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A B S T R A C T

Separating natural spatiotemporal variation from the impact of human activities has long been a challenge in
environmental impact studies. To overcome this problem, a causal modelling method based on spatiotemporal
data, integrated with existing statistical methods such as multivariate redundancy analysis, multiple regression
and, ordination was used for inferring causal effects of wastewater on biotic ecosystems. The causal modelling
techniques were structural equation modelling (SEM) and Bayesian Networks (BNs); SEM, with the help of
statistical analysis, was used for building deterministic models while the composite hypothesis underlying the
models was checked based on the principle of BNs. Both spatial and temporal variations were considered in the
design of the study so that spatiotemporal confounding could be controlled by adjusting for ‘time’ and ‘distance’
in the models. This improved the external validity of the models, so they could be used for predicting the effect of
interventions, e.g. manipulating the discharge loads. This could be possible where time-varying variables such as
quantity of discharge effluent were included in the models. Models can be used for prediction the effect of an
intervention in situations understood as causal. Thus, the causal structure of composite hypotheses of the study
was tested using both local and global tests.
© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
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Method details

The statistical analysis for causal modelling follows the approach used by Pearl [22] and Paul and
Anderson [19]. All of the analysis was done using R version 3.2.2 [23]. The main packages used for data
analysis and building graphs included ‘vegan’ [15], ‘Car’ [3], ‘lattice’ [24], ‘ecodist’ [6], ‘BiodiversityR’
[10], ‘caret’ [11], and ‘stats’ (lines 6–20 in R). The application of the methodology introduced in this
paper was tested in a study conducted by Hatami [8].The list of all packages used in this study and all of
the codes written in R can be found in Supplement 1.

Building a causal diagram

Graph theoretical structural equation modelling (SEM) was combined with the principles of
Bayesian Networks (BNs) to control for natural spatiotemporal confounding while checking for
causal relationships between abiotic and biotic variables. Graph theoretical SEM is used to translate
a causal diagram into structural equation models, and to test causal models. This process is
summarised in Fig. 1 from Paul, Rokahr [17]. As the linchpin of the causal process is a causal diagram,
the first step was to build a causal diagram. Causal diagrams are a form of Directed Acyclic Graphs
(DAGs) that present causal assumptions visually, and consist of nodes or vertices, arrows and
missing arrows [2,25]. Arrows in a causal diagram represent causal relationships between variables
[25], and missing arrows show the assumption of no direct causal relationship between two
variables [2]. By including ‘time’ and ‘distance’ in the causal diagram, it depicts the variation in biotic
communities along the stream (distance) over time due to natural and anthropogenic activities.
Natural variability is related to changes that are imposed to the river by natural events including
floods, substratum and habitat disruption, and seasonal changes in light and temperature. The
impact of human activities includes the introduction of pollutants such as nutrients and sediments
into the river; for example, discharges from treatment plants, industrial plants, mining activities,
and fish farms [1]. After building a causal diagram, the next step was to use SEM for building a list of
structural equations entailed in the arrows, and to utilise the principle of BNs for writing a set of d-
separation statements represented in missing arrows. d-Separation statements are graphically
equivalent to conditional independence relationships, and structural equations are used as a guide for
building statistical models [22,25].

Fig. 1. The process of graph theoretical structural equation modelling [17].
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Exploratory analyses

A series of exploratory analyses was first undertaken for visual inspection of systematic patterns in
the data. That is, any trend or pattern in the data was explored by examining the graphs representing
the data variation across time or with distance. All the measured environmental variables were plotted
against distance (lines 35–271 in R code, Supplementary Online Material). A community table can be
constructed using the vegemite() function to display variation of macroinvertebrate abundances along
sites (line 275 in R). To continue with exploratory data analysis, the main Principal Co-ordinate (PCO)
axes need to be derived from macroinvertebrate abundance data. For doing so, the Vegdist() function
was used to produce a Bray-Curtis dissimilarity matrix of square-root transformed abundance data.
This was followed by using function cmdscale() to perform a principal co-ordinate analysis (PCoA) in
order to convert the samples-by-species data matrix into a smaller matrix of PCO scores, so that the
PCO scores represent a measure of the state of the macroinvertebrate community at a point in time
and space (lines 277–290 in R). After extracting the PCO axes, it was important to reveal the nontrivial
PCOs.

Following Paul and Anderson [19], four diagnostic methods were employed to identify potentially
nontrivial PCO axes that contain systematic patterns in community composition. The first method was
the broken stick method, which uses the broken stick distribution [4,13]. Frontier’s model assumes
that if the total variance in a multivariate dataset is divided at random among all components, the
expected distribution of the eigenvalues can be assumed to follow a broken-stick distribution. PCOs
with eigenvalues exceeding the broken stick values are assumed to exhibit patterns. The second
method was the bootstrap approach, which re-samples observations, the rows of a site (row) � species
(column) matrix, with replacement and estimates 95% confidence intervals for the distribution of
eigenvalues from a PCO of the bootstrap samples. Where the confidence intervals did not overlap
between pairs of successive eigenvalues, the eigenvalues were considered different. PCOs with these
eigenvalues were considered to be nontrivial, potentially having structure worthy of interpretation
[9]. The third method involved destroying the inter-correlations among the original species and
building a null model of randomness by randomly and independently permuting the values in each
column vector corresponding to each species in the original matrix. The next step was to construct the
95% confidence interval for the empirical distribution of each of the ordered PCO eigenvalues
calculated under the null model of randomness. Any of the originally observed eigenvalues that
exceeded this interval were assumed to be nontrivial. The fourth method computed the variation
explained by each ranked PCO as the percentage of the variation accounted for by the remaining
ranked PCOs rather than as a percentage of the total. Finally, a scree plot was used to plot the percent
variation explained by each PCO against the rank order of each PCO (lines 292–441 in R). The first few
PCO axes reveal any useful information about the macroinvertebrate community and the remaining
axes usually contain random taxa fluctuations that can be considered “noise” [5,13]. For example, from
Fig. 2 derived from Hatami [8], and from the results, the first two PCOs contained most of the
information and the rest of the PCOs did not seem to show much systematic pattern.

The next stage of the exploratory analysis was to explore spatiotemporal patterns in the
nontrivial PCO axes. All of the nontrivial PCO axes were plotted against time and spatial positions
(lines 443–618 in R codes). Based on the spatiotemporal patterns observed in PCO axes and in
environmental variables, PCOs were fitted and modelled as a function of each of the environmental
variables, in combination with other variables and their interactions (lines 656–765). The
exploratory analyses, and in particular building spatiotemporal plots of PCO axes, provide useful
insight to choose the functional forms in the statistical models.

Model building and testing

For model building and testing, a combination of principles of structural equation modelling and
Bayesian network was employed following Pearl [22] and Paul and Anderson [20]. After exploratory
analysis and visual inspection of the data, the process of structural equation modelling started with
translating the relationships among variables in the causal diagram into a series of structural
equations [22,25]. Every structural equation consists of a set of environmental variables (parents) in
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the causal diagram that directly determine the value of the variable of interest (child), plus the error
due to the omitted factors [22]. The hypothesis underlying each arrow in the causal diagram was
checked by testing the structural equations. The process of building the models required statistical
models to be fitted and checked for each of the structural equations derived from a causal diagram
[16,17]. A list of all structural equations derived from a causal diagram can be found in the link research
paper [8]. In that list, the first structural equation was related to modelling macroinvertebrate
community composition (calculated as PCO scores) as a function of its direct causes, i.e. all the
environmental variables that macroinvertebrate community (as a response variable) received arrows
from them in the causal diagram. In addition to building statistical models related to the structural
equations, it was also important to build a spatiotemporal model for each variable.

Inordertocontrol forspatialandtemporal confounding,PCO axesweremodelledasafunctionof time,
distance, effluent and their interactions. For doing so, first, a binary variable was created using ifelse()
function to represent ‘effluent’ in the models. All the sites located upstream of a discharge point were
assigned value 1, and all the downstream sites had the value of 0 (line 770–771 in R). For model building
and testing of macroinvertebrate multivariate data, the capscale() function was employed to perform a

Fig. 2. The first six PCO axesplotted against distance (space) [8].
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distance-based Redundancy Analysis (dbRDA) on a Bray-Curtis dissimilarity matrix of square-root
transformed abundance data [12,17,19] (lines 770–920 in R). Predicted values for the first six PCO axes,
calculated from the spatiotemporal model, were plotted against distance to visually illustrate the
degree of agreement between predicted and observed values (lines 921–1044 in R). To examine if any
pattern of observed values remained unexplained by the model, residuals from the spatiotemporal
model were plotted against distance and time (lines 1046–1078 in R).

A series of analyses were done for every nontrivial PCO to find a set of variables that could explain the
spatiotemporal variation of macroinvertebrate community composition. This started with using scatter
plot matrices to assess the evidence of correlations between macroinvertebrate community composition
i.e. PCO scores of the chosen axes, land use, and environmental variables. Then, the relationships between
all six nontrivial axes and every environmental variable were examined using linear regression. This was
followed by multiple regression to examine how a combination of environmental variables and their
interactions mightberelatedtothePCO axes(lines 1080–2485 inR).Finally,dbRDAwas performedtobuild
a model of PCO scores as a function of a set of environmental variables that could account for most of their
spatiotemporal variations. The capscale() function with the argument of condition, was used to check
whether the environmental variables in dbRDA model could explain the spatiotemporal variations in
PCOs. The residuals were checked visually and tested for any spatiotemporal patterns remained
unexplained in dbRDA model after conditioning on the environmental variables (lines 2488–2570 in R).
A mantel correlogram was computed using the mgram() function to examine spatial multivariate
autocorrelation, and to check the assumption underpinning the permutation test that the errors were
independent.

After finding environmental variables accounting for the spatiotemporal variations in macro-
invertebrate structure, it was important to explore which taxa the PCO axes were represented for. To
do so, the spatial variations of macroinvertebrate taxa and their association with PCO axes were
checked. In addition, the relationships between PCO axes and several biotic indices such as Shannon
diversity index, EPT taxon richness,1 EPT number, and SIGNAL2 index were examined using regression
and Spearman correlation tests (Lines 2573–3405 in R). The changes in macroinvertebrate community
composition across variations in PCOs were visualised in heat maps to illustrate the taxa responsible
for this observed pattern (lines 2985–3075 in R).

The spearman correlations were used, in a series of scatter plot matrices, to decide which land use
types were related to the variations of environmental variables and needed to be included in the
models (lines 3408–3637 in R). Statistical analyses such as multiple regression were performed using
the lm() function to fit the models for the environmental variables. The analysis of variance table and a
summary of the results were produced using anova() and summary() functions. The assumptions
underpinning the tests used for building the models and performing hypothesis tests were checked
using diagnostic plots. Function avPlots() was also used to check the partial regression plots for
diagnosing the fit of the models.

Testing conditional independence constraints

After testing the existence of the direct relations included in the SEM, the conditional independencies
needed to be checked. A graphical criterion called the d-separation criterion [21] is used to translate the
missing arrows in the causal diagram into d-separation statements, which are graphical counterparts of
the conditional independence relationships [25]. d-Separation is used to read the conditional
independencies from DAGs, or a causal diagram, by providing sufficient conditions for two variables to
be probabilistically independent upon conditioning on having knowledge about their parents [22,25].
That is, under this condition, known as a Markov condition, every two variables in the causal diagram
can be probabilistically independent, given the state of their immediate causes [27]. Conditional
independencies are about the independence of two variables conditional on the behaviour of other
variables. The structural equation models explained in the previous sections revealed the statistical

1 The number of taxa belonging to sensitive orders Plecoptera, Trichoptera, and Ephemeroptera
2 Stream Invertebrate Grade Number – Average Level
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association between variables which related to arrows in causal diagram. Conditional independencies,
which are representing themselves as missing arrows on the causal diagram, are about the constraints
imposed by the structural equations on the data-generating process. Therefore, theyare useful means to
test the causal inferences made from data [22].

The process of producing and testing the conditional independence constraints can be done in
several steps. This started with generating a list of conditional independence relationships. First, the
causal diagram was revised by removing all the arrows between variables that did not show any
statistical association. Another important difference between the initial causal diagram and the
revised causal diagram in the application of this method from Hatami [8] was the addition of
bidirectional arrows and the latent variable ‘treatment plant operation’ to the latter. Bidirectional
arrows between the discharge variables implied that they were correlated because of their possible
latent common cause, i.e. their marginal independence must result from a common cause [18,22]. The
causal hypotheses underlying the arrows left in the revised causal diagram were written in the form of
a DAG. The function DAG() was used to produce an adjacency matrix of a DAG, which is a square (1,0)
matrix, with order equal to the number of nodes of the revised causal diagram. If there is an arrow
between two variables, this function produces value 1 in position (i,j) in the matrix, and a zero if there
is not any arrow [26]. This adjacency matrix of a DAG was used as an argument for basiSet() function to
generate a basis set for conditional independencies (lines 5744–5770 in R). The number of conditional
independencies derived from the revised causal diagram can be obtained by calculating the number of
elements in the basis set, using this formula:

The number of elements in the basis set ¼ V!
2ðv � 2Þ!� A

Where V is the number of variables, and A is the number of arrows in the revised causal diagram [26].
This helps to ensure if the number of generated conditional independencies was the same as those
expected based on the number of nodes and missing arrows in the revised causal diagram. In addition,
this was checked by using the function graph.adjacency() to graph the adjacency matrix and see if it
was the same as the revised causal diagram.

To start testing the conditional independencies, they were written in the form of an equivalent set
of d-separation statements. d-Separation statements are in the form of ‘X des Y|Z’ which means X is d-
separated from Y, conditional on Z. A series of statistical tests were conducted to test the testable d-
separation statements. The capscale() function with the argument condition was used to test if
conditioning on a new variable could add more information to the dbRDA model. It was also tested if
there were any variation remained in the residuals that could be explained by adding a variable to the
model or not. For testing conditional independencies related to the environmental variables, nested
regression models were compared using anova() function to test the hypothesis if a term should be
removed or included in the model. In addition to checking the hypothesis underlying each missing
arrow using the local tests (lines 5760–6617 in R), all independency relationships were tested
simultaneously using a global test, called Fisher’s C test (lines 6623–6626 in R). The C-statistic and p-
value of the global test were used to confirm the causal structure of the revised causal diagram by
checking the composite hypothesis entailed in the set of conditional independence constraints
[25,26]. If the results of local and global tests confirm the structure of composite hypotheses entailed
in the causal diagram, then the models are known as causal and can be used for predicting the effect of
interventions and counterfactual analysis. The given causal models can be used to predict the effect of
a potential intervention; for example, to estimate the concentration of nutrients in the river if the
corresponding discharge loads in effluent are divided by half [17]. Water quality variables can be
predicted when an imaginary or counterfactual situation is imposed on the models. An application of
counterfactual analysis in a risk assessment study can be found in Hatami [7], where the
concentrations of pollutants were manipulated to answer management questions, e.g. what would
have the response of macroinvertebrate communities in the stream been had there not been any
effluent discharged to the river. Testing and revising of the models were done in an iterative process
based on the results of local and global hypothesis tests, partial regression test, and cross validation
test. During the process of model selection and revising the models, a combination of statistical tests
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and causal consideration was used. That is, statistical tests were used for model selection, and
decision-making about which variables to include in the model were guided by causal considerations
based on literature. Several packages, and in particular ‘ggm’ package [14], were used for the process of
generating and testing of conditional independencies (lines 5730–5738 in R).
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Appendix A. Supplementary data
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org/10.1016/j.mex.2018.07.003.

References

[1] B.J. Downes, et al., Monitoring Ecological Impacts: Concepts and Practice in Flowing Waters, Cambridge University Press,
2002.

[2] F. Elwert, Graphical causal models, Handbook of Causal Analysis for Social Research, Springer, Ithaca, USA, 2013 p. 245–273.
[3] J. Fox, et al., An {R} Companion to Applied Regression, second ed., Sage, Thousand Oaks CA, 2015.
[4] S. Frontier, Étude de la décroissance des valeurs propres dans une analyse en composantes principales: comparaison avec

le modd’le du bâton brisé, J. Exp. Mar. Biol. Ecol. 25 (1) (1976) 67–75.
[5] J.R. Gauch, G. Hugh, Noise reduction by eigenvector ordinations, Ecology 63 (6) (1982) 1643–1649.
[6] S. Goslee, D. Urban, The ecodist package for dissimilarity-based analysis of ecological data, J. Stat. Softw. 22 (7) (2007) 1–19.
[7] R. Hatami, Development of protocols for environmental impact studies using causal modelling, with special reference to

wastewater discharges to freshwater systems, Department of Ecology, Environment and Evolution, La Trobe University,
Albury-Wodonga, 2017 p. 514.

[8] R. Hatami, Development of protocols for environmental impact studies using causal modelling, Water Res. 138 (2018) 206–223.
[9] D.A. Jackson, Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches,

Ecology 74 (8) (1993) 2204–2214.
[10] R. Kindt, R. Coe, Tree Diversity Analysis. A Manual and Software for Common Statistical Methods for Ecological and

Biodiversity Studies, World Agroforestry Centre (ICRAF), Nairobi, 2005.
[11] M. Kuhn, Caret package, J. Stat. Softw. 28 (5) (2008) 1–26.
[12] P. Legendre, M.J. Anderson, Distance-based redundancy analysis: testing multispecies responses in multifactorial

ecological experiments, Ecol. Monogr. 69 (1) (1999) 1–24.
[13] P. Legendre, L.F.J. Legendre, Numerical Ecology, Elsevier, Oxford, UK, 2012.
[14] G.M. Marchetti, M. Drton, K. Sadeghi, A package for gaphical Markov models, R Package Version 2.3, (2015) Italy.
[15] J. Oksanen, et al., Vegan: community ecology package, R Package Version 2.3-5, (2016) .
[16] W. Paul, et al., Investigating the distribution and tolerances of macroinvertebrate taxa over 30 years in the River Murray,

Final Report Prepared for the Murray-Darling Basin Authority by the Murray-Darling Freshwater Research Centre,
Wodonga, Victoria, 2013 p. 160.

[17] W. Paul, et al., Causal modelling applied to the risk assessment of a wastewater discharge, Environ. Monit. Assess. 188 (3)
(2016) 1–20.

[18] W.L. Paul, A causal modelling approach to spatial and temporal confounding in environmental impact studies,
Environmetrics 22 (5) (2011) 626–638.

[19] W.L. Paul, M.J. Anderson, Causal modeling with multivariate species data, J. Exp. Mar. Biol. Ecol. 448 (2013) 72–84.
[20] W.L. Paul, M.J. Anderson, Structural causal modelling in multivariate ecological research, The International Environmetrics

Society, 23rd Annual Conference, Anchorage, Alaska, 2013.
[21] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers, INC,

California, USA, 1988.
[22] J. Pearl, Causality, Cambridge University Press, USA, 2000.
[23] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,

Austria, 2015.
[24] D. Sarkar, Lattice: Multivariate Data Visualization with R, Springer, New York, 2008.
[25] B. Shipley, Cause and Correlation in Biology: A User’S Guide to Path Analysis, Structural Equations and Causal Inference,

Cambridge University Press, 2000.
[26] B. Shipley, Cause and Correlation in Biology: A User’S Guide to Path Analysis, Structural Equations and Causal Inference

With R, Cambridge University Press, 2016.
[27] M. Steyvers, et al., Inferring causal networks from observations and interventions, Cognit. Sci. 27 (3) (2003) 453–489.

716 R. Hatami / MethodsX 5 (2018) 710–716

https://doi.org/10.1016/j.mex.2018.07.003
https://doi.org/10.1016/j.mex.2018.07.003
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0005
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0005
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0010
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0015
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0020
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0020
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0025
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0030
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0035
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0035
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0035
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0040
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0045
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0045
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0050
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0050
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0055
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0060
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0060
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0065
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0070
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0075
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0080
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0080
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0080
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0085
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0085
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0090
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0090
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0095
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0100
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0100
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0105
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0105
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0110
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0115
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0115
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0120
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0125
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0125
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0130
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0130
http://refhub.elsevier.com/S2215-0161(18)30110-9/sbref0135

	A practical method to control spatiotemporal confounding in environmental impact studies
	Method details
	Building a causal diagram
	Exploratory analyses
	Model building and testing
	Testing conditional independence constraints
	Acknowledgements

	Appendix A Supplementary data
	References


