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Abstract: We introduce an explicit function that describes virus-load curves on a patient-specific level.
This function is based on simple and intuitive model parameters. It allows virus load analysis of
acute viral infections without solving a full virus load dynamic model. We validate our model on data
from mice influenza A, human rhinovirus data, human influenza A data, and monkey and human
SARS-CoV-2 data. We find wide distributions for the model parameters, reflecting large variability
in the disease outcomes between individuals. Further, we compare the virus load function to an
established target model of virus dynamics, and we provide a new way to estimate the exponential
growth rates of the corresponding infection phases. The virus load function, the target model, and
the exponential approximations show excellent fits for the data considered. Our virus-load function
offers a new way to analyze patient-specific virus load data, and it can be used as input for higher
level models for the physiological effects of a virus infection, for models of tissue damage, and to
estimate patient risks.

Keywords: viral load; patient specific; mathematical modeling; SARS-CoV-2

1. Introduction

The ongoing global SARS-CoV-2 pandemic has stimulated new research on viral
infection and transmission. COVID-19, the disease caused by SARS-CoV-2, has found an
abundantly susceptible population with no previous immunities. The disease has infected
more than 150,000,000 people world wide, with about 3,000,000 deaths (as of May 2021).
While progressing mildly in most cases, severe cases show respiratory symptoms followed
by complications in other tissues, such as cardiac tissue, blood vessels, kidney, digestive
system and nervous system [1–3]. A good understanding of the viral progression inside a
patient is of vital interest for the design of treatment and/or vaccination strategies.

For example, in a recent study of over 600 SARS-CoV-2 patients in France [4], a
correlation was found between the maximal viral load of a patient and the severity of
the disease. In SARS-CoV-2 infection, the maximal viral load arises early in the disease,
typically before day four ([5,6]), and often patients are not even tested at that point in
time; hence, the maximal viral load might be unknown. Mathematical models can help to
estimate the viral load in a given patient (or animal). The standard mathematical model for
virus load functions of acute viral infections is the Baccam model [7], which is also referred
to as the target model [8]. It is a system of differential equations for viral load, target cells,
and various levels of infected cells. We will discuss the target model and its extensions
later in Section 2.5. Here, our approach is different. Based on preliminary work in [9], we
propose an explicit function that can describe patient specific viral load curves based on
available data. We do not attempt to criticize the target model framework; rather, we offer
an alternative way to analyze the available data.

While our research is certainly motivated by the current COVID-19 pandemic, similar
dynamics are known for other acute viral infections, such as Influenza A [8] or MERS and
SARS [2]. The progression of the viral load has a very typical time course, which can be
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classified into several temporal phases. Typically, an initial fast exponential increase leads
to a virus load maximum (Phase I), which is followed by a slow exponential decrease (Phase
II), followed by a fast exponential decrease, leading to clearance (Phase III) (see Figure 1).
Determining the duration and speed of these phases is important in the understanding
of the disease progression in a given patient. Here, we propose a simple model for the
virus load that provides such biologically meaningful information. The model is based
on intuitive, model parameters, such as the time of viral infection, the time to reach the
maximum, and the time point of fast viral clearance toward the end of the infection. The
result is an explicit virus load function that can be used in higher level models, which focus
on the effect of a virus on the immune system, anti-viral therapies, assessments of tissues
and organs damage, as well as person-to-person infectivities.

Virus load curves, as reported in [2,10,11], have a very typical infection progression
(see Figure 1A,B). In A. Smith [10] the virus infection has been classified into five phases,
which we will combine into three phases for our purpose. In Smith’s classification, in the
first phase (Phase Ia) the virus quickly infects cells without being detectable. This phase is
followed by exponential growth (Phase Ib) until growth shows signs of saturation and a
maximum is reached (Phase Ic). A period of slow exponential decline ensues, which we
call Phase II. And finally, we often observe a fast decline that leads to virus clearance (Phase
III). Depending on the virus and the response of the infected individual, these phases can
be shorter or longer. The last Phase III is sometimes not seen in patient data, and the virus
is cleared before the third phase starts. It is useful to distinguish between a tri-phasic
behavior as in Figure 1C versus a bi-phasic behavior as in Figure 1D.

II IIII

a1 a2 b1 b2

II IIII

a1 a2 b1 b2

A B C D

Figure 1. Typical virus load curves. The virus load (“titer”) is usually reported as a dilution value, TCID50, that is needed to
infect 50% of a given cell culture in (A) absolute scale and (B) logarithmic scale. Shadow areas indicate the three phases
into which we divide the virus load progression. Phase I describes the initial increase until a maximum is reached, Phase
II denotes intermediate decay and Phase III, virus clearance. Images (C,D) show a comparison of the various models
considered in this paper, where (C) shows a tri-phasic response and (D), a bi-phasic response. The red line shows the virus
load function (1), the blue line, the corresponding solution of the target model ODE (9). The dashed lines indicate the
linear approximations of the various phases, where phase I and III are computed by (8). Parameter values are given in
Tables 1 and 2.

To develop our virus load function below (see (1)), we consider Phase I of the sigmoid
increase between time points a1 and a2 (see Figure 1A,B). Phase I includes the three initial
phases (Phases Ia, Ib, Ic) of Smith [10] mentioned above. At time a2, a slow decline of the
virus is observed as the immune response kicks in (Phase II between a2 and b1 in Figure 1),
and finally (Phase III) shows a rather sharp decline once the virus is controlled (between
b1 and b2). Based on [9], we write the virus load curve as a product of three functions,
representing the three main phases:

V(t) = v1(t) v2(t) v3(t), (1)
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where v1 describes the initial growth phase between a1 and a2, v2, the intermediate slow
decay phase between a2 and b1, and v3 the final decay phase between b1 and b2. These are
given as sigmoid and exponential functions, respectively, as follows:

v1(t) = 1 + Vmax−1
2

[
tanh

(
6

a2−a1

(
t− a1+a2

2

))
− tanh

(
−3 a2+a1

a2−a1

)]
, (2)

v2(t) =

{
1 t < a2

e−α(t−a2) t ≥ a2
, (3)

v3(t) = 1− 1−Vmin
2

[
tanh

(
6

b2−b1

(
t− b1+b2

2

))
− tanh

(
−3 b2+b1

b2−b1

)]
. (4)

The specific form of sigmoid curves for v1 and v3 was developed previously by
Olobatuyi in [12] in a cancer model, and more details are given in Section 2. It allows
us to define these functions based on intuitive transition threshold values. The value a1
describes the onset of growth, and a2 a value when saturation is reached; similarly, b1
denotes the time where decay switches from slow to fast, and b2 is the time when the
virus is effectively eliminated. The parameter α describes the intermediate exponential
decay rate. In Table 1, we list the values used in Figure 1A,B and their meaning. This virus
load function can describe the tri-phasic or bi-phasic response, as shown in Figure 1C,D.
A detailed viral infection model, which includes the immune response, was recently
developed in [13]. In Figure 4 of [13], we can see that the slow decay phase II correlates
to activated macrophages, i.e., the innate immune response, while the fast decay phase
III correlates to a spike in CD8+ T-cells, i.e., the adaptive immune response. Using this
information, we see that in a bi-phasic response, the virus is essentially controlled by the
innate immune response, and the progression is mild. However, in the tri-phasic case,
an adaptive immune response arises, leading to more severe cases.

Table 1. Parameters of the standard virus load function (1) corresponding to Figure 1A–D. The virus
load curves reported in [10] are used in (a) and (b).

Parameter A, B C D Meaning (Units)

Vmax 106 9.4 · 105 1.6 · 105 maximum virus load (TCID50)
Vmin 10−7 6 · 10−8 5.2 · 10−3 minimum virus load (TCID50)

a1 0.5 0.9 2.2 onset of virus growth (d)
a2 4 2.07 5.1 enter virus saturation (d)

α 0.1 0.38 1.3 intermediate decay rate (d−1)

b1 13 6.9 16 onset of rapid decay (d)
b2 19 7.9 23.8 reach virus clearance (d)

Virus load functions are in high demand in the virus modeling community. For exam-
ple in [14], a large community of researchers develops an individual-based SARS-CoV-2
physiological model that includes virus infection, virus transmission, immune response,
and potential damage to the tissue. The immune response and the tissue complications are
directly related to the virus load of the tissue. Our standard virus load function will be a
welcome modeling tool to describe tissue damage and assess complication risks. Another
example of detailed virus modeling is a recent study on the impact of SARS-CoV-2 on
the renin-angiotensin-system by Pucci et al. [15]. A realistic virus load function is needed
as model input in their model. The pharmacological company Pfizer made it their focus
to develop new treatment strategies and new estimates of side effects, once a COVID-19
treatment becomes available. A virus load function, as presented here, will be a welcome
tool to test their ideas. (Based on personal communication.)
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Table 2. Parameters of the target model (9) corresponding to data Figure 1C,D and data fit in Figure 4.
Fixed parameters are denoted with *.

Parameter C D Figure 4 Meaning (Units)

β 9.9 · 10−5 9.9 · 10−5 2.78 · 10−5 virus infection rate (TCID−1
50 d−1)

p 1.7 0.8 1.66 virus production rate (TCID50 cell−1 d−1)
c 12.48 12.48 13.58 virus decay rate (d−1)
k 4 4 4 * infection maturation rate (d−1)

δd 1.65 · 106 1.05 · 107 1.53 · 106 base decay rate of infect. cells (cell−1 d−1)
Kd 113,400 113,400 31,280 half saturation constant (cells)

T(0) 107 107 107 T initial condition (cells)
I1(0) 75 75 75 I1 initial condition (cells)
I2(0) 0 0 0 I2 initial condition (cells)
V(0) 0 0 0 V initial condition (cells)

R0 9.268 1.134 6.948 basic reproduction number

2. Materials and Methods
2.1. Data Sets

We use data from five different sources: mice influenza A from [10], human rhinovirus
from [16], human influenza A from [7], human SARS-CoV-2 data from [5], and Macaque
monkeys SARS-CoV-2 data from [6]. Unfortunately, we do not have sex or gender informa-
tion for any of these data.

In [10], 120 mice were inoculated with mouse-adapted influenza A/Puerto Rico/8/34
(H1N1) (PR8) virus, and the time series of virus load titer from the lungs were measured
(10 observation per time point). For each measurement, a mouse had to be sacrificed; hence,
the data are not longitudinal for individual mice. Initial conditions for the virus-target
model, see below, are also available in that reference. The data are shown, together with
our fits, in Section 3.

In [16], 24 patients were inoculated with 300 TCID50 of rhinovirus (RV-16), and nasal
washes were collected to determine copies of viral RNA. The patients were grouped into
three groups: a non-asthmatic control group of 8 patients, a group of 10 asthmatic patients
with low Immunoglobulin E levels (IgE), and 6 asthmatic patients with high IgE levels.
Data were collected eight times during the 21 days of the experiment (days 1, 2, 3, 4, 7, 10,
14, and 21) and averaged for each group. We show the reported geometric mean per group
at the given time points together with our fits in Section 3.

In [7], six patients were inoculated with wild-type human influenza A/Hong Kong/123/
77, and nasal washes were collected daily after 24 h until day eight. The original data
came from an earlier study [17] and they were used before to study models for viral
kinetics [18,19]. We show the individual patient data, and our fits, in Section 3.

In [5], a cohort of COVID-19 patients from two Hong Kong hospitals was evaluated.
A total of 30 patients were screened between 22 January 2020 and 12 February 2020, and
23 patients were included in the study. For each patient, on a daily basis, a multitude of
clinical measurements were recorded, including a virus-load measurement. For patients
who were not intubated, an oropharynx saliva sample was collected. In the early mornings,
patients were asked to cough up to clear the throat, and the virus load in the saliva
was measured. From patients who were intubated, a endotrachial aspirate sample was
taken. As the ciliary activity of the lung epithelium transports mucus to the posterior
oropharyngeal area, these samples give a good indication of the viral activity in the
lungs. The data were collected on a daily basis and recorded as mean values and standard
deviations. We show the individual patient data for eight patients, and our fits, in Section 3.

In [6], nine rhesus macaques monkeys were infected with SARS-CoV-2. Three monkeys
(Group 1) obtained a high initial virus dose, three monkeys (Group 2) a medium initial
dose, and three (Group 3) a small initial dose. The virus load was measured daily or every
other day through a bronchoalveolar lavage probe. All nine monkeys showed only mild
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disease symptoms and they all fully recovered. Hence the infection cycle here is more
indicative of a mild infection, in contrast to the human data considered above. We show
the individual data for the nine monkeys, and our fits, in Section 3.

2.2. Data Fitting Procedure

We fit the virus load function (1) to the five data sets presented above. The virus load
titer is measured as a relative RNA expression, as compared to a reference gene. Hence,
the measurements have a significant measurement threshold ϑ, and virus loads below this
threshold cannot be seen. This threshold is 0 (on a logarithmic scale) for the mice influenza
A data, assumed to be 0 for the rhinovirus data, 0.5 in the human influenza A data, 1 for
the human SARS-CoV-2 data, and 1.7 for the macaque monkey SARS-CoV-2 data. Hence,
measurement values at the threshold cannot be used for the fitting of the curves since the
virus load might be lower than recorded. To account for this, we fit the data to the effective
virus load function as follows:

Vϑ(t) = max{V(t), ϑ}, (5)

where ϑ is the detection threshold given by the data. This explains why the fitted curves
in Figures 7 and 8 seem to “ignore” the non-detection values that are shown for large
times. We also assume that each subject starts and ends with a viral load equal to the
threshold. Hence, we force those values if necessary. We also ignore subjects with fewer
than 5 observations.

To fit the data, we use the Levenberg–Marquard algorithm available in the LsqFit.jl
package for Julia. The initial guess for a1, a2, b1, and b2 is taken from an ordered sample of
four values uniformly distributed between the 0 and the maximum time of the experiment.
The lower and upper bounds are set to be evenly spaced around those initial guesses.
The initial guess for Vmax is taken as the maximum value in the data ×10±3 to define the
bounds. The value of Vmin = 10−7 is fixed. Finally, the initial guess for α is a random
number between 0 and 1 with α bounded between [10−8, 104]. We found the global
minimum by starting from ten thousand random initial guesses and choosing the fit with
lowest residual sum of squares.

When fitting the viral load function to each subject separately, we compute the set of
parameter values that provide a similar residual sum of squares (RSS), compared to the
best fit within relative tolerance ε:

Θ̂ε =

{
θ = (a1, a2, b1, b2, α, Vmax)

t,

∣∣∣∣∣ RSS(θ)− RSS(θ̂)
RSS(θ̂)

∣∣∣∣∣ ≤ ε

}
, (6)

where
RSS(θ) = ∑

i
(log Vϑ(ti; θ)− log vi)

2,

and θ̂ is the best parameter estimate that minimizes the residual sum of squares. Relative
tolerance ε is equivalent to RSS(θ) ≤ (1 + ε)RSS(θ̂). We choose ε = − 2

n ln(0.15), where n
is the number of data points. This is equivalent to the likelihood intervals if we assume
normally distributed errors with mean zero and variance σ2, and we use the maximum
likelihood estimator σ̂2 = RSS(θ̂)/n [20,21]. A 0.15 likelihood interval can be interpreted
as a 95% confidence interval [20]. To compute the likelihood region Θ̂, we sample 106

parameter values from a normal distributions with the mean equal to the best estimate θi
and standard deviation si, i.e.,

θi ∼ N(θ̂i, si), i = 1, . . . , 6,

and keep suitable parameters in Θ̂ε. We choose si = 1.1 for a1, a2, b1, and b2, and si = 0.5
for α and log Vmax. The range of possible virus load curves that arises from choosing
parameters in the likelihood range Θ̂ε is indicated as a red cloud in Figures 5–8 below.
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2.3. Hyperbolic Tangent

The hyperbolic tangent function,

tanh(x) =
ex − e−x

ex + e−x ,

is a sigmoid step function that smoothly transitions from −1 to 1. In (1), it is shifted and
scaled such that transitions occur between a1 and a2 upwards and between b1 and b2
downwards, where the maximum is Vmax and the minimum is Vmin.

In Figure 2, we plot the first part v1(t) from (2) for the choices of a1 = 1, a2 = 4 and
Vmax = 10,000. At point B, the function has reached 99.5% of its saturation value. Indeed,
if we set x = a2, then we have the following:

tanh
(

6
a2−a1

(
a2 − a1+a2

2

))
= tanh(3) = 0.995.

Similarly, at point A at a1, the function is 0.5% above its minimum.

Figure 2. The first part v1(t) of the virus load function (2) to show the qualitative features, while the
function transitions from 0 to Vmax between a1 = 1 and a2 = 4. At points A and B, it assumes 99.5%
of the limit values on the left or the right, respectively.

2.4. Computation of Exponential Growth Rates

In [22], it was explained that it is important to estimate the exponential growth rate
during the initial growth phase (Phase I), as well as the exponential decay phase in Phase II.
The exponential decay rate during Phase II is a direct model parameter in our virus load
function −α, which we estimate for each patient. To estimate the growth rate of the
initial phase, we consider v1(t) from (2). We ignore the constant offset 1, and compute the
logarithmic derivative of v1(t)− 1 as

d
dt

log10(v1(t)− 1) =
6

ln(10)(a2 − a1)

sech2
(

6
a2−a1

(
t− a1+a2

2

))
tanh

(
6

a2−a1

(
t− a1+a2

2

))
+ tanh

(
3 a1+a2

a2−a1

) .

We conducted a number of numerical tests (examples in Figure 3) and we found that
the slope of the exponential growth phase is best approximated if we evaluate the above
derivative at the weighted average t̄ = 0.8a1 + 0.2a2. Then, the exponential growth rate
becomes the following:

λ =
d
dt

log10(v1(t)− 1)
∣∣∣
t̄

=
6

ln(10)(a2 − a1)

sech2(−3.6)

tanh(−3.6) + tanh
(

3 a1+a2
a2−a1

) . (7)

The straight lines with this slope are shown as red lines in Figure 3. This formula
works fine, but it is too complicated to learn anything from it. Hence, we perform an
approximation. Remember that earlier, we showed that tanh(3) = 0.995, which is close
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to 1. Since (a2 + a2)/(a2 − a1) > 1, the value tanh(3 a2+a1
a2−a1

) is even closer to 1. Hence, we
approximate as the following:

λ ≈ 6
ln(10)(a2 − a1)

sech2(−3.6)
tanh(−3.6) + 1

≈ 5.2
a2 − a1

. (8)

This approximate slope is shown as a thin black line in Figure 3.

Figure 3. Comparison of exponential growth rates at the initial growth phase. The blue line shows
log(v1(x)), the red line a linear approximation with slope (7), and the thin black line a linear
approximation with slope (8). Left: a1 = 1, a2 = 2, middle: a1 = 1, a2 = 4, right: a1 = 1, a2 = 8.

This last formula (8) is a convenient way to estimate the exponential growth rate of
Phase I. We just need the two time points of viral onset a1 and viral saturation a2, and we
obtain an estimate for λ, which is as good as a full fit with the ODE model (see Figure 1C,D).
We can use the same formula with a1, a2 replaced by b1, b2 to estimate the decay rate in
Phase III.

2.5. Viral Target Model

There is extensive mechanistic modeling of viral load curves based on ordinary differential
equation models [7,8,18,23,24]. For example, Baccam et al. [7] developed a four-compartment
virus-target model to describe the virus load in a given person. This target model has been
extended in many different directions, including eclipse and saturation terms [8,18,25–30],
different anti-viral treatments [29,31–33], competing virus infections [25,34], immune re-
sponses [26,28,35], and correlations of viral load with disease severity [4,36]. Most of this re-
search happened during the past year, stimulated by the COVID-19 pandemic. In Section 3,
we compare this more traditional approach to our virus load function.

The target model with the eclipse phase comprises four ordinary differential equations
(ODEs) for the target cells T(t), the infected cells I1(t), the infectious cells I2(t), and the
virus load V(t) as follows:

Ṫ = −βTV

İ1 = βTV − kI1

İ2 = kI1 −
δd I2

Kd + I2

V̇ = pI2 − cV.

(9)

Here, β is the virus infection rate, k the rate at which infected cells become infectious,
p the virus production rate, c the virus decay rate, δd the base decay rate of infectious cells,
and Kd the half saturation constant for the decay term of the infectious cells. This model is
an improvement of the standard viral kinetic model [7] in which the authors introduce a
saturation term for the infected cell clearance ( δd

Kd+I2
) in the equation for I2 to describe a

tri-phasic virus growth and decay [10]. The basic reproduction number R0 for this model is
given as follows (see [10]):

R0 =
βpKdT(0)

cδd
. (10)

Typical outcomes of the target model are shown in Figure 1C,D as a blue line, and
the model parameters and their meaning is summarized in Table 2. The parameters of
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Figure 1C,D have not been fit to any data and are simply chosen to highlight the different
cases of the bi-phasic and tri-phasic response. In Section 3, we fit the target model to the
influenza data.

3. Results

We fit our virus load function (1) to the virus load data of infection of influenza A
for mice and humans, rhinovirus for humans, and in SARS-CoV-2 data for humans and
Macaque monkeys. Details on these data sets and our data fitting procedure is explained
in Section 2. Furthermore, we compare this new virus load function (1) to the standard
target model (9) for viral kinetics [10].

3.1. Mice Influenza A Data

We begin with Influenza A virus load data from [10], as these are the best experimental
data available, based on tightly controlled murine experiments. In Figure 4, we show those
data plus the data fitting results of the virus load function (1) and the viral target model (9).
The fit of the target model to these data was previously performed by Smith et al. in [10].

Figure 4. Fitting results of the virus load function (1) in orange and the virus-target model (9) in
green to influenza A data of mice [10]. The effective virus load curve (5) for both models are indicated
with dashed lines.

The corresponding model parameters of the virus load function (1) are listed in Table 2.
Of particular importance is the virus-load decay rate in Phase II. Our virus load function
estimates the negative slope as −α = −0.26 d−1, quite similar to the estimate in [10], using
linear regression for the middle portion (−0.2 d−1). The virus load function estimates the
duration of Phase I at approximately 2.41 days, Phase II at 3.22 days, and Phase III at 1.35
days. The residual sum of squares for the virus load function and the viral target model
are 36.1923 and 35.7378, respectively.

The estimated slopes are λ = 9.08 log10TCID50/d in Phase I,−α = −0.26 log10TCID50/d
in Phase I, and −3.77 log10TCID50/d (using (8) for Phase III) in Phase III. Our estimates in
the decays phases are the same to those reported in [10] (−0.2 log10TCID50/d in Phase II and
−3.8 log10TCID50/d in Phase III) are overestimated for the growth Phase I (4.7 log10TCID50/d).
This overestimation occurs because of the tendency of the virus load function to have a
horizontal slope at t = 0.

3.2. Human Rhinovirus Data

Now, we fit the virus load function (1) to the three groups of human rhinovirus
data [16]. The results are shown in Figure 5 and Table A1. We observe that the virus load
function did not capture a slow decay phase in the control case (α = 0), perhaps due to
fact that the data show that the last portion (days 6 to 21) has a slower decay rate than
that of the intermediate portion (days 3 to 6). We find slightly lower maximum viral load
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and longer infections in the asthmatic group with high levels of total IgE, compared to
the asthmatic group with low levels of total IgE. These findings are similar to those using
cumulative viral load (data not available) [16]. We reiterate that it is not clear from the data
that the decay in the viral load is tri-phasic with a slow decay followed by a faster decay;
instead, it appears that the tri-phasic decay is reversed, with a slow decay followed by a
slower decay.

Figure 5. Fitting results of the virus load function (1) to Rhinovirus data [16]. (A) shows the non-
asthmatic control group, (B) the asthmatic group with low IgE, and (C) the asthmatic group with
high IgE. The blue dots represent the group average data; the black line is our best fit. The area in red
represent the likelihood range of the virus load functions.

3.3. Human Influenza A Data

In both previous cases, the virus load function was fitted to average data. We now
fit data to individual subjects to show the benefits of patient specific fitting. The results
of fitting the virus load function to human influenza A data are shown in Figure 6 and
Table A1, and a boxplot for the estimated parameter values is shown in Section 3.6. We
observe noticeably different profiles among patients, with the exception of Patients 5 and 6.
Although estimation of the onset of the growth phase is similar in all six cases (a1 ≈ 1),
the time of saturation, slow decay rate and time of the third phase vary across patients.
The cloud of likely virus load functions shows three type of responses, (1) slow decay rate
in Phase II (Figure 6A,C), (2) faster decay rate in Phase II (Figure 6B,D), and (3) very fast
decay in Phase II, leading to clearance and absence of Phase III. This indicates that patients
5 and 6 show a bi-phasic profile (monophasic decay).

We compare the approximate slope in Phase I, λ from (8), with the approximate growth
exponent as reported in [22]. We report them as “value from Table A1 (value from [22])”.
For Patients 1 and 2, we find a good match 7.69(8.76) and 20.93(18.83). For Patient 3, we
find a larger slope 14.44(6.94); however, the lower slope of 6.94 is well within our error
tolerance. For Patients 4, 5, and 6, 2.53(6.46), 1.98(5.08), and 1.49(6.20), our estimate is
systematically lower. This is related to the fact that our approach finds a later viral load
maximum as compared to the ODE model in those cases.
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Figure 6. Fitting results of the virus load function (1) to human Influenza A data data [7]. The
blue dots represent the individual measurements, and the black line is our best fit. The area in red
represents the likelihood range of virus load functions. (A–F) Patients 1 to 6, respectively.

3.4. Human SARS-CoV-2 Data

We fit our virus load function (1) to eight patients in this data set as shown in Figure 7.
The corresponding model parameters and their ranges are listed in Table A1, and a boxplot
for the range of parameter values is shown in Figure 9b. We observe that the virus load
over time varies greatly across patients; some show long infection periods (20–25 days),
while others are short (∼10 days). The virus load function is able to describe the three
phases of the virus for most of the patients (901, 902, 904, 908, and 930). In those patients,
we observe that the initial virus growth phase is rather quick, and the virus reaches its
carrying capacity within a day (a2 − a1 < 0.87), which means that the slope Phase I is large
(λ > 5.97). The slope during the second phase varies from −0.9 to −0.57. The virus load
reaches a saturation level, which is likely to be related to the innate immune response, and
it starts a phase of slow decay with a half-life time between T1/2 = 1.22 and 5.33 days.
After 15 days, the virus load drops more quickly, possibly due to the adaptive immune
response, and at day 25, the virus is cleared. Note that this is sensitive to missing data.
For instance, in patients 902, 904, 907, 930, and 942, there are no data at the beginning for
several days. Note also that, for example, for patient 930, there is a sudden full clearance of
the virus at day 15. As consequence, b1 and b2 are estimated to be equal.
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Figure 7. Fitting results of the virus load function (1) to human SARS-CoV-2 data [5]. The blue dots represent the individual
measurements and the black line is our best fit. The area in red represents the likelihood range of virus load functions.
(A–H) Fitting to patients 901, 902, 904, 907, 908, 910, 930, and 942, respectively. The black curve is the nonlinear square fit,
and the shaded region indicates virus load curves with RSS within relative tolerance ε = 0.2.

The shaded areas in the plots of Figure 7 are able to pick up areas of missing values that
affect the estimated times of the corresponding phases. For example, missing information
of the time of infection for patients 901, 902, 904, 908, and 930 results in a wider cloud at
the initial times.

For patient 907, the fit is exact, but it should be noted that in this case, we have more
parameters than data points, and a good fit is not very meaningful. For Patient 930, we
have very few data points, but they seem to be more scattered to obtain an exact fit. Patients
904, 930 and 942 show an extended initial Phase I, which spans over 8 days for Patients
904 and 930 and 10 days for Patient 942. This is, of course, related to the missing initial
information about the early infection times.

We see that the virus load function (1) describes all virus load curves very well. It is
easily adapted for long and short virus infection periods, and it is fully flexible in detecting
all three phases of the viral progression. Using the tolerance cloud, we can also visualize
regions of greater uncertainty due to missing data points. We will see that the dynamics
for macaque monkeys is rather similar.

3.5. Macaque Monkey Data

In Figure 8, we fit our virus load function (1) to the rhesus monkey data, and we report
the parameter values and ranges in Table A1 and a boxplot in Figure 9C. The characteristic
values for the initial virus growth a2 < 2.3 is common between all monkeys, indicating that
the amount of the initial viral dose is not so important. The virus load is bi-phasic in most
monkeys (1-1, 1-2, 2-2, 2-3, 3-1, and 3-2) in which the rate of decay is larger (>0.6 days−1,
and half-life time <1.2 days). For the remaining monkeys (1-3, 2-1, and 3-3) a fast decay
phase is observed, following a slow decay with a smaller decay rate. This occurrence of the
bi-phasic viral load dynamics suggests that in some monkeys, the action of the immune
system is rather efficient. Additionally, note that the estimated range for the parameters is
small for a1, a2 and α and larger for b1, b2, Vmax (see also Figure 9C). Interestingly, the fit
for monkey 1 in Group 2 shows an extra last phase with a slow exponential decay. This
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occurs when the slope α is small and the times b1 and b2 are far apart, causing the slope in
this extra phase to be approximately alpha.

Compared to the human data, we notice that the virus half-life times in Phase II is
T1

2
> 1.2 days in both human and monkeys experiencing all three phases, and T1

2
< 1.2 days

in those that show a bi-phasic behavior. Hence, a bi-phasic behavior is indicative of faster
virus clearance in Phase II. The length of the infection is estimated as about 27.5 days for
humans and 34 days for the monkeys, where the final decay phase starts significantly
earlier in humans b1 = 15 days than in monkeys b1, ranging 25–30 days. This could be
an indication of a more efficient adaptive immune response in humans as compared to
monkeys (see also [13]).

Figure 8. Fitting results of the virus load function (1) to macaque monkey SARS-CoV-2 data [6]. The
area in red represent the likelihood range of virus load functions. (A–I) Groups 1, 2, and 3, Monkeys
1, 2, and 3, respectively.

3.6. Parameter Distributions

In Figure 9, we show the boxplots for the time values a1, a2, b1, b2, (blue) and the decay
rate α (red) from the fitting results to individual data. For a1, we see very little variability
in A and C. These correspond to controlled experiments, where the time of initial infection
is known. If the time of initial infection is not known, such as in B, then we have greater
variation in a1.

Overall, we see a large variability of the model parameters, in particular, the values
b1, b2, which indicate the end of the infection.
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For the decay rate α (red in Figure 9), we see also great variability. The values for
human and macaque viral infection are comparable, indicating that macaque are a useful
model species.

Figure 9. Boxplots for the estimated parameters using (A) human influenza A data, (B) human
SARS-CoV-2 data from oropharynx saliva samples, and (C) macaque monkey SARS-CoV-2 data.
Time-related parameters are shown in the blue boxplot, and the decay rate is shown in the red boxplot
with a separate axis on the right. Points indicate the individual best estimate shown in Figures 6–8,
and in Table A1.

3.7. Comparison to the Virus-Target Model of Smith et al.

As mentioned in the introduction, the virus load modeling with ordinary differential
equations is a well-developed field [8,18,23]. Here, we like to compare our virus load
function (1) with one of the most current target models: model (9) of A. Smith et al. [10].

In Figure 1C,D, we show the virus load curve from the target model as a blue line,
showing a tri-phasic and bi-phasic type, respectively, in virus growth and decay, using
parameters values listed in Table 2. Note that the corresponding R0 values (10) are sig-
nificantly different and higher for the tri-phasic case. To these curves, we fit the virus
load function (1) using data points every 0.1 days. The fits are show in Figure 1 as red
curves. We see that the virus load function (1) can reproduce both bi-phasic and tri-phasic
curves with a high level of accuracy. The best estimate for the parameter values are listed
in Table 1 (except for Vmin, which is a fixed value).

Fitting the virus-target model (9) to data constitutes statistical and numerical chal-
lenges. For instance, initial conditions are unknown in most cases, and estimating these
values has shown to be impractical [10]. However, it is easier to fit the virus load function (1)
to virus load data due to the empirical nature of the parameter in the function.

4. Discussion

The explicit form of this new standard virus load function (1) is simple and convenient.
The purpose of the function is to model a viral infection in an individual showing

a fast exponential increase in the virus load, followed by an initial slow and later fast
exponential decrease. Our virus load function is not intended to replace the Baccam
or target model approach. Indeed, the target model has been used with great success
in many applications and experiments [4,7,8,18,23–36]. Rather, the virus load function
is an alternative description. Instead of using rates of growth, infection, and clearance,
we use time points, such as the point of onset of viral growth a1, time to maximum a2,
the beginning of the fast decay phase b1 and the time of virus clearance b2. As such, these
values are very intuitive, as they have easily understandable biological meaning, allowing
this model to be used quickly and efficiently.

We have shown that this virus load function can replicate observed virus load titers
from Influenza A in mice [10] and humans [7], rhinovirus in humans [16], and from SARS-
CoV-2 in humans [5] and monkeys [6]. The virus load function gives direct information
about the time course of the viral infection periods. In addition, it is very efficient at
estimating the exponential growth and decay rates of the various Phases I, II, and III.
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To estimate the initial growth rate, we use the simple formula (8), and we have shown above
that this growth rate fits the data very well (see the dashed lines in Figure 1C,D). The decay
rate for Phase II −α is a direct model parameter; hence, it describes the intermediate decay
accurately (see Figure 1C,D). Finally, for Phase III, we use formula (8) with a1, a2 replaced
by b1 and b2 to estimate the fast decay rate (again, see Figure 1C,D).

The virus load function is able to fit data, having either a bi-phasic or tri-phasic profile,
as seen in the human influenza A and monkey SARS-CoV-2 data. The bi-phasic infection
is characterized by a fast decay in the viral load after reaching the peak. The tri-phasic
profile is characterized by a slow decay in the viral load followed by a fast clearance of
the virus. We believe that the distinction of the bi-phasic and tri-phasic is a first indication
of disease severity. In [37], a correlation was made between disease severity and the area
under the virus load curve (AUC). The AUC is a measure for the total virus attack on the
host. As the tri-phasic viral load response has a larger AUC than a corresponding bi-phasic
curve, a tri-phasic response is indicative of a more severe outcome. Smith [10] correlates
severity to the slope α of Phase II. A slower decaying viral load leads to a more severe
outcome, again relating severity to a tri-phasic response. This effect is further explained
in [38], where a slow intermediate virus decline indicates a complex cytokine-immune
response activation that includes broad-band innate immune response, more severe tissue
damage, increased thrombosis and cytokine storms. In [13], a measure for viral severity in
the form of an inflammation function is introduced. This inflammation function quantifies
severity based on the processes of viral infection and immune responses. In future studies,
we will explore this idea further to formally connect bi- and tri-phasic behaviors with
disease severity.

Our model fitting to data shows a large patient-to-patient variability, as expected (see
Table A1). The likelihood range of virus load functions behaves well in the case of missing
data points. For example, Patients 902, 904, 910, 930 and 942 in Figure 7 did not have an
initial measurement before the viral load maximum. In this case, we see an enlarged cloud
of uncertainty near the viral onset.

The approximate slope of Phase I, λ, shown in Table A1 has large variability in general.
This is due to the small difference in the estimated values of a2 and a1 in some individuals.
They correspond to individuals with large overlapping likelihood intervals. For example,
in Patient 2 in the human influenza A data, Patient 901 in the human SARS-CoV-2 data,
and Monkey 2 in Group 2 in the monkey SARS-CoV-2 data, the likelihood intervals for a1
and a2 overlap in more than 50% of the interval. This shows that one of the issues with
the virus load function is the uncertainty in the estimations of a1 and a2 when there is no
observation to characterize Phase I. The same problem occurs in Phase III.

We understand the large patient-to-patient variability as confirmation that patient-
specific modeling is useful. The large variation in the values for b1, b2 for humans and
macaque monkeys (see Table A1 and Figure 9), for example, indicates that many different
processes are at play in a complicated interaction, such as immune responses, metabolism,
and cytokine signaling [13]. The clear distinction of the three phases coincides well with
the expected onset of the innate immune response near time a2 and the adaptive immune
response near time b1 [10,13]. However, more research is needed to establish a clear
correlation.

The virus load function is specifically designed for acute virus infections, such as
influenza and corona viruses. It is not expected to be useful for viral infections with a
different profile, such as HIV, for example [39].

A few notes are worth considering when fitting the virus load function to individual
data. Firstly, the measurement threshold for viral titer needs to be taken into account,
e.g., by fitting to the effective virus load function (5). Secondly, an initial parameter estimate
can be gained by a simple visual inspection of the viral load data. Then, the parameter space
should be tested to guarantee a global minimum. Thirdly, the range of virus load functions
obtained forms some parameter interval estimations (some as likelihood or confidence
intervals), which should be computed to observe a family of possible virus load curves that
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reflect the uncertainty on the data. We find the 0.15 likelihood intervals (6) by computing
the residual sum of squares within relative tolerance [20]. Alternatively, credible intervals
can be obtained using a Bayesian approach, but we leave this task as future work [40].

The virus load function (1) can be used in future work in many different ways. In [37],
the target model is considered in the context of various viral therapies and we can per-
form a similar discussion here. A reduction in the viral infectivity, for example, through
amantadines [37], will result in a shorter infection period (reduced a2), which consequently
reduces the viral load maximum and expedites virus clearance. A reduction in viral repro-
duction inside cells, for example, through neuraminidase inhibitors [37], will also shorten
the initial growth phase, i.e., reduce a2. An increase in the viral clearance rate, for example,
through monoclonal antibodies [37], will take the most effect at Phases II and III, where the
virus is cleared. The value for α would be increased (faster decay), and the time point b2
would arise earlier. Immune therapies would be expected to have two effects. The immune
response might be faster than normal i.e., a2 is reduced, and the viral clearance might be
faster, i.e., α is increased. Finally, vaccination is a pre-conditioning of the immune response,
which can act quickly once a real infection occurs. In this case a2 will be reduced drastically,
eliminating the virus, even before it can establish itself.

If models for the immune response are considered explicitly, then the virus load
function can be used as a model input, allowing us to correlate the time parameters
a1, a2, b1, b2 with typical immune response times. Acute viral infections, such as SARS,
SARS-CoV-2, MERS and others, are known to affect the body system widely [1,2]. Not only
the lung tissue is infected, but secondary complications arise in the heart, the circulatory
system, the kidneys, the digestive system and the brain [1,2]. The secondary effects
considerably increase the severity of the disease [1,2]. We plan, in future work, to use the
virus load function as input into tissue damage models for the heart, blood circulation,
the brain and others, and to establish a risk index for individual patients.
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Table A1. Estimated parameter values corresponding to data fitting in Figures 5–8. For each subject, the first row is the best
estimate, and the second row corresponds to the likelihood intervals. The RSS column shows the minimum RSS value and
the maximum tolerance, respectively. The λ column shows the approximate slope of Phase I, according to (8).

Data log Vmax a1 a2 α b1 b2 RSS λ

Group Mice influenza A

Mice 6.05 0.94 1.52 0.26 6.25 7.63 36.192 9.08
(5.92, 6.11) (0.91, 0.99) (1.15, 1.97) (0.19, 0.34) (6.16, 6.33) (7.57, 7.73) ≤37.282 –

Group Human rhinovirus

Control 4.10 0.34 5.30 0.00 8.33 21.00 5.306 1.05
(3.48, 4.89) (0.00, 1.36) (1.47, 6.72) (0.00, 0.56) (3.93, 12.38) (17.77, 21.00) ≤9.332 –

Low IgE 4.83 1.14 2.79 0.50 13.33 14.58 2.335 3.16
(4.43, 5.31) (0.87, 1.37) (1.04, 3.65) (0.25, 0.74) (9.69, 17.51) (14.02, 18.78) ≤4.106 –

High IgE 4.14 0.89 3.67 0.42 18.94 18.94 3.892 1.87
(3.37, 4.69) (0.00, 1.37) (1.02, 6.66) (0.00, 0.78) (14.64, 21.00) (16.04, 21.00) ≤6.846 –

Patient Human influenza A

Patient 1 5.07 1.05 1.73 0.00 2.77 5.14 1.986 7.69
(4.36, 5.98) (0.68, 1.39) (1.01, 3.53) (0.00, 1.57) (2.13, 5.18) (4.84, 6.23) ≤3.493 –

Patient 2 5.43 1.09 1.34 2.05 6.07 6.07 6.451 20.93
(3.71, 6.83) (0.81, 2.00) (1.00, 2.74) (0.69, 3.53) (2.17, 8.00) (5.02, 8.00) ≤11.346 –

Patient 3 4.73 0.97 1.33 0.12 5.72 6.13 3.675 14.44
(4.07, 5.92) (0.00, 1.28) (1.01, 4.91) (0.00, 1.53) (3.47, 6.99) (6.01, 7.46) ≤6.464 –

Patient 4 6.15 1.05 3.11 2.13 6.74 7.02 1.304 2.53
(5.63, 6.69) (0.58, 1.36) (2.60, 3.73) (1.36, 3.11) (4.78, 6.99) (6.03, 7.81) ≤2.293 –

Patient 5 6.63 2.02 4.64 29.63 7.34 7.34 1.700 1.98
(5.95, 7.30) (1.57, 2.35) (4.55, 4.73) (27.95, 31.13) (4.63, 8.00) (5.25, 8.00) ≤2.990 –

Patient 6 6.70 1.27 4.75 9.98 7.01 7.01 1.606 1.49
(6.07, 7.33) (0.39, 1.83) (4.49, 4.97) (8.19, 11.90) (4.55, 8.00) (5.44, 8.00) ≤2.826 –

Patient Human SARS-CoV-2

Patient 901 5.04 0.92 0.92 0.09 19.23 20.36 0.832 Inf
(4.84, 5.33) (0.00, 0.99) (0.06, 1.66) (0.05, 0.15) (18.07, 19.96) (20.01, 20.86) ≤1.075 –

Patient 902 7.21 3.27 3.27 0.57 18.49 18.49 12.274 4849.14
(5.80, 8.70) (0.00, 5.00) (0.55, 7.23) (0.28, 0.85) (14.30, 19.99) (18.00, 22.21) ≤15.856 –

Patient 904 6.75 4.29 4.32 0.17 23.23 24.58 36.754 143.82
(5.38, 8.53) (0.03, 7.97) (1.39, 9.40) (0.00, 0.54) (18.67, 24.99) (23.16, 26.35) ≤44.957 –

Patient 907 7.14 0.31 3.57 0.09 8.10 9.88 0.000 1.60
(7.14, 7.14) (0.31, 0.31) (3.57, 3.57) (0.09, 0.09) (8.10, 8.10) (9.88, 9.88) ≤0.000 –

Patient 908 6.84 0.92 1.04 0.31 6.72 23.56 20.774 44.01
(5.68, 7.98) (0.00, 1.99) (0.01, 4.42) (0.04, 0.55) (2.05, 11.26) (19.16, 28.42) ≤25.153 –

Patient 910 6.74 3.32 5.08 0.35 24.26 24.26 9.211 2.96
(5.71, 7.92) (0.01, 4.00) (1.59, 9.60) (0.13, 0.55) (19.60, 28.68) (23.01, 28.97) ≤11.899 –

Patient 930 5.10 5.38 6.25 0.21 15.32 15.43 0.381 5.97
(4.62, 5.89) (1.48, 8.87) (3.34, 9.83) (0.06, 0.36) (14.50, 15.98) (15.01, 16.00) ≤0.862 –

Patient 942 5.29 5.06 18.56 1.54 22.82 22.82 2.470 0.39
(4.94, 5.64) (0.10, 10.23) (17.38, 19.69) (0.57, 3.15) (17.91, 27.93) (21.02, 28.16) ≤4.344 –

Group-Monkey Monkey SARS-CoV-2

1-1 7.66 0.88 1.10 0.53 23.08 23.08 1.407 23.29
(7.15, 8.22) (0.00, 1.00) (0.02, 2.49) (0.43, 0.64) (19.03, 27.43) (21.21, 27.76) ≤2.297 –

1-2 8.30 0.94 1.18 0.94 29.18 35.00 2.249 22.48
(7.36, 9.00) (0.00, 1.00) (1.01, 3.04) (0.72, 1.16) (24.94, 33.46) (30.91, 35.00) ≤3.672 –

1-3 6.76 0.50 0.55 0.65 2.81 4.94 1.636 108.32
(5.96, 7.89) (0.00, 1.00) (0.01, 2.71) (0.00, 2.42) (0.28, 6.97) (4.00, 9.72) ≤2.670 –

2-1 6.97 0.99 1.15 0.15 2.11 13.11 0.753 31.56
(6.47, 7.39) (0.58, 1.07) (1.02, 3.03) (0.02, 0.23) (1.15, 3.22) (11.31, 15.29) ≤1.229 –

2-2 7.10 0.91 0.91 0.68 26.67 26.67 1.310 1813.34
(6.60, 7.78) (0.00, 1.00) (0.01, 2.16) (0.55, 0.84) (21.77, 30.81) (23.97, 31.34) ≤2.138 –

2-3 8.18 0.78 2.25 1.36 4.51 13.63 0.000 3.56
(8.18, 8.18) (0.78, 0.78) (2.25, 2.25) (1.36, 1.36) (4.51, 4.51) (13.63, 13.63) ≤ 0.000 –

3-1 6.73 1.00 1.01 0.39 27.58 27.58 1.264 333.07
(6.14, 7.15) (0.00, 1.00) (1.01, 3.42) (0.29, 0.49) (22.80, 31.28) (24.98, 32.70) ≤2.063 –

3-2 5.06 0.65 2.04 3.05 16.91 18.70 0.000 3.75
(5.06, 5.06) (0.65, 0.65) (2.04, 2.04) (3.05, 3.05) (16.91, 16.91) (18.70, 18.70) ≤0.000 –

3-3 6.52 1.02 1.30 0.23 5.79 14.20 0.527 18.22
(6.10, 6.82) (0.94, 1.15) (1.07, 2.69) (0.01, 0.44) (2.89, 8.93) (12.55, 16.05) ≤0.859 –
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