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Abstract

Background: The olfactory stimulus-percept problem has been studied for more than a century, yet it is still hard to
precisely predict the odor given the large-scale chemoinformatic features of an odorant molecule. A major challenge is that
the perceived qualities vary greatly among individuals due to different genetic and cultural backgrounds. Moreover, the
combinatorial interactions between multiple odorant receptors and diverse molecules significantly complicate the olfaction
prediction. Many attempts have been made to establish structure-odor relationships for intensity and pleasantness, but no
models are available to predict the personalized multi-odor attributes of molecules. In this study, we describe our winning
algorithm for predicting individual and population perceptual responses to various odorants in the DREAM Olfaction
Prediction Challenge. Results: We find that random forest model consisting of multiple decision trees is well suited to this
prediction problem, given the large feature spaces and high variability of perceptual ratings among individuals. Integrating
both population and individual perceptions into our model effectively reduces the influence of noise and outliers. By
analyzing the importance of each chemical feature, we find that a small set of low- and nondegenerative features is
sufficient for accurate prediction. Conclusions: Our random forest model successfully predicts personalized odor attributes
of structurally diverse molecules. This model together with the top discriminative features has the potential to extend our
understanding of olfactory perception mechanisms and provide an alternative for rational
odorant design.
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Background

Olfactory perception is the sense of smell in the presence of
odorants. The odorants bind to and activate olfactory receptors
(ORs), which transmit the signal of odor to the brain [1]. The ex-
istence of a large family of olfactory receptors enables humans
to perceive an enormous variety of odorants with distinct sen-
sory attributes [1]. An olfactory receptor can respond tomultiple

odor molecules; conversely, an odorant may interact with many
olfactory receptors with different affinities [2]. Unlike the well-
defined wavelength of light in vision and frequency of sound
in hearing, the size and dimensionality of the olfactory percep-
tual space is still unknown [3]. It is not clear how the numer-
ous physicochemical properties of a molecule relate to its odor,
or how mammals process and detect the broad range of the ol-
factory spectrum. Some structurally similar compounds display
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distinct odor profiles, whereas some dissimilar molecules ex-
hibit almost the same smell [4–6]. Even for an identicalmolecule,
the perceived quality varies immensely between individuals due
to genetic variation [7]. Therefore, accurate prediction of per-
sonalized olfactory perception from the chemical features of a
molecule is highly challenging.

In the past, many attempts have been made to establish
structure-odor relationships and predict the odor from the
physicochemical properties of a molecule [8]. An early study
showed that volatile and lipophilic molecules fulfill the require-
ments to be odorants [9]. The correlation of odor intensities with
different structural, topological, and electronic descriptors was
calculated for 58 different odorants; molecular weight, partial
charge on most negative atoms, quantum chemical polarity pa-
rameter, average distance sum connectivity, and a measure of
the degree of unsaturation were particularly important descrip-
tors [10]. Multidimensional scaling and self-organizing maps
were used to produce 2-dimensional maps of the Euclidean ap-
proximation of olfactory perception space [11]. A principal com-
ponent analysis identified the latent variables in a semantic odor
profile database of 881 perfume materials with semantic pro-
files of 82 odor descriptors and classified odors into 17 different
classes [12]. Although it is not possible to predict the odor profile
of a molecule, some progress has been achieved for predicting
the intensity [13] and pleasantness of an odorant. Methods for
predicting the perceived pleasantness of an odorant have uti-
lized the most correlated physical features of molecular com-
plexity [14] and molecular size [15, 16]. A major challenge is
that different individuals perceive odorants with different sets
of odorant receptors [17, 18], and perception is also strongly
shaped by learning and experience [19]. Different cultures have
different linguistic descriptions of smells [20–22], so generat-
ing olfaction datasets is tedious work. Many computational
methods have been developed to relate chemical structure to
percept [4, 10, 15, 16, 23–26], but most of them are based on sin-
gle and very old psychophysical datasets [27]. Therefore, a rig-
orous quantitative structure-activity relationship (QSAR) model
[28, 29] of personalized olfactory perception is needed for accu-
rate predictions.

The Dialogue on Reverse Engineering Assessment and Meth-
ods (DREAM) organized the olfaction prediction challenge [30].
DREAM is a leader in organizing crowdsourcing challenges to
evaluate model predictions and algorithms in systems biology
and medicine [31]. Here we describe our winning algorithm,
the best performer of subchallenge 1, for predicting individ-
ual responses and the second best performer of subchallenge
2 for predicting population responses. As olfactory perception is
inherently a complex nonlinear process, decision tree–based al-
gorithms are well suited to this problem. Particularly, a random
forest (RF) consisting of multiple decision trees addresses the
overfitting issue when the feature space is much larger than
the sample space. Moreover, random forest is relatively robust
to noise and outliers [32], especially when a large variability
of individual perceptual responses is observed. To further re-
duce the effects of large variability, noise, and outliers, we in-
tegrated the average rating of individuals (population response)
into our model. Our final model succeeds in predicting olfac-
tory perception using only a small set of chemical features.
These features are likely to be low- and nondegenerative molec-
ular descriptors, indicating that traditional simple descriptors
like functional groups are less effective in distinguishing the
odor profiles of structurally similar molecules. Meanwhile, our
model potentially provides useful insights on the basic molecu-
larmechanisms of olfactory perception. Together with new scaf-

folds of odorants observed in the dataset and top discriminative
chemoinformatic features, our model offers an alternative for
rational odorant design.

Data Description
Psychophysical dataset

The DREAM organizers provided psychophysical data that were
originally collected between February 2013 and July 2014 as part
of the Rockefeller University Smell Study [33]. The data were col-
lected from 61 ethnically diverse healthy men and women be-
tween the ages of 18 and 50. These subjects volunteered and
gave their written informed consent to smell the stimuli used
in this study [33]. They were naı̈ve and didn’t receive any kind
of olfaction training. In the DREAM olfaction prediction chal-
lenge, the data of only 49 subjects were provided because some
subjects didn’t give permission to use their data. The percep-
tual ratings of 476 different molecules were assigned by these
49 subjects at 2 different concentrations (high and low); in ad-
dition, 20 molecules were tested twice. Each subject rated the
perception of 992 stimuli (476 plus 20 replicated molecules at 2
different concentrations). Twenty-one perceptual attributes (in-
tensity, pleasantness, and 19 semantic attributes) were used to
describe the odor profile of a molecule. The semantic attributes
are bakery, sweet, fruit, fish, garlic, spices, cold, sour, burnt, acid,
warm, musky, sweaty, ammonia/urinous, decayed, wood, grass,
flower, and chemical. Subjects used a scale from 0 to 100where 0
is “extremely weak” and 100 is “extremely strong” for intensity;
0 is “extremely unpleasant” and 100 is “extremely pleasant” for
pleasantness; and 0 is “not at all” and 100 is “very much” for
semantic attributes. This dataset of 476 chemicals was divided
into 3 subsets by the organizers: 338 for the training set, 69 for
the leaderboard, and 69 for the test set. We combined the 338
training and 69 leaderboard molecules (407 molecules in total)
as our final training set.

Chemoinformatic features of molecules

A total of 476 structurally diverse odorant molecules were used
in this study, including 249 cyclic molecules, 52 organosulfur
molecules, and 165 estermolecules (Supplementary Fig. S1). The
participating investigators were encouraged to use any kind of
chemical and physical properties of the molecules for develop-
ing prediction models. By default, the organizers provided 4884
different chemical features for each of the 476 molecules, cal-
culated by a commercial chemoinformatics software package
known as Dragon (version 6) [34]. Features were divided into
29 different logical molecular descriptor blocks including con-
stitutional descriptors, topological indices, 2D autocorrelations,
etc. These chemoinformatic features are useful in establishing
structure-odor relationships and further developing machine
learning prediction models. The compound identification num-
ber (CID) for eachmoleculewas also provided so participating in-
vestigators could obtain more information about the molecules
from other resources (e.g., PubChem) [35].

Results

The overall workflow of the olfaction prediction is shown in
Fig. 1. The organizers provided an unpublished large psy-
chophysical dataset of 476 structurally and perceptually diverse
molecules sensed by 49 different individuals [33]. Twenty-one
perceptual attributes were collected, including odor intensity



Prediction of olfactory perception 3

Figure 1: The overview of the olfaction prediction. The observed perceptions form a 3-dimensional array, where the 3 dimensions are 476 molecules, 49 individuals,

and 21 olfactory attributes. The input chemoinformatic features form a 2-dimensional matrix, where the rows are 476 molecules and columns are 4884 molecular
descriptors. Our random forest model is built on the training set (407 molecules), and the individual responses for the test set (69 molecules) are predicted. The final
evaluation is based on the Pearson’s correlation between observed and predicted perceptions.

and pleasantness and 19 semantic descriptors. A subset of 407
molecules (338 training and 69 leaderboardmolecules) was used
as the final training set in our random forest model, and the
other 69 held-out molecules formed the test set. The organiz-
ers provided the Dragon software [34]–based large-scale molec-
ular descriptors, containing 4884 chemical features for each
molecule. Models were evaluated based on the Pearson’s corre-
lation between the observed and predicted perceptions.

Variability of olfactory perception among individuals

The intensity perceptions of 476 molecules at high and low con-
centrations vary tremendously among individuals. For example,
individuals 10, 29, and 46 exhibit entirely different perceptual
profiles for intensity (Fig. 2). Ideally the perceptual rating for
intensity should increase as the measuring concentration rises
(blue lines in Fig. 2A), while it is commonly observed that the in-
tensity rating of some molecules decreases (red lines in Fig. 2A
and Supplementary Fig. S2). In fact, the 49 subjects were lack-
ing any kind of professional training, and they were biased in
assigning the perceptual rating value between 0 and 100 (Fig. 2B
and Supplementary Fig. S3). Except for molecules without odor
rated near 0, individual 10 tended to assign ratings uniformly,
whereas individual 29 preferred to rate at 100 and individual 46
was inclined to rate around 50.

In addition to intensity, the other perceived attributes were
rated differently among individuals (Fig. 2C). Even for the
same molecule, cyclopentanethiol (CID: 15 510), 16 subjects
did not apply the descriptor “garlic,” whereas 9 subjects rated

it 100. Similarly, 2-acetylpyridine (CID: 14 286) showed great
variability in “warm” ratings—about half of the subjects rated
it 0, and the other half perceived “warm” from it. The large
differences may result from the relative ambiguity of the word
“warm” to describe odor. The average variance of 21 attribute
ratings across all individuals is shown in Fig. 2D. Compared with
intensity and pleasantness, the 19 semantic qualities display
much larger coefficients of variation. Thus, the diversity of
perceptual ratings between subjects considerably complicates
the prediction challenge.

Strategies for accurate personalized olfaction
predictions

Considering the large variability of the perceived ratings, we
propose that random forest could be an excellent choice as a
base learner because it applies the strategy of training on dif-
ferent parts of the dataset and averaging multiple decision trees
to reduce the variance and avoid overfitting. We compared dif-
ferent machine learning algorithms (linear, ridge, support vec-
tor regression, random forest) using 5-fold cross-validations and
found that random forest outperforms other base learners in
predicting individual responses for “intensity,” “pleasantness,”
and 19 semantic descriptors (Fig. 3A). Given a small sample size
of 407 training molecules, random forest identifies and utilizes
the most discriminative features out of 4884 molecular descrip-
tors to make decisions. Clearly, a simple linear regressionmodel
fails when the dimension of the feature space is too large. There-
fore, random forest was selected as our base-learner and used in
the follow-up improvements.
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Figure 2:Variability of olfactory perception among individuals. (A) The intensity ratings for all molecules at low and high concentrations from individuals 10, 29, and 46.

Blue lines represent the ideal cases, in which the rating values increase as the concentration becomes higher. Conversely, red lines represent decreased rating values
at high concentration. (B) The density distributions of the intensity ratings from these 3 individuals. Blue lines are the fitting curves of the density distribution. The
intensity ratings and density distributions from all individuals are shown in Supplementary Figs S1 and S2, respectively. (C) The “garlic” and “warm” rating distributions
among 49 individuals for 2-acetylpyridine and cyclopentanethiol, respectively. D) The coefficients of variation of 21 perceptual attributes in increasing order.

Recognizing that the population responses (the average per-
ceptions of all individuals) are more stable compared with indi-
vidual responses, we overcome the variability of individual rat-
ings by introducing a weighting factor α. This parameter serves
as a balance between individual and population ratings. When
α equals 0, only population ratings are considered. Conversely,
when α equals 1, only individual ratings are used (see the “Meth-
ods”). Surprisingly, a small α = 0.2 achieves the largest Pear-
son’s correlation coefficient (Fig. 3B). Without population infor-
mation (α = 1.0), the correlation of predicting the 19 semantic
descriptors is the lowest. This reveals that population percep-

tions play a crucial role when individual responses display large
fluctuations.

To further improve the performance, we applied a sliding
window of 4-letter size to each molecule name, generating a to-
tal of 11 786 binary name features (see the “Methods”). These
name features are very similar to the molecular fingerprints,
providing extra information about the similarities of molecules.
The 4-letter window is selected to efficiently capture the chemi-
cal similarity. Larger sliding window sizes greatly increase com-
putational cost, as the size of the feature space is an exponential
function of window size. Although the random forest model
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Figure 3: The performance of different models and strategies. From left to right, the Pearson’s correlation coefficients of intensity and pleasantness and 19 semantic
descriptors from 5-fold cross-validations are shown as a boxplot. The red base-learners or strategies are used in our final model. (A) The performance of 4 different

base-learners: linear, ridge, SVM, and random forest. (B) The performance of using different values of weighting factor α. (C) The performance of using molecular
features alone, name features alone, and both molecular and name features.

using only the name features has relatively low correlations, the
ensemble model aggregating both molecular and name features
performs the best, ranking first in predicting the 21 personalized
perceptual attributes (Fig. 3C and Supplementary Fig. S4).

Discriminative chemoinformatic features for olfaction
prediction

Our random forest model evaluates the importance of each
molecular descriptor in prediction. It is well known that
sulfur-containing organic molecules tend to have “garlic” odor,

whereas esters are often smelled as “fruity.” Many models have
been built to correlate molecular size and complexity with the
“pleasantness” of a compound. However, it remains unclear
what chemical features of a molecule decide its multiple odor
attributes. Random forest enables us to estimate the impor-
tance of each chemical feature by permuting the values of a
feature across samples and computing the increase in pre-
diction error. We calculate the increased delta error of each
chemical feature for all 21 olfactory qualities. Interestingly, top-
ranking features used by random forest do not necessarily have
high linear Pearson’s correlations with observed ratings. For
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Figure 4: Top discriminative features used in random forest. (A) The word cloud of top 5 features used in predicting 21 perceptual attributes. (B) The pie chart of
molecular descriptor categories in the top 5 features. (C) Projection of all molecules onto selected discriminative feature spaces. The color of each spot represents the
relative strength of the perceived rating, averaged among 49 individuals. The dashed lines display the possible decision boundaries created by random forest.

example, the correlation coefficients of the top 5 features for
“decayed” prediction are listed in Supplementary Table S1. The
molecular feature P VSA m 4 (interpreted as the presence of
sulfur atoms) ranks first and has the largest correlation. How-
ever, the second and third features in random forest have nearly
no correlations with observed perceptions. Upon inspecting the
top 5 features that have the largest correlation values (yellow
columns in Supplementary Table S1), we notice that they are
all related to sulfur atoms, leading to high redundancy and
intercorrelation.

By analyzing all the top 5 features ranked by the delta error,
we find that discriminative molecular features are more likely
to be low- or nondegenerative. The complete lists of top 20 fea-
tures ranked by delta error or Pearson’s correlation are shown
in Supplementary Tables S2 and S3, respectively. Interestingly,
simple chemical features (molecular weight, number of sulfur
atoms, presence of a functional group, etc.) are not very powerful
in prediction because they display high degeneracy—different
molecules may have identical or similar values [36–38]. Features
with low- or nondegeneracy more likely play an essential role
in our random forest model. The frequency of all top 5 molec-
ular features is represented as the size of words in Fig. 4A. We
find that autocorrelation of a topological structure (ATS) and 3D-
MoRSE descriptors occur 24 and 23 times, respectively, whereas
simple descriptors such as N% (percentage of N atoms), nRCOOR
(number of aliphatic esters), andNssO (number of ssO atoms) are
used only once (Fig. 4B).

To understand how the random forest model works, we pro-
jected all molecules onto selected important feature spaces
(Fig. 4C). The color of each molecule represents the strength

of the perceived rating. For example, ATS1s and ATS2s are
the most important features in predicting the “intensity” of a
molecule. They can be interpreted as the combined information
of molecule size and the intrinsic state of all atoms. Molecules
with large ATS1s and ATS2s values tend to have low intensity
(top right green spots in Fig. 4C, left panel). Another example
is the “pleasantness” rating of a molecule, for which SssO (pres-
ence of ester or ether) and P VSA i 1 (presence of sulfur or iodine
atom) are crucial. Clearly, molecules containing sulfur or iodine
atoms have lower “pleasantness” values (green spots above the
dashed line in Fig. 4C, middle panel). And it is widely known
that ester has a characteristic pleasant odor and lower ethers
can act as anesthetics, whereas presence of sulfur atom leads
to unpleasant “garlic” and “decayed” odor. Therefore, key fea-
tures of “garlic” odor include MAXDN (presence of ketone or es-
ter) and R3p+ (presence of sulfur atom). Molecules containing
sulfur atoms are more likely to be “garlicky,” whereas ketones
and esters seldom have such smells (red spots above the dashed
line in Fig. 4C, right panel).

Rebuilding the random forest model with the top 5, 10, 15,
or 20 key features, we find that a small set of chemical fea-
tures is sufficient for accurate prediction. These top features
selected by random forest may have very low linear Pearson’s
correlations with perceived qualities, yet they are powerful in
discriminating different odorants. This is because the relation-
ship between molecular features and olfactory perception is in-
herently nonlinear. Intriguingly, random forest with only the top
5 features achieves similar performance as random forest with
all 4884 features for almost all olfactory qualities (Fig. 5A and
Supplementary Figure S5). The only exception is “intensity,” for
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Figure 5: The performance of random forest using top features. From left to right, the Pearson’s correlation coefficients of intensity and pleasantness and 19 semantic
descriptors from 5-fold cross-validations are shown as boxplots. The red model is the random forest using all chemoinformatic features. (A) The performance of

random forest using the top 5, 10, 15, and 20 features ranked by delta error. (B) The performance of random forest using the top 5, 10, 15, and 20 features ranked by
Pearson’s correlation.

which the top 15 features are adequate. This result indicates that
a small set of chemical features is often sufficient to predict the
odor of a molecule. We also test the performance of random for-
est using features ranked by Pearson’s correlation (Fig. 5B). The
predicting power of these features is lower due to collinearity
and redundancy. For example, the top 10 features for “garlic”
quality are all related to the number of sulfur atoms, although
they display very high correlation values (Supplementary
Table S3).

Deciphering the divergent multi-odor profiles
of structural analogs

Structurally similar compounds with distinct odor profiles were
observed in triads and a tetrad of molecules. The first exam-
ple is 3 furoate esters (Fig. 6A). If we compare the functional
groups of these 3 molecules, methyl 2-furoate (1) and ethyl 2-
furoate (2) aremore similar, while allyl 2-furoate (3) has a unique
alkenyl group. Intriguingly, the pairwise correlations between
them across 21 perceived olfactory qualities reveal that 2 is the
odd one in terms of odor. It is clearly shown in the radar chart
of selected odor qualities. Compound 2 has intense “sweet,”
“acid,” and “urinous” characters, whereas 1 and 3 display more

“decayed” odor. The second triad of molecules comprises com-
mon L-amino acids: alanine (4), leucine (5), and valine (6)
(Fig. 6B). Their odor profiles differ a lot, especially between 4 and
5; 4 has “fruit,” “sweet,” and “flower” odors, whereas 5 is char-
acterized by “sour,” “decayed,” “sweaty,” and “intensity”; 6 has
a relatively similar odor profile as 4. The odd one in structural
terms is 4 as it has the smallest side chain, whereas the odd one
in terms of odor is 5. The last group of molecules includes thia-
zole (7) and its derivatives (8–10) (Fig. 6C); 9 stands out because
of its signature “grass” odor, whereas both 9 and 10 have a very
high “chemical” odor.

Our random forest model distinguishes the multi-odor pro-
files of structural analogs using complex molecular features. Al-
though these analogs are extremely similar in terms of chem-
ical structure and functional group, the values of their 2- and
3-dimensional molecular descriptors are distinct. The average
rating of eachmolecule is represented by its color, and the struc-
tural analogs mentioned above are shown in a larger size (Fig. 6,
right panels). The top features used by our random forest model
clearly separate the structurally similar molecules with dissim-
ilar odor attributes. For example, 10, with a strong “grass” odor
(top right orange diamond in Fig. 6C, the 3rd panel), has large
SaaS and L3m values, whereas 7 and 8, with a weak “grass” odor
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Figure 6: Distinguishing different odor profiles of structurally similar molecules by random forest. The odor profiles of (A) 3 furoate esters, (B) 3 amino acids, and (C)
4 thiazole derivatives. The left panel shows the pairwise correlations between structurally similar molecules. The color of each edge represents the correlation value
across 21 perceptual attributes. The middle panel shows the radar charts of selected odor attributes. The symbol and color correspond to the molecule on the left.

The right panel displays the projections of all molecules onto selected discriminative feature spaces. The color of each spot represents the relative strength of the
perceived rating, averaged among 49 individuals. The larger symbols correspond to the molecules on the left.

(bottom-right green circle and triangle), have relatively small
values; 9 (middle right yellow square), with medium “grass”
odor, has around average values among the tetrad.

Discussion

The complex and sophisticated signaling of diverse odorants has
fascinated scientists formany decades, yet themolecularmech-
anisms of olfactory perception are still not fully understood.
One odorant interacts with a broad range of olfactory receptors,
and each olfactory receptor recognizes multiple odorants, lead-
ing to the complicated tuning of olfactory perception [39, 40]. In
addition, neuron firing is intrinsically nonlinear in nature, re-
quiring the membrane potential to be raised above threshold.
Therefore, a nonlinear random forest model is well suited to
the olfactory prediction and avoids overfitting, given a compar-
atively small sample size andmuch larger feature spaces. More-
over, random forest is relatively robust to label noise and out-
liers [32], considering the vast variability of odor ratings among
individuals.

The linguistic descriptions of smells vary among individu-
als, especially when they lack experience and training [41]. This

finding suggests that using a low-variant dataset of odorants
rated by professional perfumers may further improve the per-
formance of predictivemodels. Besides, using semantic descrip-
tors itself introduces biases, and alternative approaches such as
perceptual similarity rating of odorants should be considered
[26]. Recognizing that extra Morgan-NSPDK features created by
matching target molecules against reference odorants increase
the predicting performance [30], a larger training set of diverse
molecules, including natural odorant products, will be helpful to
build more accurate models.

Our random forest model potentially provides an alterna-
tive for rational odorant design [42, 43]. In addition to modifica-
tions of a natural odorant product, the perceptual dataset used
in this study consists of many untested molecules, providing
new odorant scaffolds of different semantic qualities. Moreover,
a small set of top-ranking features estimated by the random
forest model is sufficient to accurately predict human olfac-
tory perception, largely reducing the input feature spaces. This
model is potentially useful for evaluation of newmolecules, and
modification of these discriminative features provides an alter-
native for rational odorant design. Like the association of func-
tional groups with certain odors, this study may link complex
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chemoinformatic features to a broader range of odors, provid-
ing a useful perspective for understanding olfactory perception
mechanisms.

Methods
Random forest model

Random forest is an ensemble learning algorithm for regression
and classification [32]. In a random forest, each decision tree is
built froma random samplingwith replacement (bootstrap sam-
ples). Furthermore, a random set of features are used to deter-
mine the best split at eachnode during the construction of a tree.
As a result of averaging many trees (100 is used in our model),
overfitting is avoided and the effects of outliers and noises are
reduced.

We use perceptual ratings as targets and chemical descrip-
tors as features to train random forest models. For the combina-
tion of 49 individuals and 21 perceptual attributes, we have 1029
(49∗21) models in total. We further consider the average ratings
among 49 individuals as a population rating and combine it with
the individual rating as prediction targets to train our models
(see the “Integrating individual and population ratings” section
below).

Preprocessing of the dataset

There were many cases in which subjects indicated that they
smelled nothing, so the intensity rating was automatically set
to “0” and the ratings for other perceptual attributes were left
blank (NaN); therefore, we have removed all the “NaN” entries.
For the intensity attribute, we used the target values at “1/1000”
dilution. For pleasantness and 19 semantic attributes, we used
target values at “high” concentration as a set of examples, and
the average value at both “high” and “low” concentrations as
another set of examples. As the original number of the sample
(407) is relatively small, combining high and low concentrations
doubles the sample size, and this step is crucial to achieve high
performance. There are 20 replicated molecules, which were se-
lected in the original Rockefeller University Smell Study. In gen-
eral, the ratings were consistent between the 2 replicates [33]. In
our study, we treat replicates as separate examples as the frac-
tion is small (20/407 = 0.049), which doesn’t affect the results.
The input molecular features were scaled to values between 0
and 1. The scaling formula is given as:

x′ = x − min(x)
max(x) − min(x)

where x is the original value and x′ is the scaled value.

Selection of base-learner

To address the large variability of perceived odor qualities
among individuals, we tried a range of different machine learn-
ing algorithms (linear, ridge, SVM with rbf kernel, and random
forest with 100 trees) to find the best-performing base-learner.
The regularization alpha in the ridge is 10. The penalty param-
eter C and coefficient gamma of the SVM rbf kernel are 1000
and 0.01, respectively. All other parameters are the default ones.
We applied a 5-fold cross-validation to the training data (407
molecules) and evaluated the performance based on the cor-
relations of the 21 perceptual attributes between the predicted
and observed ratings. Random forest outperformed other base-

learners and was used in the follow-up improvement of our
model.

Integrating individual and population ratings

The perceptual rating of attributes varies greatly. To reduce the
effects of noise and outliers, we introduce a weighting factor, α,
as the weight for individual ratings and (1 – α) as the weight for
population ratings. The reweighted target value y is given as:

y = α × yindividual + (1 − α) × ypopulation,

where yindividual is the rating from an individual and ypopulation

is the average rating from 49 individuals. Different values of α

were tested and evaluated by the correlation of 21 perceptual
attributes. α = 0.2 had the best performance and was used in
our final model.

Creating name features of molecules

In the past, sliding window-based (overlapping patterns) strate-
gies were applied successfully to develop residue-level predic-
tions [44, 45]. We used a sliding window of 4-letter size to
extract features from the molecule names. For example, 4-letter
indexing generated a total of 7 sliding windows from “acetic
acid” (ACET, CETI, ETIC, TIC , IC A, ACI, ACID). We created
11 786 binary name features from allmolecule names using this
sliding window approach. If a window pattern is present in the
molecule name, “1” was assigned to that feature; otherwise, “0”
was used while creating input name features.

Evaluation of the importance of each feature
by random forest

The importance of each feature was evaluated by permuting the
values across observations and computing the increase in pre-
diction error by random forest. The increased delta error of each
chemical feature for all 21 olfactory attributes was calculated
and ranked. Larger delta error implies that the feature is more
important and discriminative in prediction.

Availability of supporting data

The DREAM olfaction challenge dataset, model details, and
source code are available at https://github.com/Hongyang449/
olfaction prediction manuscript.

Snapshots of the code, molecular descriptors, and the ol-
factory perception data and chemoinformatic features of odor-
ant molecules are also available from the GigaScience database,
GigaDB [46].

Additional files

Table S1. The top 5 features ranked by random forest delta error
or Pearson’s correlation.

Table S2. The top 20 features of 21 perceptual attributes
ranked by random forest delta error.

Table S3. The top 20 features of 21 perceptual attributes
ranked by Pearson’s correlation.

Table S4. The Pearson’s and Spearman’s correlations of top
500 features ranked by Pearson’s correlation.

Figure S1. The 2D chemical structures of 476 odorant
molecules.

https://github.com/Hongyang449/olfaction_prediction_manuscript
https://github.com/Hongyang449/olfaction_prediction_manuscript
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Figure S2. The intensity ratings for all molecules at low and
high concentrations from 49 individuals.

Figure S3. The density distributions of the intensity ratings
for all molecules from 49 individuals.

Figure S4. The performance of random forest using chemical
and name features.

Figure S5. The performance of random forest using top fea-
tures ranked by delta error.
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