role of specific implementational
features on both brain responses and recognition behaviour.
For example, we have shown that pRFs in face-selective
regions have a foveal bias and that adults tend to fixate on
the centre of the face during recognition. We hypothesized
that this viewing behaviour places pRFs of face-selective
regions on the informative features for recognition. This
hypothesis can be tested by a neurally accurate DNN in
which lower layers have filters that scale with eccentricity
and higher layers have foveally biased filters. For example,
using such a network trained on face recognition, we can
test if better recognition occurs when an input image of a
face is presented either (a) centrally, at the network’s ‘fovea’
or (b) off-centre.

Another enigma that can be resolved with neurally accu-
rate DNNs is why there are three face-selective regions in the
ventral face network and what computational goal they may
serve. To investigate this question, one can generate a family
of DNNs in which the number of higher layers vary (even as
lower layers are held constant). Using this framework,
researchers could directly test what features emerge in higher
layers, as well as how the number of layers may affect (i) per-
formance, (ii) the efficiency of computations or (iii) the speed
and accuracy of learning. Nonetheless, we acknowledge that
this comparison will be complex, as there may not be a 1-to-1
correspondence between layers in a DNN to stages (or brain
areas) spanning the ventral visual hierarchy.
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In sum, neuroimaging research has advanced our under-
standing regarding the functional architecture of the human
ventral face network. Importantly, incorporating these
recent in up-to-date computational DNNs
will further advance the field by providing enhanced

findings

understanding of the computational benefits of specific
implementational features of the human brain.
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