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Abstract
Animals rely on their sense of smell to survive, but important
olfactory cues are mixed with confounding background odors
that fluctuate due to atmospheric turbulence. It is unclear how
the olfactory system habituates to such stochastic backgrounds
to detect behaviorally important odors. Here, we explicitly con-
sider the high-dimensional nature of odor coding, the natural
statistics of odor fluctuations and the architecture of the early
olfactory pathway. We show that their combination favors a
manifold learning mechanism for olfactory habituation over al-
ternatives based on predictive filtering. Manifold learning is
implemented in our model by a biologically plausible network
of inhibitory interneurons in the early olfactory pathway. We
demonstrate that plasticity rules based on IBCM or online PCA
are effective at implementing this mechanism in turbulent con-
ditions and outperform previous models relying on mean back-
ground subtraction. Interneurons with an IBCM plasticity rule
acquire selectivity to independently varying odors. This man-
ifold learning mechanism offers a path towards distinguishing
plasticity rules in experiments and could be leveraged by other
biological circuits facing fluctuating environments.
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Introduction
Most of us have experienced an odor fading to imperceptibil-
ity after prolonged exposure. Habituation is a basic building
block of sensory cognition, allowing us to pay attention to
weak but important cues relevant for survival [1, 2]. Across
sensory modalities, numerous mechanisms for sensory adap-
tation and habituation filter out irrelevant information; these
mechanisms must be considered in light of the statistical fea-
tures of natural scenes [3–7]. Though olfactory habituation to
regular stimuli is behaviorally well-characterized [8], less is
known about its computational basis in neural circuits facing
naturalistic environments.

The physics of odor transport poses a difficult habitua-
tion problem, challenging simple models such as mean back-
ground subtraction. Unlike in vision and audition, olfactory
signals are transported by a physical medium that is turbulent
at the spatial scales relevant for behavior. Wind velocities in
such environments have complex spatial and temporal fluc-
tuations, which segregate air into patches of odor and clean
air (Fig. 1A). An olfactory sensory apparatus thus receives a

highly intermittent sensory signal, where clumps of intense
odor detections (‘whiffs’) are separated by seconds to min-
utes of relatively clean air (‘blanks’) (Fig. 1B) [9–11]. These
strongly non-Gaussian statistics make it non-trivial for olfac-
tory circuits to identify new odors mixed with a dominant,
fluctuating background.

The neurobiology of early olfaction outlines the underly-
ing circuit structure solving this habituation problem across
animal species (Fig. 1C). In insects, odors are first detected
by olfactory receptors (ORs) located on olfactory sensory
neurons (OSNs) in the antennae. Each OSN often expresses
one olfactory receptor type (among ∼ 50 different recep-
tor types in the fruit fly). Axons from OSNs expressing the
same receptor project to distinct locations called glomeruli in
the antennal lobe. Projection neurons (PNs) integrate signals
from a few glomeruli and project to higher order processing
centers, including the mushroom body (where associations
are formed) and the lateral horn (which drives innate behav-
iors) [12, 13]. A strikingly similar architecture is present in
mammals: glomeruli are located in the olfactory bulb where
OSN input is processed and broadcast to diverse subcortical
and cortical regions [14].

A characteristic feature of ORs is their broad tuning to
many odor molecules, such that each OSN is activated by
multiple odors [15]. Thus, OSN activity induced by a be-
haviorally relevant odor appearing in a naturalistic environ-
ment is masked by possibly many background odors [16].
Biophysical mechanisms for adaptation in a single OSN al-
low for adapting the dynamic range of spiking output to the
statistics of receptor activity [17–20]. However, these single-
neuron mechanisms do not, on their own, disentangle contri-
butions from a new and relevant odor from those of irrelevant
backgrounds, suggesting that background subtraction occurs
at the neural population coding level, in a later stage of the
olfactory pathway [21–24].

The antennal lobe (AL) in insects and the olfactory bulb
(OB) in mammals are likely candidate regions for olfactory
habituation. Since most olfactory receptors are promiscuous,
the population activity of glomeruli in these regions repre-
sents an efficient combinatorial code for odors [25, 26]. The
AL and OB further contain extensive local networks of in-
hibitory interneurons that mediate inter-glomerular crosstalk
before signals are broadcast to downstream processing cen-
ters [27–30]. Consistent with this picture, plasticity mech-
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anisms in Drosophila antennal lobe inhibitory interneurons
(called lateral neurons (LNs)) have been linked to the forma-
tion of olfactory memories during habituation [6, 8, 22, 31–
35]. Building on these results, Shen et al. proposed a neural
model for olfactory habituation where LNs learn and subtract
a time-averaged background signal by integrating glomerular
activity over timescales of minutes [36]. While a mean fil-
tering mechanism is plausible when backgrounds are stable,
it cannot filter out the strong fluctuations of naturalistic ol-
factory scenes (Supp. Materials, sec. 3), hinting that other
mechanisms are at play.

Here, we propose a conceptually distinct model for ol-
factory habituation to broadly activating backgrounds that
fluctuate on physically relevant timescales. As in previ-
ous proposals, we assume that background subtraction is
mediated by plasticity mechanisms in inhibitory interneu-
rons within the AL and OB. Our model is motivated by the
fact that the representation of a fluctuating odor traverses a
one-dimensional manifold (i.e., a curve) in a much higher-
dimensional glomerular activity space [23]. Consequently, a
mixture of backgrounds spans a manifold of dimensionality
equal to the number of independently varying odors in the
mixture. A network that learns this low-dimensional man-
ifold can thereby subtract out background activity by pro-
jecting instantaneous activity to the low-dimensional back-
ground manifold, highlighting components that are orthogo-
nal to it (Fig. 1D). Our proposed ‘manifold projection’ mech-
anism thus relies on the high-dimensional nature of olfac-
tory coding, and is still applicable when odors fluctuate on
timescales comparable to timescales of neural signal prop-
agation. Hence, the characteristics of olfactory stimuli and
circuits outline a distinct habituation mechanism at the level
of neural population codes, which could also be leveraged
by other biological circuits facing fluctuating backgrounds in
high-dimensional input spaces.

The structure of the paper is as follows. We first use a
minimal mathematical model to delineate the physical and
sensory coding regimes where a manifold projection strategy
outcompetes a predictive filtering mechanism for new signal
recognition among strong background fluctuations. Next, we
propose a biologically plausible model for manifold learning
implemented by inhibitory interneurons in the early olfac-
tory system. We consider two local plasticity rules (IBCM
and BioPCA), which find the linear subspace spanned by
the background odors. Interneurons equipped with either
rule perform considerably better against fluctuating back-
grounds than prior models and perform comparably against
each other. A detailed mathematical analysis of the IBCM
rule shows that interneurons acquire selectivity to indepen-
dent odors in the mixture. Finally, we show that both plastic-
ity rules are robust across a range of physiologically relevant
physical and computational regimes.

Results
Regimes of predictive filtering and manifold learn-
ing. We begin by delineating the physical and computational
regimes in which a manifold learning strategy for habituation

outperforms a predictive filtering strategy. We consider an
olfactory system habituating for time T to a fluctuating back-
ground, b(t). The components of these vectors represent the
glomerular activations corresponding to each OR type, and
thus reflect the coordinates of an odor in an NS-dimensional
olfactory coding space. As in the rest of the paper, the back-
grounds b(t) are mixtures of NB odor vectors,

b(t) =
NB∑
γ=1

cγ(t)ŝγ , (1)

where the concentration of the γth odor at time t is cγ(t).
Here, we have assumed additive odor mixtures to keep our
analysis tractable; our conceptual argument should also ex-
tend to non-additive odor mixture coding [17, 37–39] when
combined with algorithms for curved manifolds (Discus-
sion). The system subsequently responds at time T to a mix-
ture of the fluctuating background b(T ) and a new, behav-
iorally relevant target odor snew which the target aims to rec-
ognize; the total input is b(T ) + snew. An idealized circuit
subtracts a vector uT from the target-background mixture,
where

uT =
T−1∑
j=1

vjb(T − j) + P (b(T ) + snew) . (2)

The first term represents a weighted average over the back-
ground’s history, corresponding to the predictive filtering
strategy, where scalar coefficients vj are set by the second-
order statistics of background fluctuations. The second term
corresponds to a simplified manifold learning strategy, where
the matrix P projects the current stimulus to the subspace
spanned by the background. The parameters vj and P are
learned during habituation such that the target odor snew is
recovered (in the mean squared error sense) by subtracting
uT from the current input.

We analytically optimized vj and P to delineate how
the two strategies contribute to recovering the target odor
snew from the mixture with b(T ), which depends on back-
ground statistics (Supp. Materials, sec. 1). Fig. 1E illustrates
the optimal reconstruction error for different autocorrelation
timescales of background fluctuations (τ ), and dimensional-
ities of the olfactory coding space (NS, Fig. S1A-B). While
the combined strategy is by construction always better than
each individual strategy, manifold learning alone explains all
the performance when fluctuations are fast and the dimen-
sionality is large (small τ , large NS).

The spectrum of turbulent fluctuations is dominated by
brief whiffs and blanks that can reach down to ∼10 ms
(Fig. 1B); predictive filtering, since it acts as a change de-
tector, would constantly respond to these whiffs. Taking the
filtering time step to be the smallest olfactory delay func-
tionally perceptible to mice and human (30-60 ms) [40, 41],
we estimate that τ < 100 for typical turbulent backgrounds
(Fig. S1C). The number of OR types spans from a few tens
to thousands across different animals. The olfactory space
is high-dimensional compared to the typical number of in-
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Fig. 1. Olfactory systems face stochastic, turbulent odor mixture inputs, for which manifold learning may be an optimal habituation strategy. (A) Illustration of
background and new odor concentrations time series, strongly fluctuating in a series of whiffs and blanks, according to the turbulent atmosphere statistics derived in [9]. (B)
Stationary probability distributions of whiff concentrations and whiff and blank durations. (C) Structure of early layers in the olfactory network, annotated with fly (top) and
mouse (bottom, when different from fly) anatomical regions and cell types. (D) Illustration of a hypothetical low-dimensional subspace spanned by background odors in the
space of OSN activities si, with sample mixtures generated by log-normal odor concentrations. A new odor, snew, generally has a component, snew,⊥, lying outside of the
background manifold. (E) Log-ratio of the difference in loss functions for new odor recognition between manifold learning (LP ), predictive filtering (Lv ), or the combination
of both strategies (Lv,P ). For a sensory system tasked to detect new odors within fast background fluctuations in a high-dimensional space, as it is the case with olfaction,
manifold learning is the dominant strategy (loss LP ≈ Lv,P ). The olfactory space dimensionality is rescaled by the relative variance of background and new odors:
ÑS = NSσ

2/σ2
new.

dependent odor sources that might prevail in a natural land-
scape. Thus, physics and neurobiology together indicate that
olfaction lies within the regime where a manifold learning
strategy is most effective.

Models of manifold learning in the early olfactory cir-
cuit to improve new odor recognition. We now develop
biologically plausible models of olfactory habituation that
rely on manifold learning. Following [36, 42], we formulate
a mathematical description (Fig. 2A) of the early olfactory
circuit (Fig. 1C). We use Drosophila cell types for concise-
ness, but the model generalizes to other organisms. The key
component for habituation is a layer of NI lateral interneu-
rons (LN) which receive inputs s from olfactory sensory neu-
rons (OSN) via synaptic weightsM and are coupled with lat-
eral connections L, thus having activities h̄ = LMs. OSNs
excite projection neurons (PNs) with unit synaptic weights
and LNs inhibit PNs with synaptic weights W . The net ac-
tivity of the PNs is thus y = s−W h̄.

Intuitively, in our model, interneurons learn to project
inputs onto the low-dimensional subspace of background
odors, and subtract these projections from PNs. Interneu-
rons can therefore perform (linear) manifold learning with
projection matrix WLM . Lastly, PN activities are projected
on a large layer of NK Kenyon cells (KC) by sparse random
connections (fixed, not learned). The condition NK � NS
ensures that the 5 % most active KCs represent a distinct neu-

ral tag z for each possible odor. This dimensional expansion
from PNs to KCs implements locality-sensitive hashing of
input identity [42].

Next, we consider biologically realistic synaptic plasticity
rules for weights M , L, and W to achieve adequate manifold
learning within this network. The optimal manifold projec-
tion matrix P derived for Fig. 1E involves non-local terms
and moments of the new odor distribution inaccessible to the
network (eq. 9). Instead, we postulate a simple, unsuper-
vised, local learning rule for the inhibitory weights W : they
evolve during habituation to minimize the norm of the PN ac-
tivity y by using interneuron activities h̄. This optimization
principle results in simple Hebbian dynamics (see Methods),

dWij

dt = αyih̄j − βWij (3)

with learning rate α and a regularization rate β. This sim-
ple update rule allows us to compare different models for the
projection weights M and L. We consider two models: (a)
the Intrator, Bienenstock, Cooper, and Munro (IBCM) model
of synaptic plasticity [43–46], and (b) a biologically plausi-
ble online implementation of principal components analysis
(BioPCA) [47] (for full model definitions, see Methods). The
IBCM model was proposed to explain neuronal selectivity to
specific stimulus components [43]. Its connections with in-
dependent component analysis (ICA) [48, 49] suggest that it
could provide a biologically meaningful basis for learning the
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Fig. 2. Recognition of new odors after habituation to a background with different learning models. (A) Mathematical description of the olfactory network. (B)
Schematic of the numerical experiments performed to assess habituation performance. We generate a set of background odors randomly, then integrate the network’s
synaptic plasticity equations for 60 minutes of habituation to a simulated background time series, where odor concentrations fluctuate according to the turbulent stochastic
process illustrated in Fig. 1A-B (see Supp. Materials sec. 2 for simulation methods). We then compute the network’s response to a new odor snew mixed with the background.
The recognition performance is quantified by the Jaccard similarity between the neural tag of the mixture, zmix, and the neural tag (pre-habituation) of the new odor alone,
znew. This procedure is repeated for several test times, random backgrounds, samples of each background, random new odors, and different new odor concentrations,
for each habituation model (none, average subtraction, BioPCA, IBCM). Parameter values are listed in the Methods. (C) Sample time series of the norm of PN activity, to
illustrate the extent of habituation (decrease in PN activity when exposed to the background) in each model. “Optimal”: response with the optimal manifold learning matrix
P (no predictive filtering) derived for Fig. 1E. (D) Cumulative distribution of the Euclidean distance between new odors snew and each model’s PN response to new odors
mixed with the background, ymix, after habituation, across all background, odors, and new odor concentrations tested. (E) Distribution of Jaccard similarities J(zn, zmix)
of the various models, across all backgrounds and odor samples tested.

manifold of non-Gaussian backgrounds.

We perform initial numerical simulations, outlined in
Fig. 2B, to assess the performance of different habituation
schemes. We compare these rules to the average subtraction
mechanism proposed in [36] (“Average”), as well as with the
absence of habituation (“None”) and the optimal manifold
learning matrix P derived in the previous section (see Meth-
ods). The dynamical equations for each plasticity rule are
integrated in the presence of a background as in Eq. (1), with
concentrations fluctuating according to the turbulent stochas-
tic process of Fig. 1A-B. After this habituation period, we
present the network with mixtures of the background and new
odors, smix = sb(t) + snew. To assess how well that odor is
decoded from the mixture, we compare its output with the
neural tag znew of the new odor alone.

We find that while average subtraction cannot inhibit the
strong fluctuations of turbulent backgrounds (Supp. Mate-
rials, sec. 3), both the IBCM and BioPCA networks sig-
nificantly reduce PN activity in response to the background
(Fig. 2C) comparably to the optimal manifold learning matrix
P . This confirms that both models provide adequate projec-
tions on the background subspace, allowing the Hebbian rule
for W (Eq. (3)) to achieve its function of minimizing PN ac-
tivity.

Moreover, we compare the models’ performance for new

odor recognition after habituation at the level of PN ac-
tivities (Fig. 2D) and neural tags (Fig. 2E). For both met-
rics, average subtraction provides a very limited improve-
ment compared to recognition without habituation, due to
the strong background fluctuations caused by turbulence. In
contrast, manifold learning implementations significantly im-
prove odor recognition, with both IBCM and BioPCA net-
works performing similarly well. With respect to the dis-
tance in PN activity between the new odor alone and mixed
with the background (Fig. 2D), these models result in a ∼ 3-
fold improvement, but fall short of the optimum by a similar
factor. This is not surprising, since P is fine-tuned for the dis-
tribution of new odors, which is unknown to the IBCM and
BioPCA networks. Nonetheless, in terms of the Jaccard sim-
ilarity between neural tags of the mixture and the new odor
(Fig. 2B, right), the IBCM and BioPCA networks perform
within 15 % similarity of the optimum (Fig. 2E), producing
responses much more similar to the new odor than to back-
ground odors (Fig. S2). These models thus recover, from a
mixture with the background, roughly 50 % of the KCs which
are most activated by the new odor alone and define its iden-
tity, even when the new odor is present at just half the average
whiff concentration (Fig. 2E, left). These results prompt us to
investigate in more detail how the IBCM and BioPCA models
learn the background manifold.
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Analysis of background habituation by the IBCM
model. We first focus on the IBCM model, since its mech-
anisms are less intuitive than PCA and have classically been
characterized for visual input processes alternating between
a fixed set of vectors [44, 50]. In its simplest form (Fig. 3A),
the IBCM model describes the slow variation of a neuron’s
synaptic input weights m (a row in matrix M ) as

dm
dt = µh(h−Θ)s(t) where h = m · s(t)

dΘ
dt = 1

τΘ
(h2 −Θ) (4)

where h is the activity in response to input s(t), µ is the
learning rate, and Θ is an internal threshold converging to
a temporal average Θ = 〈h2〉 (〈·〉 denotes averages over the
input fluctuations). In practice, we include lateral mean-field
inhibition between interneurons with coupling parameter η,
a mild nonlinearity to h preventing excessively large activa-
tions, and a small (ε � 1) decay term −εµm. For simu-
lations with turbulent backgrounds, we use a variant of the
model from [45] where the learning rate is divided by Θ to
speed up convergence (see Methods).

The m equation introduces a competition between input
patterns: inputs that cause h > Θ are further reinforced,
while sub-threshold ones are further depressed; consequently,
a neuron responds specifically to some inputs and does not re-
spond to others [43]. This mechanism works when the thresh-
old time scale τΘ is slow enough to average over fast input
fluctuations s(t), yet still fast compared to the learning rate
µ. This separation of time scales is to ensure m does not vary
much while Θ averages over fluctuations; oscillations arise in
the synaptic weights [51] without the separation τΘ � 1/µ.
This criterion can nonetheless be achieved during olfactory
habituation over the course of 30-60 minutes.

To gain insight into how IBCM neurons learn the back-
ground subspace, we examine the fixed point equations of the
model averaged over fast input fluctuations (Supp. Materials,
sec. 4), finding exact expressions for these solutions in terms
of the background concentration moments. From a linear sta-
bility analysis (Supp. Materials, sec. 4F and Fig. S3), we find
that the only stable fixed points are those where the alignment
of the synaptic weights with background odor vectors, hγ =
m·ŝγ , take a large positive value hsp (“specific”) for one odor
γ and a small, possibly negative value hns (“non-specific”)
for all other background components. Hence, an IBCM neu-
ron learns to selectively respond to one background odor: the
classical specificity property of this model [44] thus extends
to quite general input stochastic processes of the form given
in eq. 1. From the solutions for m and h, we also derive ana-
lytical expressions for the fluctuation-averaged inhibitory W
weights at steady-state (Supp. Materials, sec. 4G). Overall,
our results show that a network of IBCM neurons performs
manifold learning by having each neuron selectively suppress
one background odor. Lateral inhibitory coupling between
IBCM neurons (matrix L) help to push each neuron towards
a different odor component [52].

To confirm our analysis, we perform numerical simu-
lations with a simpler, weakly non-Gaussian background

(Fig. 3B, see Methods). As expected, each IBCM neuron
evolves over time to align with one background component
(Fig. 3C,D), with steady-state average values of the dot prod-
ucts h̄γ closely matching our analytical predictions hsp, hns
(dashed lines). Different IBCM neurons (labeled by col-
ors) become specific to different odors (line transparencies).
The W weights also converge to steady-state average val-
ues matching our analytical results (Fig. 3E). The network
of IBCM neurons performs habituation effectively, reducing
both the mean and standard deviation (fluctuations) of the
PN activity norm below ∼ 10% of the input levels. Char-
acterizing further the learning dynamics, we observe that the
selectivity of IBCM neurons is acquired in two phases, first
approaching a saddle point before converging to a selective
fixed point (Supp. Materials sec. 6, Fig. S4, and Fig. 3C).
This selectivity is driven by skewness (non-zero third mo-
ment) in the background statistics [44, 53] (Fig. S5).

Importantly, these properties of IBCM neurons are ro-
bust across different background statistics. We observe sim-
ilar specificity and learning dynamics in IBCM neurons ex-
posed to log-normal background fluctuations (Fig. S6) and
in the simulations of Fig. 2 with the full turbulent statistics
(Fig. 4A-B). In the latter case, averaging over long whiffs
and blanks requires slower learning rates 1/τΘ and µ (see
Methodsand Table S2); despite stronger fluctuations, IBCM
neurons align with a single background odor each.

Comparison of IBCM and BioPCA learning. As a point
of comparison, we also analyze how the BioPCA network
learns the background manifold in fluctuating environments.
Despite strongly non-Gaussian statistics, the network con-
verges to the expected PCA decomposition fixed point (see
Methods, Supp. Materials, sec. 5 and sec. 6C). The matrix
L becomes nearly diagonal, containing the principal values
(Fig. 4C, Fig. S6B), while the rows of M converge to (scaled
versions of) the principal component vectors, as evidenced
by the error on their alignment decreasing to∼ 1 % (Fig. 4D,
Fig. S6C, Fig. S7).

On the whole, both models achieve similar habituation
levels within ∼ 30 minutes. However, they rely on dis-
tinct mechanisms and converge to different vector bases for
the background manifold. BioPCA neurons learn principal
components: linear combinations of the true odors, distin-
guished by their variance. IBCM neurons, in contrast, rely
on higher statistical moments of the inputs to select indi-
vidual odor sources. Both models require in principle one
neuron per background dimension, NI = NB, to span the
background subspace. Superfluous neurons have little effect
for the BioPCA model, where they reach principal values
Lii ≈ 0. For the IBCM network, extra neurons are helpful,
increasing the probability that each background odor will be
selected by at least one of them. Notwithstanding these dif-
ferences, both models produce very similar habituation and
odor recognition performances in Fig. 2. They are also sim-
ilar in their robustness to OSN noise (Fig. S8), and in their
performance when combined with alternate Hebbian rules for
theW weights based on differentLP norms (Supp. Materials
sec. 7 and Fig. S9).
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Fig. 4. Habituation of IBCM and BioPCA neurons to
turbulent olfactory backgrounds. (A) Time series of
the IBCM neurons’ synaptic weight alignment with back-
ground odor during habituation to a six-odor background
with the turbulent concentration stochastic process illus-
trated in Fig. 1A-B. Three neurons are highlighted with
colors. (B) Table of each neuron’s alignment after habitu-
ation, showing that IBCM neurons becomes selective for
one odor even in this strongly fluctuating background. (C)
Time series of the principal values learned by lateral in-
terneurons obeying the BioPCA model during habituation
to the same turbulent background. These principal values
are stored in the inverse of the self-coupling weightsL−1

ii

(inverse of the diagonal entries in the LN coupling matrix
L). The principal values learned by the first NB neurons
converge to averages equal to theNB non-zero eigenval-
ues of a PCA decomposition of the background (dashed
horizontal lines). (D) Alignment error between the back-
ground subspace and the principal components learned
by the BioPCA LNs (the rows of the LM matrix should
be the principal components), confirming the model does
learn the PCA decomposition of the background.
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Performance in various olfactory space conditions.
To understand the similar performance of the IBCM and
BioPCA versions of manifold learning, we investigate the ef-
fect of various olfactory space parameters on them. We per-
form numerical simulations analogous to those of Fig. 2B for
increasingly large olfactory space dimensions (NS) and for a
wider range of new odor concentrations (Fig. 5A). We con-
sider dimensionalities ranging from half (25) that of the fruit
fly (50) up to human (300) and mouse (1000) levels. While
the performance of the optimal manifold learning algorithm
increases withNS up to a nearly perfect score, the IBCM and
BioPCA networks reach a very similar plateau at NS ∼ 100
(Fig. 5B). Remarkably, this plateau corresponds to the sim-
ilarity between the new odor tag, znew, and the tag znew,⊥
of the new odor component orthogonal to the background,
ynew,⊥ (“orthogonal” pink line, Fig. 5B). This observation
clarifies why both models perform similarly well: the local
rules forW (Eq. (3)), based on minimizing PN activity, cause
the parallel component of the new odor to be subtracted at the
same time as the background. As long as the M weights pro-
vide complete projections of the inputs, the network produces
a response ymix ≈ snew,⊥. In comparison, the optimal ma-
trix P preserves some of the new odor’s parallel component,
thus maximizing the recognition of snew.

Still, the levels of odor recognition reached by the IBCM
and BioPCA models are significant, several standard devia-
tions above chance similarity (black line, Fig. 5B). They also
perform well above the average subtraction model, which
was similar to no habituation: in that model, new odor sig-
nals are masked by strong fluctuations away from the aver-
age. For higher new odor concentrations, manifold learning
provides a more modest improvement (Fig. 5C and Fig. S10),
because habituation is not as crucial for very strong new odor
whiffs which dominate the background. Overall, both IBCM
and BioPCA interneurons subtract the background manifold
from olfactory inputs while preserving new odor signals in
regimes that are physically and computationally relevant for
biological systems.

Discussion
Sensory adaptation to olfactory backgrounds is particularly
challenging due to strong fluctuations generated by turbu-
lent mixing in naturalistic conditions. We showed that pre-
dictive filtering strategies, which act on individual stimulus
features, cannot adequately distinguish between changes in
activity due to new odors and changes in activity due to fluc-
tuations in the background. An alternative class of habitua-
tion strategies, manifold learning, could better identify new
odors by learning to subtract projections of the instantaneous
inputs onto the low-dimensional background manifold. We
propose that inhibitory interneurons, which modulate the ac-
tivity of principal neurons in early olfactory pathways, im-
plement a manifold learning strategy for habituation. We ex-
plore two classes of synaptic plasticity rules, each of which
combines a Hebbian-like rule and a linear projection learning
rule (IBCM or BioPCA). Our analysis shows that these sim-
plified linear manifold learning strategies are near-optimal

for a range of physiologically relevant parameters, includ-
ing when background odors display strong fluctuations such
as those encountered in turbulent environments. Both plastic-
ity rules show comparable performance on a habituation task,
but learn distinct stimulus features. Notably, IBCM neurons
select biologically relevant projections corresponding to in-
dependently varying components in the background mixture.

The biological underpinnings of our proposed model for
olfactory background manifold projection are supported by
previous experimental and theoretical studies. All connec-
tions in our network structure (OSN to PN, OSN to LN,
LN to PN) are abundant in the connectome [12]. Habitu-
ation on the time scale of minutes has been shown to oc-
cur predominantly at the level of PNs in flies [22, 54] or
M/T cells in mice [29]. Several studies found lateral in-
hibitory signals (GABA, glutamate) and their receptors for
such signals (GABA-A, NDMA) to be essential to habitua-
tion [6, 27, 34, 35]. Our model relies on odor-specific PN in-
hibition by PN-to-LN plasticity for habituation, as observed
in Drosophila [8] and honeybees [55]. Of note, we neglected
feedback of PNs on LNs [31] and instead considered a feed-
forward network for mathematical simplicity, to illustrate our
concept of manifold learning. Moreover, recent theoretical
work has argued that the PN-LN connectivity pattern reflects
correlations in PN activity, suggesting that the PN-LN circuit
whitens odor representations in the antennal lobe [56]. How-
ever, the authors focused on hardwired computations pre-
adapted to a given set of odors (i.e., offline), whereas we
addressed a different problem altogether, showing that on-
line PCA is one plausible set of synaptic plasticity rules to
achieve background subtraction in fluctuating environments.

Our theory provides salient predictions that could be
tested experimentally. The simplest observable feature is
the decrease in both the mean and variance of PN (or
M/T cells in mice) activity after 20-60 minutes of expo-
sure to turbulent odor mixtures (Fig. 2C and 3F). This phe-
nomenon has already been observed for simpler backgrounds
in Drosophila [8], which motivated our study. It could be
directly tested in mice by calcium fluorescence imaging of
glomeruli [37]. PN or glomerular activity should however be
restored in response to new odors orthogonal to the learned
background. In comparison, temporal average filtering would
fail to reduce PN activity (Fig. 2C), while filtering based on
recent samples (as in eq. 2) would rapidly suppress the re-
sponse to new odors as well.

A more subtle feature in our proposed model is that lateral
interneuron activity (LN) should, conversely, closely track
background stimuli in real time to keep inhibiting PN re-
sponses (Fig. S8D-E). It may be experimentally challeng-
ing, however, to single out interneurons and record their fast
fluctuations. A corollary of this model feature (which might
be easier to measure) is that, since LN activity reflects pro-
jections on the learned background manifold, these neurons
should become silent if the stimulus is suddenly switched to
new odors with null projections on the previous subspace.
Their activity should slowly recover on the time scale of ha-
bituation as they learn the new background.
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Fig. 5. Recognition performance as a function of olfactory space dimensionality and new odor concentration. (A) For various olfactory space dimensionalities NS
(i.e., number of OSN types) and new odor concentrations cn at test times, we perform simulations like those in Fig. 2: the model habituates to a six-odor turbulent background
for ∼60 minutes before a new odor is introduced in the mixture. Each (NS, cnew) condition is tested across 64 backgrounds, 100 new odors, 5 test times post-habituation,
and 4 background samples at each test time. (B) New odor recognition performance, quantified by the Jaccard similarity between the new odor and the response to the
mixture after habituation, as a function of NS, for different manifold learning models. Results shown here are for the new odor cnew equal to the average concentration of
background odors, 〈c〉 (see Fig. S10 for all concentrations). “Optimal”: manifold learning matrix W derived in Fig. 1E. “Orthogonal”: similarity between the entire new odor
and its component orthogonal to the background. “Rand. odors”: similarity between two randomly selected odors (i.e., similarity by chance). The shaded area represents one
standard deviation across replicates. (C) Recognition performance as a function of the concentration at which the new odor is presented (multiples of 〈c〉), for the fly case
(NS = 50; see Supp. Materials, Fig. S10A for all dimensions). Same legend as (B).

A third feature of habituation by manifold learning is that
new odor recognition performance decreases with the dis-
tance to the background subspace (i.e., as the norm of the
orthogonal component sn,⊥ decreases; Fig. S2C-D). This de-
pendence would not be as strong in predictive filtering strate-
gies. This correlation between odor recognition and distance
from new odors could be tested in behavioral experiments.

Further theoretical work will also be necessary to refine
our proposed implementation of manifold learning in olfac-
tory circuits, and to assess how this strategy may be coupled
with other odor recognition mechanisms. Schemes more so-
phisticated than a Hebbian rule would be necessary to reach
the optimal performance promised by manifold learning (Fig-
ure 5) or to fully exploit the biologically relevant projec-
tions learned by IBCM neurons. Also, in our study, we
focused on linear background manifolds (eq. 1) that could
be decomposed into linear projections (h = LMs); while
manifold projection also applies conceptually to non-additive
odor mixtures, this extension will require olfactory circuit
implementations of algorithms for curved manifold learning,
such as manifold tiling [57]. Moreover, by choosing to fo-
cus on early olfactory processing, we neglected neuromodu-
latory inputs [58–60] and feedbacks from higher-level cog-
nitive functions [61, 62]. For instance, while we assumed
background and new odors are merely defined by their or-
der of presentation, long-term memory of odors and other
computations in the piriform cortex [63] likely help mam-
mals focus their attention on relevant cues rather than on un-
informative odors for,e.g., odor trail tracking [64, 65]. Future
investigation on this aspect could draw upon recent advances
on attention mechanisms in artificial learning models [66].
Conversely, the concept of background manifold projection
could prove useful for algorithms performing figure-ground
segregation in time-varying signals, such as in video object
detection [67].

Beyond olfaction, the interplay between habituation and

attention also arises in other biological systems performing
chemodetection in fluctuating environments [68]. For in-
stance, in T cell antigen recognition [69], both (immune)
memory and (T cell receptor) signal processing networks
play important roles for pathogen detection amid a sea of ir-
relevant (self) antigens. Overall, we hope that our proposed
model of habituation via manifold learning will motivate fur-
ther theoretical and experimental efforts to clarify how living
systems meet the challenge of adaptation to fluctuating back-
grounds.

Materials and Methods
Odor vectors and concentrations. In our models, odors have a
fixed, unit-normed direction, and an amplitude along that axis set by
their (fluctuating) concentration: s(t) = cŝ. Except for the ideal-
ized setup of Fig. 1E, vectors for background (ŝγ) and new (ŝnew)
odors are drawn from the same distribution Pŝ, by sampling i.i.d.
exponential elements, then normalizing each vector. New odors
are tested at fixed concentrations cnew. Background concentrations
cγ(t) follow a stochastic process, usually (Figs. 2, 5) the turbulent
process illustrated in Fig. 1A-B. We simulate each odor concentra-
tion as a telegraph-like process, alternating blanks and whiffs with
stochastic durations and whiff concentrations. The power-law dis-
tribution of whiffs and blanks durations (tw, tb) have a lower cutoff
at 10 ms and upper cutoffs at 5 s (whiffs) or 8 s (blanks), respec-
tively. The whiff concentration distribution has a scale c0 = 0.6.
We also considered weakly non-Gaussian (Fig. 3) and log-normal
(Fig. S6) background concentrations, by simulating a multivariate
Ornstein-Uhlenbeck {gγ(t)}, then transforming these variables as
cγ(t) = gγ(t) + νgγ(t)2 or cγ(t) = 10gγ(t), respectively. We used
a short autocorrelation time τ = 20 ms, an average 〈g〉 = 1/

√
NB,

and standard deviation σg = 0.3. For the non-Gaussian case, we set
ν = 0.2. Details of the stochastic simulation methods are provided
in Supp. Materials sec. 2.

Optimizing predictive filtering and manifold learning
regimes. In Eq. (2), we introduced an idealized inhibitory network
response combining manifold learning and predictive filtering.
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The objective of this network is to minimize the squared distance
between its response, b(T ) + sn−u(T ), and the target odor alone,
sn. The corresponding loss is

Lv,P =

〈∥∥∥b(T )−
T−1∑
j=1

vjb(T − j)− P (b(T ) + snew)
∥∥∥2
〉

,

(5)
where the average is taken across samples (concentrations) from a
given background and across new odors. Our goal was to determine
the ideal performance of such a network, and the contribution of
each habituation strategy depending on olfactory space parameters.
We therefore solved for the optimal scalar coefficients vj and the
optimal NS ×NS matrix P , as an upper bound on the mechanisms
that real networks could learn during habituation. We minimized the
loss by solving ∂L

∂vj
= ∂L

∂Pij
= 0. Supp. Materials sec. 1 details the

calculation and the result; we obtained a general solution for any
background mixture, as defined in Eq. (1), considering zero-mean
and statistically independent concentrations.

For Fig. 1E, we considered a simpler particular case where
background odors are orthogonal, new odors are drawn uniformly
from the unit hypersphere, and background concentrations have
an exponential autocorrelation function with time constant τ ,
〈cγ(t)cρ(t+ s)〉 = σ2δγρe

−|s|/τ . The minimized loss is then

Lv,P = NBσ
2(1− e−2/τ )/(1 + ÑS(1− e−2/τ )) (6)

where ÑS = (σ2/σ2
n)NS and σ2

n is the new odor concentration
variance. In the figure, we compared Lv,P with the limiting cases
of pure predictive filtering (Lv , setting P = 0) and pure manifold
learning (LP , setting vj = 0), which respectively give losses

Lv = NBσ
2(1− e−2/τ ) , LP = NBσ

2/(1 + ÑS) . (7)

For the “optimal” strategy in Figures 2 and 5, we needed to de-
rive the general solution (for non-orthogonal background and new
odors drawn from Pŝ) for pure manifold learning (v = 0) when the
background has a non-zero average (as was the case in our simula-
tions). In that case, the optimal projection matrix is

P = (〈bbᵀ〉+ 〈b〉 〈snew〉ᵀ )M+ (8)

where M+ is the Moore-Penrose pseudo-inverse (or the usual ma-
trix inverse, when it exists) of

M = 〈bbᵀ〉+ 〈snewsᵀnew〉+ 〈b〉 〈snew〉ᵀ + 〈snew〉 〈b〉ᵀ . (9)

We evaluated numerically the moments 〈bbᵀ〉, 〈snewsᵀnew〉, etc., by
sampling unit vectors sγ , snew from Pŝ and background concentra-
tions cγ from the stationary distribution of the background process
at hand – for Figs. 2 and 5, the turbulent statistics shown in Fig. 1A-
B.

Mathematical model of the olfactory network. We model the
instantaneous response of the olfactory network (Fig. 2A) to a stim-
ulus s(t) received at time t as the following set of neural activities
in its different layers:

h̄(t) = φ(LMs(t)) (interneurons) (10)

y(t) = s(t)−W h̄(t) (PNs) (11)
z(t) = 5% most active in Rθ(Qy(t)) (KCs) (12)

where φ is an element-wise nonlinearity and Rθ clips elements be-
low threshold θ. We used φ(x) = Asat tanh(x/Asat) for IBCM

neurons to saturate their activity at a large Asat = 50 for numer-
ical stability; most of the time, x � Asat is in the linear part of
this function, so y ≈ s −WLMs. We did not apply a nonlinear-
ity for the BioPCA network, nor for the IBCM model on simpler
backgrounds (Fig. 3).

Then, the neural tag z is computed as in [36]. First, PN activ-
ities are projected to the KC layer by the sparse NK × NS binary
matrix Q. Then, Rθ clips Kenyon cells (KCs) with activity below
threshold; we set θ = 1

60 × fNS × 〈si〉, where 〈si〉 is the average
OSN activity in the current input s(t) and f = 6/50, the fraction
of PNs forming a synapse with one KC in Drosophila. Finally, the
neural tag z is the set of all non-zero KCs with activity above the
95th percentile of all KC activities.

The matrix Q is generated by randomly picking fNS PNs to
project to each KC (i.e., picking fNS non-zero elements in Q’s row
for that KC). We generated a new Q for each background tested in
the numerical experiments in Figs. 2 and 5. When varying the ol-
factory space dimensionality NS in Fig. 5, we preserved the relative
size of PN and KC layersNS/NK = 50/2000 found in Drosophila;
hence, for mice with NS = 1000 OR types, we used NK = 40, 000
cortical cells (KC equivalent), and the Q matrix had fNS = 120
M/T cells (PN equivalent) projecting to each cortical cell. This ratio
aligned with experimental estimates in mice giving∼ 200 glomeruli
connected to a cortical cell, or 10 % sparsity in Q [70–72]. The
other matrices (M , W , L in BioPCA) are slowly updated according
to synaptic plasticity rules during a habituation run.

Hebbian learning rule forW . TheW weights are learned accord-
ing to the Hebbian rule in Eq. (3). This rule derives from minimizing
the average squared PN activity with L2 regularization on the Wij :

LW = 1
2 〈y

2〉+ β

2α
∑
i,j

W 2
ij (13)

where we recall that y = s−W h̄. Taking the W dynamics to be a
gradient descent on LW with rate α, dWij

dt = −α ∂LW
∂Wij

, yields the
aforementioned Hebbian rule. The average 〈〉 is replaced by time
averaging over a time window 1/α using a slow rate α to implement
online averaging of fast background fluctuations.

Average subtraction model. The “negative image” subtraction
model proposed in [36] is effectively a mean filtering or average
subtraction model. It can be recast in the form of our network
structure by having NI = 1 interneuron with fixed activity h = 1,
without M or L weights. The W weights are then a vector wavg,
which is subtracted from the PN response input since h = 1:
y(t) = s(t)−wavg. The Hebbian rule above is then

dwavg

dt = α(s(t)−wavg)− βwavg , (14)

which makes wavg align, at steady-state, with the average of the
background over a time window, wavg = α

α+β 〈s〉 (Supp. Materi-
als, sec. 3 for details).

Network of IBCM neurons. Equation 4 presents the simplest form
of the IBCM model for a single neuron. In our olfactory network,
we consider NI IBCM neurons with constant mean-field lateral in-
hibitory coupling, as proposed in [44], corresponding here to a ma-
trix L with 1 on the diagonal and −η off-diagonal. Consequently,
the reduced activity h̄i of neuron i (i.e., element i of h̄ = φ(LMs))
is

h̄i = φ

(
mi · s(t)− η

∑
j 6=i

mj · s(t)

)
= φ(m̄i · s(t)), (15)
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where we defined the inhibited weights m̄i = mi −
∑

j 6=i mj ,
and where φ is the tanh nonlinearity introduced in Eq. (10). The
complete dynamical equation for the synaptic weights mi incoming
into IBCM neuron i has additional terms due to this coupling,

dmi

dt =µΘ̄i h̄i
(
h̄i − Θ̄i

)
φ′(m̄i · s(t))s(t)

− η
∑
j 6=i

µΘ̄j

(
h̄j − Θ̄j

)
φ′(m̄j · s(t))s(t)− εµmi ,

(16)

where φ′ is the derivative of the nonlinearity. We have also added
a small decay term −εµmi to eliminate any component orthogonal
to the background manifold in the random initial weights. For sim-
ulations with turbulent background statistics, we scaled the learning
rate in the first two terms as

µΘ̄i = µ

(Θ̄i)2 + k2
θ

. (17)

This form is similar to the variant introduced in [45], but we added a
constant kΘ in the denominator to prevent blowups at t = 0, where
we initialize Θ̄ = 0. For simpler backgrounds (Figs. 3, Fig. S6), we
did not include this variant and simply used µΘ = µ. Moreover, the
internal threshold of each neuron, Θ̄i, evolves as

dΘ̄i

dt = 1
τΘ

((h̄i)2 − Θ̄i) (18)

such that it tracks the reduced neuron activity h̄i averaged on an
intermediate time scale τΘ.

Network of BioPCA neurons. We could use the “inverse-free
PSP” version of the biologically plausible online PCA (BioPCA)
proposed in [47] directly for the M and L weights of the interneu-
ron layer. The model converges to a fixed point where the L matrix
is diagonal with the principal values in it, and where the matrix LM
contains the principal vectors in its rows, with norms specified by
the pre-defined diagonal matrix Λ [47, Lemma 3]. The model spec-
ifies dynamical update rules for M and L′ = L−1, the inverse of L,
rather than L directly. To avoid non-biological matrix inverse com-
putations, the vector of interneuron activities h is computed with a
Taylor series for L,

h̄(t) =
(
L′
−1
d − L′

−1
d L′oL

′−1
d

)
Ms(t) ≈ LMs , (19)

where L′d contains the diagonal of L′, and L′d contains the off-
diagonal terms. This approximation is accurate at the fixed point
where L′ is diagonal (L′o → 0). The BioPCA dynamical update
rules converging to this PCA decomposition are

dM
dt = µM

(
h̄ sᵀ −M

)
(20)

dL′

dt
= µL

(
h̄ h̄ᵀ − ΛL′Λ

)
(21)

In practice, we set Λkk = Λ
(

1− λr(k−1)
(NI−1)

)
, where Λ is the scaling

factor for M weights described below to make IBCM and BioPCA
perform similarly, and λr is the range of Λ values (between 0 and
1). We followed the original paper’s recommendation for the linear
decrease of Λkk with k and for setting µL = 2µM For further com-
parison with the original paper [47], note the following equivalence
between our notation↔ theirs: M ↔ W , L↔ M−1, s ↔ x, and
h̄↔ y.

In our simulations, we added an extra interneuron applying the
average subtraction mechanism described in Eq. (14), with β = 0,
upstream of the BioPCA model. This way, the BioPCA network
learned the decomposition of the covariance matrix rather than of
〈ssᵀ〉, which still includes the average 〈s〉. This choice did not
change the model performance, but made it more interpretable.

To measure the convergence ofM ’s columns to the PCA vectors,
in Fig. 4D, we computed, at each time point, the subspace alignment
error proposed by [47],

EPro(M) = minQ∈ONS

‖FQ− UPCA‖2Frob

‖UPCA‖2Frob
(22)

where columns of UPCA contains the NB PCA vectors with non-
zero eigenvalues, F = (Λ−1LM)ᵀ contains the eigenvectors
learned in the network’s projection weights, and ‖U‖2Frob =
Tr(UᵀU) is the Frobenius matrix norm. The Q matrix minimizing
the distance to give the alignment error solves the so-called orthogo-
nal Procrustes problem and isQ = UFV

ᵀ where UF , V come from
the SVD of UPCAF

ᵀ = UFΣV ᵀ [73].

Scaling parameter Λ for M weights. In the BioPCA model, the
scale parameter Λ in the Λ matrix (see below eq. 21) controls the
magnitude of weights M . This scale influences the strength of ha-
bituation: larger M ∼ Λ weights allow smaller W ∼ 1/Λ weights
that are less constrained by regularization (β term in eq. 13) and
thus further reduce PN activity. We set Λ to the value necessary to
achieve the same background reduction level as the IBCM network,
as predicted by our analytical calculations for the IBCM fixed points
and post-habituation PN activity; see Supp. Materials, sec. 8 for de-
tailed expressions. Of note, we rescaled the µL rate to µL/Λ2 in
the BioPCA model (eq. 21) to preserve exactly the same learning
dynamics for any Λ, just with M weights scaled up or down.

For comparison, we introduced a similar scale parameter
ΛIBCM in the IBCM model, but we generally kept it equal to 1
(its implicit value by default), since that was sufficient to achieve
complete background manifold projection (Fig. S11). Similar to
BioPCA, scaling of the learning rate µ was required for ΛIBCM 6=
1 (Supp. Materials, sec. 8 for details).

Numerical simulations and model parameter values. We inte-
grated the stochastic differential equations of the network, with the
background processes simulated as described above, using an Euler
scheme with time step ∆t = 10 ms. Below, we give rates in scaled
units where this time step = 1.

By default, we performed simulations lasting 360, 000 time steps
(1 hour) with NS = 25 dimensions, NK = 40NS Kenyon cells,
NB = 6 background odors, NI = 24 IBCM neurons or NI = NB
BioPCA neurons. For W Hebbian learning, we used α = 10−4 and
β = 2× 10−5. However, for Fig. 3 and Fig. S6, we used NB = 3,
NI = 6 (IBCM), α = 2.5× 10−4, and β = 5× 10−5.

For the IBCM weights, we used by default µ = 1.25 × 10−3,
τΘ = 1600, η = 0.6/NI, kΘ = 0.1, ε = 0.005, and A = 50
as the maximum amplitude of the nonlinearity φ. For the simple
background in Fig. 3, we used µ = 1.5 × 10−3, τΘ = 200, η =
0.5/NI, we did not apply the φ nonlinearity or divide the learning
rate by kΘ + Θ. Also, for the simulations in higher dimensions
in Fig. 5, we used a slower learning µ = 7.5 × 10−4 and τΘ =
2000. For the BioPCA model, we used by default µ = 10−4, µL =
2µ, and λr = 0.5 (the range of Λkk entries). For Fig. 4, we fixed
ΛPCA = 8 instead of the exact value making BioPCA and IBCM
inhibit the background equivalently (described above). A full list of
parameter definitions and values is provided in Tables S1 and S2.
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The background process was initialized to a random sample from
its stationary distribution. We initialized the W weights to zero,
and the M weights to random i.i.d. normal samples with standard
deviation 0.2 (or 0.3 for Fig. 4) for IBCM, or standard deviation
ΛPCA/

√
NS for BioPCA. For the latter model, we initialized L

to the identity matrix (as recommended in the original paper); for
IBCM, we initialized Θ̄ to the value of h̄ with the initial weights
and background.

Code Availability. All simulation code is available on Github:
https://github.com/frbourassa/olfactory_
habituation
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A Definition of the loss function

Supplementary Materials

1. Optimal models of manifold learning and predictive filtering
In this section, we detail the optimization problem we solved to delineate regimes of predictive filtering and manifold learning,
as shown in Fig. 1E and Fig. S1.

A. Definition of the loss function. We want to minimize the loss function

Lv,P =
〈∥∥∥bt − t−1∑

l=1
vlbt−l − P (bt + x)

∥∥∥2〉
b∼P,x∼Q

(23)

as a function of the scalar coefficients vl (predictive filtering) and of the matrix P (manifold learning). In this section, we
call bt′ the background OSN input vector at time t′, and x the new odor (appearing at time t), instead of sb and snew. The
background is a linear combination of pre-defined odor vectors, ŷρ, weighted by stochastic concentrations, c̃ρ,t′ , so bt′ =∑NB
ρ=1 c̃ρ,t′ ŷρ. For simplicity, the concentrations are assumed i.i.d. and stationary with mean zero, variance 〈c̃ρ,t′ c̃λ,t′〉 =

σ2δρλ, and autocorrelation function 〈c̃ρ,t′ c̃λ,t′±s〉 = C(s)δρλ, with C(0) = σ2; together, these concentrations statistics define
the background vector distribution P . The new odor x comes from some distribution Q we assume has zero mean and finite
covariance matrix 〈xxᵀ〉.

A.1. Remarks on notation. In this calculation, sums and matrix products are applied over three different indices, denoting
olfactory dimensions, time, and background odors, e.g., (Px)i =

∑
j Pijxj . To make notation more concise, we rewrite

several sums as dot products. To clarify the indices on which these products are, we use boldface x on vectors in olfactory
dimensions, and underlines ( ) for vectors (matrices) in time dimensions. We write out explicitly sums with Greek indices on
background odor indices,

∑NB
ρ=1.

A.2. Expanding the loss function terms. With the above assumptions on the background and new odor statistics, we can expand
the square and write out the different terms in the loss function. First, using the statistical independence and zero mean property
of x and bt′ , the terms to evaluate are

Lv,P = 〈btᵀbt〉+
∑
l,m

vlvm 〈bt−lᵀbt−m〉+ 〈btᵀP ᵀPbt〉+ 〈xᵀP ᵀPx〉

− 2
t−1∑
l=1

vl 〈btᵀbt−l〉 − 2 〈btᵀPbt〉+ 2
t−1∑
l=1

vl 〈bt−lᵀPbt〉 .

We compute these terms more explicitly by using the background statistics defined above. The loss function is thus

L =NBσ
2 +NB

t−1∑
l,m=1

vlvmC(l −m) + σ2
NB∑
ρ=1

ŷᵀ
ρP

ᵀP ŷρ + 〈xᵀP ᵀPx〉

− 2NB

t−1∑
l=1

vlC(l)− 2σ2
NB∑
ρ=1

ŷᵀ
ρP ŷρ + 2

(
t−1∑
l=1

vlC(l)
)(

NB∑
ρ=1

ŷᵀ
ρP ŷρ

)
. (24)

We did not need to assume that background odors were orthogonal to get this answer; the statistical independence of their
concentrations c̃ρ,t removed cross-odor terms. Most terms involve only P or v; only the last term couples the two strategies
together.

B. Solving for the optimal P and v.

B.1. Loss function derivatives and resulting optimum equations. We can now take the derivative of this loss function with
respect to the parameters vj and Pij . After working out the derivatives of the different terms, the result is

∂L
∂vj

= 2NB

t−1∑
l=1

vlC(l − j)− 2NBC(j) + 2
(∑

ρ

ŷᵀ
ρP ŷρ

)
C(j)

∂L
∂Pij

= 2σ2
NS∑
l=1

Pilŷρ,lŷρ,j + 2
NS∑
l=1

Pil 〈xlxj〉 − 2
(
σ2 −

t−1∑
l=1

vlC(l)
)

ŷρ,iŷρ,j
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To shorten the notation of terms involving the autocorrelation function C(s), we introduce the vectors c = (C(1), . . . , C(t−
1)) and v = (v1, . . . , vt−1), and the matrix C

ij
= C(i − j). We note that C is a Toeplitz matrix (i.e., Cij only depends on

i− j), symmetric since C(i− j) = C(j − i). These properties help to express its inverse explicitly in some cases [74].
Setting the derivatives to zero to find the optimum parameters, we thus have a set of vector and matrix equations for v and

P , respectively:

0 = NBCv −

(
NB −

NB∑
ρ=1

ŷᵀ
ρP ŷρ

)
c (25)

0 = P

(
σ2
∑
ρ

ŷρŷᵀ
ρ + 〈xxᵀ〉

)
− (σ2 − vᵀc)

NB∑
ρ=1

ŷρŷᵀ
ρ (26)

B.2. Solving for P in terms of v. The best solution path is to first solve for P in terms of vᵀc, then solve for u. We define the
NS ×NS symmetric matrix

M = σ2
∑
ρ

ŷρŷᵀ
ρ + 〈xxᵀ〉 (27)

which admits a spectral decomposition M = UΣUᵀ and a Moore-Penrose pseudo-inverse M+ = UΣ+Uᵀ, which is the actual
inverseM−1 whenM is invertible (i.e., no zero eigenvalue in Σ). Equation 26 thus takes the form PM = (σ2−vᵀc)

∑
ρ ŷρŷᵀ

ρ ,
which can be inverted for PM = PUΣΣ+Uᵀ, the component of P in the subspace spanned by M ’s eigenvectors of non-zero
eigenvalues. The P component in the null space of M , if any, is not constrained by this optimization problem, so we set it to
zero, and take P = PM . Hence,

P = (σ2 − vᵀc)
∑
ρ

ŷρŷᵀ
ρM

+ . (28)

B.3. Solving for v. We can now insert the implicit solution for P in equation 25 for v. We first evaluate the term

∑
ρ

ŷᵀ
ρP ŷρ =

∑
ρ

ŷᵀ
ρ

[
(σ2 − vᵀc)

∑
λ

ŷλŷᵀ
λM

+

]
ŷρ = (σ2 − vᵀc)NBmy

where we have defined

my = 1
NB

NB∑
ρ,λ=1

(ŷᵀ
ρŷλ)ŷᵀ

λM
+ŷρ . (29)

that background odor directions ŷρ were orthogonal, but if that were the case, my would simplify to 1
NB

∑
ρ ŷᵀ

ρM
+ŷρ. Insert-

ing in eq. 25, dividing by NB, and isolating v by assuming that the autocorrelation matrix C is invertible, we have

v = C−1c− σ2myC
−1c+my(vᵀc)C−1c .

This is still an implicit expression because vᵀc appears on the right; taking the dot product of this expression with c, we can
isolate vᵀc, then reinsert in the implicit equation for v to arrive at an explicit solution (i.e., in terms of P,Q parameters),

v = 1− σ2my

1− γmy
C−1c (30)

where we have defined
γ = cᵀC−1c . (31)

B.4. Replacing v in the P solution. Having solved for v, we can put it back in 28 to obtain an explicit solution for P ,

P = σ2 − γ
1− γmy

NB∑
ρ=1

ŷρŷᵀ
ρM

+ . (32)

C. Evaluating the loss function at the optimum. For simplicity, we first rewrite the loss function in eq. 24 using the
underlined vector notation for c, v, C, giving

Lv,P = NBσ
2 +NBv

ᵀC v + σ2
∑
ρ

ŷᵀ
ρP

ᵀP ŷρ + 〈xᵀP ᵀPx〉 − 2NBv
ᵀc− 2σ2

∑
ρ

ŷᵀ
ρP ŷρ + 2vᵀc

∑
ρ

ŷᵀ
ρP ŷρ . (33)
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D Summary of the general optimal solution

We need to evaluate multiple terms to insert the solutions for v and P in L. We find several simplifications by using the fact
that M and thus M+ and P are symmetric (eqs. 27 and 32), commuting scalars resulting from intermediate dot products, and
renaming indices when appropriate. We find the following terms,

vᵀC v =
(

1− σ2my

1− γmy

)2

cᵀC−1CC−1c =
(

1− σ2my

1− γmy

)2

γ

σ2
∑
ρ

ŷᵀ
ρP

ᵀP ŷρ =
(
σ2 − γ

1− γmy

)2∑
λ,µ

ŷᵀ
µM

+

{
σ2
∑
ρ

ŷρŷᵀ
ρ

}
M+ŷλŷᵀ

λŷµ

〈xᵀP ᵀPx〉 =
(
σ2 − γ

1− γmy

)2∑
λ,µ

ŷᵀ
µM

+ {〈xxᵀ〉}M+ŷλŷᵀ
λŷµ

∑
ρ

ŷᵀ
ρP ŷρ = σ2 − γ

1− γmy

∑
ρ

ŷᵀ
ρ

∑
λ

ŷλŷᵀ
λM

+ŷρ = σ2 − γ
1− γmy

NBmy .

The second and third terms can be combined by noticing they have the same form with sums over odor indices λ, µ, and
combining the bracketed terms to find σ2∑

ρ ŷρŷᵀ
ρ + 〈xxᵀ〉 = M . Then, using the definition of the pseudo-inverse, we have

M+MM+ = M+, resulting in

σ2
∑
ρ

ŷᵀ
ρP

ᵀP ŷρ + 〈xᵀP ᵀPx〉 =
(
σ2 − γ

1− γmy

)2

NBmy .

Combining these expressions in L, we can cancel out a few terms with further algebra and factorize common expressions,
finding a surprisingly simple form,

Lv,P = NB
(σ2 − γ)(1− σ2my)

1− γmy
. (34)

We notice that the loss seems to scale proportionally with the background subspace dimensions, NB. Terms σ2, γ do not
depend on NB but only on the autocorrelation and variance of odor concentrations. The only term that could depend on NB is
my = 1

NB

∑NB
ρ,λ=1(ŷᵀ

ρŷλ)ŷᵀ
λM

+ŷρ, but we generally expectNBmy ∼ NB. This is especially clear if we assume orthogonality

of the ŷ, such that my = 1
NB

∑NB
ρ=1 ŷᵀ

ρM
+ŷρ ∼ O(1).

Hence, there is no obvious tradeoff between the two strategies – predictive filtering and manifold learning – as a function of
the background dimension. This makes sense a posteriori. Predictive filtering tries to anticipate NB independent, identically
distributed odors, hence the squared errors committed on each background component add up in variance. Meanwhile, the
error in manifold learning increase with NB because a fraction ∼ NB of the new odor, on average, will lie in the background
subspace.

However, there is a tradeoff between the strategies as a function of the autocorrelation time, encoded in the parameter γ, and
the dimensionality of the olfactory space, which entersmy through the new odor statistics 〈xxᵀ〉 inM . We expect γ to increase
with the autocorrelation time scale, and my to increase with the olfactory space dimension NS. Hence, as the autocorrelation
time increases, γ diminishes the relative efficacy of manifold learning by reducing the denominator 1− γmy , while increasing
the importance of predictive filtering by reducing the numerator factor σ2 − γ. This tradeoff will be clearer in the special case
studied in section F.

D. Summary of the general optimal solution. We recapitulate the optimization results here. The optimal v and P are

v = 1− σ2my

1− γmy
C−1c (30)

P = σ2 − γ
1− γmy

NB∑
ρ=1

ŷρŷᵀ
ρM

+ (32)

and they give a minimum loss of

Lv,P = NB
(σ2 − γ)(1− σ2my)

1− γmy
(34)
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where NB is the number of i.i.d. background odors, σ2 is the variance of each odor concentration c̃ρ,t, and where we have
defined background parameters

γ = cᵀC−1c (31)

my = 1
NB

NB∑
ρ,λ=1

(ŷᵀ
ρŷλ)ŷᵀ

λM
+ŷρ (29)

in which M = σ2
∑
ρ

ŷρŷᵀ
ρ + 〈xxᵀ〉 (27)

ci = C(i) = 〈c̃ρ,t′ c̃ρ,t′±i〉 (i ∈ {1, 2, . . . , t− 1})
C
ij

= C(i− j) = 〈c̃ρ,t′±ic̃ρ,t′±j〉 (35)

E. Limiting cases: P = 0 and v = 0.

E.1. Predictive filtering only: P = 0. When P = 0, we can directly solve eq. 25 for v, finding

v P=0 = C−1c

which yields a loss of
Lv = NB(σ2 − γ) . (36)

As long as γ < σ2 – which should be the case if the autocorrelation function decays with time – we have Lv,P < Lv since
1−σ2my
1−γmy < 1 in that case.

E.2. Manifold learning only: v = 0. When v = 0, we can directly solve eq. 26 in terms of M+, resulting in

Pv=0 = σ2
NB∑
ρ=1

ŷρŷᵀ
ρM

+

which yields a loss of
LP = NBσ

2(1− σ2my) . (37)

As long asmy <
1
σ2 – which should be the case sinceM+ ∼ 1/σ2 andmy is some projection of it on the background subspace

– then Lv,P < LP , since 1−γ/σ2

1−γmy < 1 in that case.

F. Special case: exponential kernel, x̂ uniform on hypersphere. To make these results more concrete, we now consider a
simple case of background statistics where expressions such as γ,my , etc. can be computed analytically in terms of interpretable
parameters. We consider an exponential autocorrelation function and new odors uniformly sampled on a hypersphere. This is
the case plotted in Figs. 1E and S1.

F.1. Exponential autocorrelation kernel, to evaluate γ. We suppose that each odor concentration c̃ρ,t′ is independent of other
odors and forms a Gaussian process with exponential autocorrelation kernel C(s) = 〈c̃ρ,t′ c̃ρ,t′±s〉 = σ2e−|s|/τ with auto-
correlation time τ (i.e., the Ornstein-Uhlenbeck process). A small τ corresponds to fast fluctuations compared to the time
scale of learning. In this case, the symmetric Toeplitz matrix Cij = σ2(e−1/τ )|i−j| is a Kac-Murdock-Szegö matrix (form
Aij = r|i−j|, r 6= 1), which has an explicit inverse, provided in [74, sec. 1.3]. This inverse is the tridiagonal matrix

C−1 = 1
σ2

1
1− e−2τ


1 −e−1/τ 0 . . . 0

−e−1/τ 1 + e−2/τ −e−1/τ . . . 0
...

. . . . . . . . .
...

0 . . . −e−1/τ 1 + e−2/τ −e−1/τ

0 . . . 0 −e−1/τ 1


It is not hard to check that this is indeed the inverse of C. This allows us to evaluate

C−1c =


e−1/τ

0
...
0

 thus γ = cᵀC−1c = σ2e−2/τ
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F Special case: exponential kernel, x̂ uniform on hypersphere

F.2. New odors x̂ uniform, and ŷρ orthogonal, to evaluate my . Moreover, we suppose that new odors take the form x = c̃xx̂,
where c̃x has variance σ2

new possibly different from the background odors, and where x̂ is uniformly sampled on the NS-
dimensional unit hypersphere. In that case, by symmetry, the new odor covariance matrix is 〈xxᵀ〉 = σ2

new
NS

I, with I the
NS ×NS identity matrix. Additionally, we assume that background odors are orthogonal to each other: ŷᵀ

ρŷλ = δρλ.
These choices allow us to compute M+ explicitly. We first note that M = 〈xxᵀ〉 + σ2∑

ρ ŷŷρ has full rank, and thus
M+ = M−1. We define the rescaled olfactory dimension

ÑS = σ2

σ2
new

NS (38)

to simplify expressions (equal to NS if the background and new odors have the same concentration variance, σ2
new = σ2). We

can compute that inverse by repeatedly applying the Sherman-Morrison formula to the sequence of matrices Mk = 1
ÑS

I +∑k
ρ=1 ŷρŷᵀ

ρ , k ≤ NB. Proceeding by induction, we eventually find the inverse of the full matrix M−1 = σ−2M−1
NB

,

M+ = M−1 = ÑS

σ2

(
I− ÑS

ÑS + 1

NB∑
ρ=1

ŷρŷᵀ
ρ

)
.

We can thus evaluate the matrix product appearing in the optimal P solution,∑
λ

ŷλŷᵀ
λM

+ = ÑS

σ2

∑
λ

ŷλŷᵀ
λ −

Ñ2
S

σ2(ÑS + 1)
∑
λ

ŷλŷᵀ
λ = ÑS

ÑS + 1
1
σ2

∑
ρ

ŷρŷᵀ
ρ ,

using ŷᵀ
λŷρ = δλρ, which also allows us to compute

my = 1
NB

∑
ρ,µ

ŷᵀ
ρŷµŷᵀ

µM
+ŷρ = ÑS

ÑS + 1
1
σ2

1
NB

∑
ρ,λ

ŷᵀ
ρŷλŷ

ᵀ
λŷρ = 1

σ2
ÑS

ÑS + 1
.

F.3. Optimal v, P and loss function in this background choice. Inserting the above expressions for γ, M+, my , etc. into the
general optimal solution, we find

v1 = 1
1 + ÑS(1− e−2/τ )

e−1/τ ; vj>1 = 0

P = ÑS(1− e−2/τ )
1 + ÑS(1− e−2/τ )

NB∑
ρ=1

ŷρŷᵀ
ρ

and a minimum loss of

Lv,P = NBσ
2 1− e−2/τ

1 + ÑS(1− e−2/τ )
(39)

Here, we see clearly that there is no tradeoff as a function of NB: both strategies have an error that increases proportionally
to NB. At least, we clearly see the transition from predictive filtering to manifold learning as ÑS decreases or τ decreases. For
small correlation times, 1 − e−2/τ ≈ 1, so the main reduction of the loss comes from the 1

ÑS+1 factor (also the case if ÑS is

large). Meanwhile, for large correlation τ , the reduction comes from the numerator 1 − e−2/τ ≈ 0, while the ÑS term in the
denominator is rendered ineffective – the same is true if ÑS is small.

F.4. Special cases P = 0 and v = 0 in this background choice. For further comparison, the optimal solutions and loss function
in the pure predictive filtering case (P = 0) with our specific background choice are:

v1,P=0 = e−1/τ ; vj≥2,P=0 = 0
Lv = NBσ

2(1− e−2/τ ) . (40)

In the pure manifold learning case (v = 0), these are rather

Pv=0 = σ2
NB∑
ρ=1

ŷρŷᵀ
ρM

+ = ÑS

ÑS + 1

NB∑
ρ=1

ŷρŷᵀ
ρ (41)

LP = NBσ
2

ÑS + 1
. (42)
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F.5. Plots of the loss function versus ÑS and τ for the different strategies. We notice that the loss is proportional to NBσ
2 in

all strategies for our special background choice, hence we can illustrate the relative efficacy of predictive filtering and manifold
learning by plottingL/(NBσ

2) as a function of ÑS and τ , the two background parameters for which there is actually a transition
between the two strategies. Fig. S1A-B shows the single-strategy losses Lv (eq. 40) and LP (eq. 42) compared to the loss for
both strategies applied simultaneously, Lv,P (eq. 39).

We see that for even a small olfactory space dimension, ÑS = 50 as in the fruit fly, manifold learning performs much better
than predictive filtering even for moderately long correlation time scales, as discussed in the main text. When Lv,P is close to
either LP or Lv , it means that the corresponding strategy contributes most of the loss reduction. We can thus draw a “phase”
diagram of where habituation is dominated by manifold learning (large ÑS, small τ ) or by predictive filtering (small ÑS, large
τ ). The (smooth) transition occurs when LP = Lv , which happens at 1− e−2/τ = 1

ÑS+1 , which is at τ ≈ 2(ÑS + 1) for large

ÑS. This is shown in Fig. 1E. There is a large region (in red) where manifold learning is the most effective strategy.

2. Simulating background odor fluctuations

A. Turbulent statistics. We use the statistics of whiff durations ptw(tw), blank durations ptb(tb), and whiff concentrations
pc(c) derived in [9], with the exponents and statistics for an atmospheric boundary layer. We simulate each background odor
concentration as a telegraph-like process, as illustrated in Fig. 1, by drawing a next blank duration at the end of a whiff, a next
whiff duration at the end of a blank, and a concentration for each whiff from pc. As the simulation advances per time steps
∆t = 10 ms, we keep track of how much time is left in the current whiff or blank as well as of the current concentration, and
update when that time runs out. This method neglects intra-whiff concentration fluctuations, as well as correlations between
successive whiff and blank durations, but captures the main challenges of varying whiff concentrations and power-law (long-
tailed) distributions of durations. We now describe these distributions and how we numerically sample from them.

For the durations of whiffs and blanks, the distribution is a power law with exponent −3/2 and a lower cutoff at τb, τw.
For numerical stability, we prevent abnormally large durations by imposing also an upper cutoff at Tmax,b, Tmax,w, and we use
sharp cutoffs, corresponding to a probability density function

ptx(tx) =


0 if tx < τx or tx > Tmax,x

1
Ax

(
tx
τx

)−3/2
if τx ≤ tx ≤ Tmax,x

(x = b or w) , (43)

where Ax = 2τx
(
1− (Tmax,x/τx)−1/2) is a normalization constant. From these distributions, the average duration of a whiff

or blank is the geometric average of the limits, since

〈tx〉 =
∫ Tmax,x

τx

(
t

τx

)−3/2
t

Ax
dt =

√
τxTmax,x (x = b or w) ,

so the probability χ to be in a whiff is

χ = 〈tw〉
〈tw〉+ 〈tb〉

=
(

1 +

√
τbTmax,b

τwTmax,w

)−1

.

The probability distribution of whiff concentrations c is therefore 0 with probability 1 − χ (illustrated by the point at c = 0
in Fig. 1C, left) or, with probability χ, the conditional distribution pc given there is a whiff. Hence, pc(c) = (1 − χ)δ(c) +
χpc(c|whiff). The conditional distribution has a tail pc ∼ e−c/c0/c, where c0 is a typical concentration scale, and a probability
plateau near c = 0. As illustrated in Fig. 1C, left, we use a sharp transition at αcc0 for some αc < 1, with a uniform probability
on the range below, (0, αcc0], corresponding to a probability density function

pc(c|whiff) =


1
Aα

e−c/c0

c
if c ≥ αcc0

1
Aα

e−αc

αcc0
if c < αcc0

, (44)

where Aα = e−αc + E1(αc) is a normalization constant and E1 is the exponential integral,

E1(x) =
∫ ∞
x

du e
−u

u
.

Of note, the average whiff concentration then has the analytical expression

〈c〉whiff =
∫ ∞

0
dc c pc(c|whiff) = (1 + αc/2)c0e−αc

Aα
.
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B Univariate Ornstein-Uhlenbeck process

To sample from these distributions during a simulation, we use the inverse transform method: given a random uniform(0, 1)
sample r, we generate a sample of a random variableX following the cumulative distribution function (cdf) FX as x = F−1

X (r).
The cdf for the whiff or blank durations is

Ft(tx) =


0 if tx ≤ τx(

1− (tx/τx)−1/2
)

1− (Tmax,x/τx)−1/2 if τx < tx < Tmax,x

1 if Tmax,x ≤ tx

(x = b or w) .

Taking the inverse, we generate tx from uniform samples r as

tx = τx[
1− r

(
1− (Tmax,x/τx)−1/2

)]2 (x = b or w) . (45)

As a check, notice that tx = τx, the lower cutoff, when r = 0, and tx = Tmax,x, the upper cutoff, when r = 1.
The cdf for the conditional whiff concentrations is

Fc(c|whiff) =


0 if c < 0

c

αcAαc0eαc
if 0 ≤ c ≤ αcc0

1− 1
Aα
E1(c/c0) if c > αcc0

.

Hence, given a random uniform sample r, we generate a sample c as

c = F−1
c (r) =

{
αcAαc0e

αcr if r ≤ Fc(αcc0) = 1
eαcAα

c0E
−1
1 (Aα(1− r)) if 1

eαcAα
< r < 1 (46)

where E−1
1 is the inverse exponential integral. This inverse function does not have an analytical closed form, so we evaluate

y = E−1
1 (x) at a given x numerically by solving the equation E1(y) − x = 0 for y, using Brent’s method [75] with suitable

bounds on the solution. For numerical accuracy, for x < 1, we solve in log scale, log(E1(y)) − log(x) = 0, to expand the
range of E1(y) values. For larger x, y becomes very small (e.g., E1(2) = 0.0489), so we solve for z = log(y). For x > 30, y
is small enough (y ∼ 10−13) to use the approximation E1(y) = −γ − log(y) − O(y) [76, 6.6.1], where γ = 0.577 . . . is the
Euler-Mascheroni constant, so the equation is inverted directly: y = e−γ−x.

Hence, overall, for each update when a whiff starts, we use two random uniform(0, 1) samples, one for tw (using Eq. (45)),
one for c (using Eq. (46)); only one sample is needed when a blank starts, for tw (Eq. (45)). In our simulations, we use the
following typical parameter values, the same for all background odors: τb = τw = 10 ms = 1 time step for the lower whiff
or blank duration cutoff, Tmax,w = 5000 ms and Tmax,b = 8000 ms for the maximum whiff and blank durations respectively,
c0 = 0.6 for the (arbitrary) concentration scale, and αc = 0.5 for the lower whiff concentration cutoff.

Moreover, to sample a concentration from the stationary distribution, we draw a first uniform(0, 1) sample r1 to determine
whether there is a whiff, with probability χ (whiff if r ≤ χ), or a blank (c = 0). Then, if in a whiff, draw a second uniform
sample r2 to generate a concentration c using Eq. (46).

B. Univariate Ornstein-Uhlenbeck process. To simulate a univariate Ornstein-Uhlenbeck (O-U) process ν(t) numerically,
we use an exact update rule for finite time steps ∆t, derived from the analytical solution of the O-U process. Taking the last
time step as a new deterministic initial condition [77, eq. 2.47],

ν(t+ ∆t) = ν(t)e−∆t/τb +
√
σ2
(
1− e−2∆t/τb

)
ξ(t) (47)

where ξ(t) is white noise. The coefficients of ν(t) and ξ(t) can be computed in advance. This rule ensures a steady-state
distribution of ν with the desired variance σ2 even when the simulation time step is on the order of τb.

C. Multivariate Ornstein-Uhlenbeck process. The multivariate Langevin equation for the Ornstein-Uhlenbeck process with
zero stationary mean, ν(t), is covered in [78, sec. 4.5.6], and can be simulated exactly using the same trick as in the univariate
case, Eq. (47). In practice, we used independent and identically distributed background odors in this paper, so the matrices A
and B, were diagonal, and the general simulation method effectively reduced to simulating NB zero-mean univariate processes
in parallel (using Eq. (47)), then adding the desired mean vector ν0 to it.
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D. Weakly non-Gaussian fluctuating background. We simulate a multivariate Ornstein-Uhlenbeck process, g as in section
2C, with zero mean and identically distributed variables with stationary variance σ2

g . Then, we take cγ = g0 + gγ + εg2
γ , where

ε should be chosen small and g0 is the desired zeroths-order mean concentration. Then, the concentrations have the following
moments:

〈c〉 = g0 + εσ2
g

Var [c] = σ2
g + 2ε2σ4

g

〈(c− 〈c〉)3〉 = 6εσ4
g + 8ε3σ6

g

These results are straightforward to obtain by expanding c2 and c3 and using higher moments of the Gaussian distribution as
required, i.e., 〈g2k

γ 〉 = (2k)!
2kk! σ

2k
g . The important outcome is that the third moment is of order ε.

E. Log-normal background fluctuations. As above, we simulate identically distributed O-U variables with variance σ2
g ,

add a mean g0 to them, then use them as the log10 of the concentrations, transforming them according to cγ = 10gγ+g0 . Then,
from the log-normal distribution properties [79], the concentrations themselves have a log-normal distribution with moments

〈c〉 = 10g0+ 1
2σ

2
g ln 10

Var [c] =
(

10σ
2
g ln 10 − 1

)
102g0+σ2

g ln 10

〈(c− 〈c〉)3〉 = Var [c]3/2
(

10σ
2
g ln 10 + 2

)√
10σ2

g ln 10 − 1 .

We test habituation to this background with IBCM and BioPCA networks in Fig. S6.

F. Numerical stability. Numerical integration of the W equations displays instabilities when h reaches large magnitudes,
e.g., when increasing the scale parameter Λ (Fig. S11 and section 8). To ensure these are numerical errors rather than a true
dynamical instability of the fixed points, we perform a nonlinear numerical stability analysis of the Euler integrator. This
integrator, applied to the W matrix equation, is effectively a discrete mapping,

Wt+1 = Wt + ∆t(αyhᵀ − βWt) = Wt + ∆t(αshᵀ − αWthhᵀ − βWt)
= B∆t+Wt(I + ∆tJ) where B = αshᵀ

, J = −αhhᵀ − βI

We consider the worst-case scenario, when h reaches its maximal magnitude encountered in a simulation, h = hmax and
Jmax = −αhmaxhᵀ

max − βI, and iterate the map in this case, which gives

Wt+N = δtB
N−1∑
n=0

(I + ∆tJmax)n +Wt(I + ∆tJmax)N

Consequently, the stability depends on the eigenvalues of A = I + ∆tJmax, but not on ∆tB (because the latter is not raised
to some power). Indeed, first note that the matrix A is symmetric and diagonalizable as A = UDU† with D = diag(λi).
Then, if A has at least one eigenvalue with magnitude |λj | > 1, then AN = Udiag(λNi )U† will have a diverging component
as the mapping is iterated (as N increases). To find the threshold where this happens, we can read out the eigenvalues from the
expression of A = (1− β∆t)I− α∆t‖hmax‖2ĥmaxĥᵀ

max,

λi =
{

1− β∆t− ‖hmax‖2α∆t once
1− β∆t NI − 1 times

To see this, consider the rotation matrix R that aligns hmax with one of the unit vectors, e.g., (1, 0, . . . 0): RARᵀ is then
diagonal with λ1 = 1−β∆t−‖hmax‖2α∆t in one row, λ2 = 1−β∆t on the others. For large LN activity, λ1 is first to reach
a magnitude > 1, by becoming negative. Hence, we can predict that numerical instabilities arise in the Euler integrator when

λ1 < −1⇒ ‖hmax‖2 >
2− β∆t
α∆t or ∆t > 2

β + α‖hmax‖2
. (48)

Given a simulation of the M weights and h (which are not destabilized), we can thus anticipate whether the W integration
should be unstable by extracting ‖hmax‖ from the simulation. The vertical lines in Fig. S11 indicate the smallest Λ value for
which this threshold is reached, in each model, in the turbulent background considered. They coincide well with the observed
drops in model performance, confirming these are due to Euler integrator instabilities. A linear stability analysis of the W
equations (computing the Jacobian of the ODE near the fixed point, etc.) confirms that the W is linearly stable for any Λ.
Hence, the observed divergences are numerical limitations rather than true model performance drops and would be remedied
by decreasing the time step, ∆t.
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A Establishing the IBCM fixed point equations

3. Average subtraction model
In this short section, we examine the average subtraction model from [36], and explain how it is insufficient against fluctuating
backgrounds. In our notation, it corresponds to a vector w of inhibitory weights learned as

dw
dt

= αs(t)− (α+ β)w(t) (49)

and a PN response y(t) = s(t)−w (the LN activity is fixed to 1). If this network is exposed to a constant background odor sb,0,
the inhibition vector w converges to wss = α

α+β sb,0, so the background is then perfectly subtracted. However, this strategy
fails if the background vector sb(t) fluctuates randomly over time. In this case, equation 49 amounts to computing the average
background over a time window of duration 1

α+β , as seen from the formal solution of the stochastic equation,

w(t) = α

∫ t

0
dt′e−(α+β)(t−t′)sb(t′) ,

assuming sb(t) started at a given initial value sb,0. From the formal solution, assuming the background is a stationary process,
the steady-state average value of w is therefore proportional to the average background, 〈w〉 = α

α+β 〈sb〉. If the background
process has an autocorrelation time scale much faster than the learning rate, τb � 1

α , with its elements approximately obeying
〈∆si(t1)∆si(t2)〉 = σ2

sie
−|t2−t1|/τb , then to leading order, the inhibitory weights have a small variance

Var [wi] = ατb
α

α+ β
σ2
si .

Hence, the inhibitory weights do not fluctuate much around the constant average background, 〈sb〉, since the factor ατb � 1.
Therefore, this model computes the average background, scaled by α

α+β , and subtracts this fixed quantity from sb(t) to obtain
the projection neuron activity y(t) = sb(t)−w. Consequently, the variance of the PN activity, y(t), is not reduced compared
to the variance of the background:

〈y〉 = 〈sb〉 − 〈w〉 = β

α+ β
〈sb〉 (reduction of the average)

but Var [si] ∼ σ2
si ∀i (no reduction of the fluctuations) . (50)

These large remaining fluctuations in PN activity mix with new odors appearing in the landscape and thus hinder their recog-
nition; this effect explains why the average subtraction model does not provide a significant reduction in PN response to the
background, or improvement in new odor recognition compared to the absence of habituation in Figures 2, 5, S2, and others.

4. Analytical solution of the IBCM model’s average fixed points
To understand what projections are learned by IBCM neurons, we derive analytical expressions for the synaptic weights m of
an IBCM neuron at stationary state. We first establish approximate fixed point equations for these weights averaged over fast
fluctuations of the background process sb(t), assuming perfect separation of time scales between s, Θ, and m. Then, we obtain
exact solutions to these approximate equations.

A. Establishing the IBCM fixed point equations. Let’s first recall the stochastic differential equations describing the synap-
tic weights learning of an IBCM neuron in a network with feedforward lateral coupling (Methods). For tractability, we assume
the activation function φ is the identity function (instead of a nonlinearity like tanh), such that h = LMs. We also set the
decay term −εµmi to zero. Then, for each neuron i,

dmi

dt = µΘihi
(
hi −Θi

)
s(t)− η

∑
j 6=i

µΘjhj
(
hj −Θj

)
s(t) (51)

dΘi

dt = 1
τΘ

((hi)2 −Θi) . (52)

The reduced activity of interneuron i is hi = mi · s(t), where the reduced weights mi = mi− η
∑
j 6=i mj . Hence, hi varies in

time on two separate scales: rapidly with sensory inputs s(t) fluctuating on time scale τb, and gradually as the synaptic weights
mi are learned.

To make analytical progress, we focus on averages over fast background fluctuations, denoted by brackets 〈·〉, while the slow
dynamical variables (M, Θ) remain unchanged. Moreover, we make a quasi-static approximation on the thresholds: we assume
τΘ is slow enough to average over background fluctuations, yet fast enough thatmi remains unchanged over the averaging time
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window (i.e., we neglect correlations between m and Θ). Hence, as in the original IBCM models [43], we assume a perfect
separation between the background, threshold, and synaptic weight time scales: τb � τΘ � 1

µ .

Thus, averaging equation 52, and setting d〈Θi〉
dt = 0, we find

〈Θi〉 = 〈h2
i 〉

and we replace Θi in the m equation 51 with this average. Averaging that equation as well, and setting d〈mi〉
dt = 0, we find the

IBCM fixed point equations:

0 = µ〈Θi〉 〈hi
(
hi − 〈Θi〉

)
s(t)〉 − η

∑
j 6=i

µ〈Θj〉 〈hj
(
hj − 〈Θj〉

)
s(t)〉 i ∈ {1, 2, . . . , NI} . (53)

Defining terms ϕi = µ〈Θi〉 〈hi
(
hi − 〈Θi〉

)
s(t)〉 and combining them in a NI-dimensional vector ϕ, this system of equations

can be written in matrix form
0 = Lϕ

where L is the NI × NI matrix of feedforward inhibitory coupling between interneurons, with 1 on the diagonal and −η
everywhere else. This L is a circulant matrix (each row is a cyclic permutation of the previous row by one element to the right);
hence, except in the pathological cases η = −1 or η = 1

NI−1 (for which some of its eigenvalues are zero), L is invertible and
the unique solution is ϕ = L−10 = 0. Therefore, in general, the fixed points of the IBCM network are found by setting each
ϕi term to zero individually

0 = µ〈Θi〉 〈hi
(
hi − 〈Θi〉

)
s(t)〉 ∀i ∈ {1, 2, . . . , NI} . (54)

Hence, in terms of the reduced synaptic weights mi and activities hi, the fixed point equations for the network of IBCM neurons
decouple to take the same form as that of a single IBCM neuron.

Before proceeding to solve this set of equations, we note that the actual synaptic weights mi can be found from the mi

solutions by inverting the matrix equation
M = LM ⇒M = L−1M

where M contains the reduced mi in its rows. From the eigenvectors and eigenvalues of the circulant matrix L, the inverse
matrix elements are

L−1
ij =

{
(NI−2)η−1

(NI−1)η2+(NI−2)η−1 on the diagonal
−η

(NI−1)η2+(NI−2)η−1 off-diagonal

so the synaptic weights mi can be recovered from the reduced ones, if necessary, as

mi =
[(NI − 2)η − 1]mi − η

∑
k 6=j mk

(NI − 1)η2 + (NI − 2)η − 1 if η 6= 1
NI − 1 or − 1 . (55)

B. IBCM fixed point equations for i.i.d. background concentrations. We will express the solutions to the fixed point
equations in terms of the alignments, or dot products, of the IBCM synaptic weights with the background odors,

hiγ = mi · ŝγ . (56)

and we imply these are averaged over fast background fluctuations (i.e., we really look at 〈mi〉 · ŝγ), The odor vectors ŝγ do
not have to be orthogonal, but we assume they form a linearly independent set. Specifying these dot products is sufficient to
obtain the complete solution, since the IBCM dynamics only update weights in the background subspace of s(t) (eq. 51). The
other directions are reduced to zero by the slow decay term, −δµmi, that we have added to the full dynamics (Methods). For
the rest of this section, we work with reduced variables and drop the overlines on Θi, mi, and hiγ to simplify notation. We also
drop the IBCM neuron index i since the fixed point equations eq. 54 are identical and solved independently for each neuron.

Since we have decoupled the Θ and m fluctuations in Eq. (53), we can divide by the learning rate and write

0 = 〈h(t)2s(t)〉 − 〈Θ〉 〈hs(t)〉

We replace 〈Θ〉 = 〈h2〉, using our quasi-static approximation. We now assume that the odor concentrations hγ(t) are indepen-
dent, identically distributed stationary processes. We write hγ(t) = 〈c〉+ c̃γ(t) where 〈c̃γ〉 = 0. The concentrations have mean
〈c〉, variance 〈c̃2γ〉 = σ2, and third moment 〈c̃3〉 = m3. We also let s(t) = sd +

∑NB
γ=1 cγ(t)̂sγ and h(t) = hd +

∑
γ hγ c̃γ(t),
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C Solution for a zero third moment background processes

where we have defined sd = 〈c〉
∑
γ ŝγ and hd = m · sd. We proceed to compute the averages appearing in the fixed point

equation:

〈h(t)2〉 = 〈(m · s)2〉 =
∑
γ,ρ

〈cγ(t)cρ(t)〉hγhρ = h2
d + σ2u2

〈h(t)s(t)〉 = hd 〈c〉
∑
γ

ŝγ +
∑
γ,ρ

〈c̃γ c̃ρ〉hρŝγ =
∑
γ

(〈c〉hd + σ2hγ )̂sγ

〈h(t)2s(t)〉 = h2
dsd + 2hd

∑
ργ

〈c̃ρc̃γ〉hρŝγ + sd
∑
ρ,γ

hρhγ 〈c̃ρc̃γ〉+
∑
ρ,λ,γ

〈c̃ρc̃λc̃γ〉hρhλŝγ

= h2
dsd + 2hdσ

2
∑
γ

hγ ŝγ + σ2u2sd +m3
∑
γ

h2
γ ŝγ

where we have defined

hd = m · sd = 〈c〉
∑
γ

hγ and u2 =
NB∑
γ=1

h2
γ (57)

Combining and expanding sd = 〈c〉
∑
γ ŝγ , we have

0 =
NB∑
γ=1

[
〈c〉 (h2

d + σ2u2)(1− hd)− σ2hγ(h2
d + σ2u2 − 2hd) +m3h

2
γ

]
ŝγ

Since the ŝγ odors are linearly independent, we have, for each IBCM neuron, a set of NB equations specifying the neuron’s
alignment with each odor, hγ . These are the fixed point equations to solve for the hγs:

0 = 〈c〉 (h2
d + σ2u2)(1− hd)− σ2hγ(h2

d + σ2u2 − 2hd) +m3h
2
γ ∀ γ ∈ {1, 2, . . . , NB} ,∀ neuron (58)

These equations are cubic polynomials in the hγs, since hd = 〈c〉
∑
γ hγ and u2 =

∑
γ h

2
γ . There is always a fixed point at

hγ = 0∀ γ, but it is unstable; trajectories initialized near the origin move away from it during habituation.

C. Solution for a zero third moment background processes. We first examine solutions when m3 = 0, e.g., Gaussian
backgrounds, since the solutions simplify greatly in that case. The equations then have two terms,

0 = 〈c〉 (h2
d + σ2u2)(1− hd)− σ2hγ(h2

d + σ2u2 − 2hd)

which can be made individually zero by setting hd = 1 and σ2u2 = 1. Thus, these fixed points are defined by two constraints,

∑
γ

hγ = 1
〈c〉

(59)

∑
γ

h
2
γ = 1

σ2 (60)

which correspond, geometrically, to the intersection of a hyperplane where coordinates sum to one, and a hypersphere of radius
1/σ2, respectively. All m weights on the resulting (NB − 2)-dimensional surface in the background subspace are non-isolated
fixed points when NB > 2; Fig. S5A shows a three-dimensional background example, with each neuron converging to a point
on the ring defined by these equations. For a two-dimensional background, there can be zero, one, or two isolated fixed points,
while for a one-dimensional background, these equations do not apply.

The fixed point equation for a Gaussian background admits another set of solutions, where the two terms are not individually
zero. Isolating hγ , we find it must have the same value for every odor, hγ = h0. Then, hd = NBh0, u2 = NBh

2
0, and we can

solve to find

hγ = h0 = 〈c〉+ 2σ2/(NB + σ2)
σ2 +NB 〈c〉

∀ γ ∈ {1, 2, . . . , NB} .

For a one-odor background, this solution would be the stable fixed point; for higher dimensions, we find in practice that it is
unstable (see also D.1).
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D. Solution for a general background with non-zero third moment. We return to solving the full fixed point equations,
eq. 58, when m3 6= 0. Now, because of the m3hγ term, setting hd = 1 and u2 = 1/σ2 does not satisfy the equations, so we
must solve for individual hγs. This leads to a finite number of isolated fixed points: as shown in Fig. S5B, the third moment of
the background breaks the degeneracy seen in the Gaussian case.

First, we notice that the dot products hγ of an IBCM neuron can only take at most two different values at steady-state. To
show this, we take the difference between the equation for hγ and some other hα, which gives

0 = m3(hγ + hα)(hγ − hα)− (h2
dσ

2 + σ4u2 − 2hdσ
2)(hγ − hα) .

Either hγ = hα, or if they have different values, then they are related by the constraint

hγ + hα = h2
dσ

2 + σ4u2 − 2hdσ
2

m3
. (61)

Note that constraint 61 is removed for Gaussian backgrounds m3 = 0, explaining the non-isolated fixed points in that special
case. For any pair γ, α, the r.h.s. is the same; if we imagine a third dot product hβ , then hγ + hα = hγ + hβ ⇒ hα = hβ ,
implying that there cannot be a third distinct value. Therefore, either all hγs are equal, or they each take one of two possible
values.

D.1. All hγs are equal. First, consider the case where all hγ = y, a unique dot product value. Then u2 = NBy
2 and hd =

NB 〈c〉 y. Inserting in Eq. (58), we can factor out y2, giving

0 = y2
[
N2

B 〈c〉
3 + 3σ2NB 〈c〉+m3 − y(N3

B 〈c〉
4 + 2σ2N2

B 〈c〉
2 + σ4NB)

]
.

So, either y = 0, which is an unstable fixed point, or

y = N2
B 〈c〉

3 + 3σ2NB 〈c〉+m3

N3
B 〈c〉

4 + 2σ2N2
B 〈c〉

2 + σ4NB
. (62)

We conjecture that this fixed point is always unstable, based on the linear stability analysis of section 4F below. Fig. S3 shows
that in the background process examples we considered, it is a saddle point, approached before the IBCM neuron becomes
selective for a background odor.

D.2. Two different hγ values (general case. Second, consider the case where m has a dot product equal to y1 with k1 odors,
and equal to y2 with the remaining k2 = NB − k1 odors. We let y1 > y2 by convention. The values y1 and y2 will depend on
the repartition k1, k2, but there will be a unique pair y1, y2 for each choice of k1, k2. Moreover, in this case,

hd = 〈c〉 (k1y1 + k2y2) (63)
u2 = k1y

2
1 + k2y

2
2 . (64)

Then, the set of NB equations 58 really reduces to two equations, one for all the hγ = y1 and the other for y2, which are
symmetric under 1↔ 2.

We start from Eq. (61) – the difference between the two values of hγ . We rewrite the equation in terms of y1 and y2 as

0 = h2
d − 2hd + σ2u2 − m3

σ2 (y1 + y2) (65)

by letting one of the hγs be equal to y1 and the other, to y2 . We use this equation to replace, where appropriate, the following
term in the fixed point equation 58,

h2
d + σ2u2 = 2hd + m3

σ2 (y1 + y2)

for, say, hγ = y1 (using y2 would not make a difference), resulting in

0 = σ2u2 − h2
d −

m3

σ2 hd(y1 + y2)− m3

〈c〉
y1y2 (66)

Together, equations 65 and 66 form our system of equations to solve for y1 and y2. Obtaining the latter was the crucial
simplification to make, because it eliminates terms linear or cubic in yi, allowing us to easily isolate y2 in terms of y1 (or
vice-versa)1. Indeed, writing hd and u2 in terms of the yi (equations 63-64), we find it takes the simple, symmetric form

0 = a1y
2
1 − by1y2 + a2y

2
2

1We have managed to reduce the degree from cubic to quadratic because the substitutions eliminated one root y1 = y2 = 0, which was not interesting.
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E Summary of the general fixed point solutions

where

ai = σ2ki − 〈c〉2 k2
i −

m3 〈c〉
σ2 ki (i ∈ {1, 2})

b = 2 〈c〉2 k1k2 + m3 〈c〉
σ2 (k1 + k2) + m3

〈c〉
. (67)

This equation makes clear the symmetry of solutions under exchange of labels 1 ↔ 2, confirming that we can keep only the
roots where y1 > y2, knowing that other roots would be found by exchanging k1 and k2; in other words, the roots y′1, y

′
2 for

k′1 = k2, k′2 = k1, are the solutions for k1, k2 with y2 > y1 (this can be checked explicitly with the solution below). For now,
we write y2 in terms of y1,

y2 =
(
b±
√
b2 − 4a1a2

2a2

)
y1 = α±y1 . (68)

Formally, the numerator should be by1 ±
√
b2 − 4a1a2|y1|, but we can absorb the absolute value into ±, compute the solution

for both α values, and keep the one with y1 > y2 at the end. We now insert y2 = αy1 into Eq. (65); another root y1 = y2 = 0
can be factored out, and we find the non-trivial solution

y1 =
2 〈c〉 (k1 + αk2) + m3

σ2 (1 + α)
〈c〉2 (k1 + αk2)2 + σ2(k1 + α2k2)

. (69)

Equations 67, 68, and 69 form our analytical solution for the (approximate) fixed points of IBCM neurons in terms of the dot
products hγ taking values y1 and y2.

Condition of existence of non-trivial fixed points The fixed points with y1 and y2 given by equations 68-69 will only exist in
R if the discriminant b2 − 4a1a2 in α is non-negative. Writing this discriminant explicitly,

b2 − 4a1a2 = 4σ2 〈c〉2 k1k2

(
NB −

σ2

〈c〉2

)
+ 12m3 〈c〉 k1k2 +m2

3

(
〈c〉2

σ4 (k1 − k2)2 + 1
〈c〉2

+ 2NB

σ2

)
. (70)

In general, this expression will be > 0, unless there is very high variance and low average concentration, σ2 > NB 〈c〉2, and
vanishing third moment m3 → 0. This would be an unnaturalistic setting corresponding to Gaussian, zero-average background
fluctuations.

E. Summary of the general fixed point solutions. The fixed point solution for i.i.d. odor concentrations with mean 〈c〉,
variance σ2, third moment m3, is summarized here. The fixed points of m are characterized by their dot products with the
NB background odors, hγ = m · ŝγ . There are 2NB fixed points in total: one with all hγ = 0, one with all hγs equal to
(subsection D.1)

hγ = N2
B 〈c〉

3 + 3σ2NB 〈c〉+m3

N3
B 〈c〉

4 + 2σ2N2
B 〈c〉

2 + σ4NB
, (62)

and 2NB − 2 where k1 dot products are equal to y1, and k2 = NB − k1 are equal to y2, with
(
NB
k1

)
choices for each possible

k1 ∈ {1, . . . , NB − 1}. The values y1 and y2, where by convention y1 > y2, are calculated as follows:

ai = σ2ki − 〈c〉2 k2
i −

m3 〈c〉
σ2 ki (i ∈ {1, 2})

b = 2 〈c〉2 k1k2 + m3 〈c〉
σ2 (k1 + k2) + m3

〈c〉
(67)

α = b±
√
b2 − 4a1a2

2a2
(68)

Compute solutions for each sign in α

y1 =
2 〈c〉 (k1 + αk2) + m3

σ2 (1 + α)
〈c〉2 (k1 + αk2)2 + σ2(k1 + α2k2)

(69)

y2 = αy1

Keep the pair where y1 > y2

Our linear stability analysis, below, suggests that the stable fixed points of an IBCM neuron have one dot product equal to
y1 and all others equal to y2. This means the neuron becomes selective: it is specifically responding to one background odor.
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There are NB such fixed points. We can therefore call m · ŝγ = y1 ≡ hsp (specific) for that odor, and y2 ≡ hns (non-specific)
for all other odors. We observe close quantitative agreement between these fixed point predictions and numerical simulations in
the weakly non-Gaussian background, Fig. 3C. For log-normal (Fig. S6D-E) and turbulent backgrounds (Fig. 4A-B), we also
observe that IBCM neurons align with individual background odors, but due to stronger correlations between m and Θ, the
exact dot product values do not exactly match equations 67-69.

F. Linear stability analysis of IBCM fixed points. To support our empirical results on IBCM neuron selectivity, we linearize
the dynamical equations 51-52 around a fixed point and compute the Jacobian matrix. Then, we evaluate its eigenvalues, at
least numerically, for every fixed point, and check which fixed points are stable in a number of examples. Here, we perform this
analysis for a single neuron, and assume that weak coupling with other neurons in the network does not fundamentally affect
the stability of single-neuron fixed points. We also assume a constant learning rate µΘ = µ, as would approximately be the
case at steady-state in the Law and Cooper variant used for full simulations. Hence, the dynamical equations are〈

dm
dt

〉
= µ 〈h2sb〉 − µ 〈Θ〉 〈hsb〉〈

dΘ
dt

〉
= 1
τΘ

(
〈h2〉 − 〈Θ〉

)
Computing the Jacobian entries, recalling that h = m · s and thus ∂h

∂mi
= si, we find

∂

∂mi

〈
dmj

dt

〉
= 2µ 〈hsisj〉 − µΘ 〈sisj〉

∂

∂Θ

〈
dmj

dt

〉
= −µ 〈hsj〉

∂

∂mi

〈
dΘ
dt

〉
= 2
τΘ
〈hsi〉

∂

∂Θ

〈
dΘ
dt

〉
= − 1

τΘ
.

These derivatives form the different blocks of the Jacobian matrix, which is, in vector notation,

Df(m,Θ) =


2µ 〈hsbsᵀb〉 2

τΘ
〈hsb〉

−µΘ 〈sbsᵀb〉

−µ 〈hsᵀb〉 − 1
τΘ

 . (71)

This expression is general. Now, computing more explicitly the expectation values for i.i.d. concentrations as in previous
subsections,

〈hsb〉 = hdsd + σ2
∑
γ

hγ ŝγ

〈sbsᵀb〉 = sdsᵀd + σ2
∑
γ

ŝγ ŝᵀγ

〈hsbsᵀb〉 = hd 〈sbsᵀb〉+ σ2
∑
γ

hγ(sdŝᵀγ + ŝγsᵀd) + 2m3
∑
γ

hγ ŝγ ŝᵀγ

The last two lines, along with Θ = h2
d + σ2u2, means that the main block of the matrix is

2µ 〈hsbsᵀb〉 − µΘ 〈sbsᵀb〉 = µ

[
(2hd − h2

d − σ2u2)(sdsᵀd + σ2
∑
γ

ŝγ ŝᵀγ) + 2m3
∑
γ

hγ ŝγ ŝᵀγ + 2σ2
∑
γ

hγ(sdŝᵀγ + ŝγsᵀd)
]

We have defined here sd = 〈c〉
∑
γ ŝγ . We see that these moments depend on the specific odor components ŝγ , making an

analytical calculation of eigenvalues hard in general. However, these expressions can be evaluated easily at the analytical fixed
points in several examples to check the stability in these cases; we show the eigenvalues for weakly non-Gaussian, log-normal,
and turbulent background statistics in Fig. S3. In all these examples, we find that the only stable fixed points are those where
the neuron has one dot product hγ = hsp (specific) and the NB − 1 others are equal to hns (non-specific). This property is
robust against OSN noise, as shown in Fig. S8. In that case, the IBCM and BioPCA models still perform habituation to the
true background subspace and new odor recognition, until the OSN noise becomes comparable in magnitude with odor signals
(Fig. S8H).
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G Analytical W weights with IBCM neurons

G. Analytical W weights with IBCM neurons. We can also derive an analytical expression for the average, steady-state
values of the inhibitory weights W when the projection weights M converge to the IBCM fixed point derived above. We
assume there is at least one neuron per odor, NI ≥ NB. We call γj the background odor to which IBCM neuron j is specific;
thus, mj · ŝγ = hsp if γ = γj , hns otherwise. There will be in general some number nγ of neurons specific to odor γ.

We start by working on the W equation in matrix form,

dW
dt = αy(t)h(t)ᵀ − βW . (72)

We define the (constant) matrix Γ, whose columns are the ŝγ , and c the vector of odor concentrations. Then, sb(t) = Γc. We
also define the matrix H = LMΓ, in which row j gives the alignment of IBCM neuron j with each odor, hjγ . Since each
neuron is selective for one odor, each row contains hsp once and hns NB − 1 times. Averaging the W equation over fast c
fluctuations, and neglecting correlations between c, W , and H , we have〈

dW
dt

〉
= α(Γ− 〈W 〉 〈H〉) 〈ccᵀ〉 〈H〉ᵀ − β 〈W 〉 .

Average signs on W and H are implied below. We define N = 〈ccᵀ〉 and evaluate it for i.i.d. odors,

N = 〈ccᵀ〉 = 〈c〉2ONB + σ2INB , (73)

where I is the NB ×NB identity matrix and ONB is a NB ×NB matrix filled with ones. We now set dW/dt = 0 and focus on
single columns of the equation, with the notation wj for column j of W , and hj for column j of Hᵀ (hᵀ

j is the row j of H).
The set of equations to solve for the wj is then

β

α
wj +WHNhj = ΓNhj (74)

We notice here that all IBCM neurons with the same specificity γj will have the same hj , thus all columns wj with the same
γj will be identical, and we can denote them by wγj . This allows to rewrite sums over columns as sums over components, for
instance

∑
j wj =

∑
γ nγwγ . We moreover notice that

hᵀ
khj =

{
h2

sp + (NB − 1)h2
ns = u2 if γj = γk

2hsphns + (NB − 2)h2
ns = hns(hd/ 〈c〉+ hsp − hns) else (75)

and that

hᵀ
kONBhj = hᵀ

kv(hsp + (NB − 1)hns) = (hsp + (NB − 1)hns)2 = h
2
d

〈c〉2
(76)

where we defined v, a vector filled with ones, and recognized hd = 〈c〉
∑
γ m · ŝγ = 〈c〉2 (hsp + (NB − 1)hns) for all neurons

specific to one odor. We also need to compute

Nhj = σ2hj + 〈c〉2 (hsp + (NB − 1)hns)v = σ2hj + 〈c〉hdv

where we used Eq. (73). We use the above results to evaluate the two terms involving N in Eq. (74). With some algebra to
combine coefficients efficiently, we find

WHNhj = σ2(hsp − hns)2nγjwγj +A
∑
γ

nγwγ (77)

ΓNhj = σ2(hsp − hns)̂sγj +
(
σ2

〈c〉
hns + hd

)
sd (78)

where we have used the average background expression, sd = 〈c〉
∑
γ ŝγ , and defined a coefficient independent of j,

A = h
2
d + σ2

〈c〉
hdhns + σ2hns(hsp − hns) . (79)

We now insert Eq. (77) and Eq. (78) into the equation Eq. (74) for wj (or equivalently, wγj ), to find

Bγjwj +A
∑
γ

nγwγ = σ2(hsp − hns)̂sγj +
(
σ2

〈c〉
hns + hd

)
sd (80)
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where we have defined another coefficient, different for each j in general, unless all nγj are equal,

Bγj = β

α
+ nγjσ

2(hsp − hns)2 . (81)

Now, to solve Eq. (80) for wγj , we look at the difference between the equations for columns j and k, with γk 6= γj ; this
eliminates common terms and allows us to isolate wγk in terms of wγj and the known vectors ŝγ only:

Bγjwγj −Bγkwγk = σ2(hsp − hns)(̂sγj − ŝγk)

⇒ wγk =
Bγj
Bγk

wγj + σ2(hsp − hns)
Bγk

(̂sγk − ŝγj ).

Doing this for each γk 6= γj , and noticing the expression reduces to wγj for γ = γj , we express
∑
γ nγwγ in terms of wγj

only, and insert into eq. Eq. (80) to isolate wγj . Dividing the result by Bγj
(

1 +A
∑
γ
nγ
Bγ

)
, and rearranging with further

algebra gives our final expression for columns of the matrix W ,

wγj = σ2(hsp − hns)
Bγj

ŝγj +
hd + σ2

〈c〉hns

Bγj (1 +AK)sd −
Aσ2(hsp − hns)
Bγj (1 +AK)

∑
γ

nγ
Bγ

ŝγ , (82)

where we have defined K =
∑
ρ
nρ
Bρ

. These are the analytical expressions that we compare to numerical simulations of the W
weights in Figures 3D (weakly non-Gaussian) and S6F (log-normal), reaching close agreement at steady-state. For backgrounds
with slower, stronger fluctuations where the correlations between M , W , and s(t) are not entirely negligible (e.g., turbulent
statistics), the agreement would be less accurate. The numbers of neurons selecting each odor, nγj , are inferred from the M
weights numerical results, then used to evaluate Eq. (82).

Unfortunately, the expression for the instantaneous y(t) = s(t) − WLMs(t) with steady-state M , M weights is quite
cumbersome in general, due to the Bγ . However, we find a more compact expression for the average PN response: after
simplifying some terms,

〈y〉 = 〈c〉
∑
γ

ŝγ
Bγ

1
1 +AK

(
β

α
− σ2hns(hsp − hns)(nγNB −KBγ)

)
. (83)

The factor nγNB − KBγ is zero when all nγs are equal; hence, the second term represents the bias incurred by having an
uneven distribution of IBCM neurons across odor components. The threshold n∗ at which nγNB − KBγ = 0 for some nγ
is n∗ = β/αK

NB−Kσ2(hsp−hns)2 ; since we can show (using a Lagrange multiplier to enforce
∑
ρ nρ = nI ) that K is maximized

by having a uniform distribution nγ = nI/NB, the threshold n∗ < nI/NB; hence, all components which have nγ > nI/NB
surely have a positive factor (nγNB −KBγ), and since hns < 0 in general, they have a negative bias in eq. Eq. (83), i.e. they
are suppressed less than other background odor components. Conversely, if some nγ = 0 (no neuron specific to that odor), then
this odor is still partly subtracted, due to the non-specific response of other neurons, hns < 0, but at the cost of less efficient
inhibition of all other odors, and without overall reduction of fluctuations since the factor β/αBγ = 1 if nγ = 0.

When all nγs are equal, the mean PN response to the background, Eq. (83), is minimized for the IBCM network, and it
reduces to a simple expression,

〈y〉 = β/α

B +NBA
sd (84)

where, recall, A is given by Eq. (79), B by Eq. (81) with all nγ equal, and sd = 〈c〉
∑
γ ŝγ is the average background. We

will use this simplified expression of the maximal habituation by IBCM neurons determine the Λ factor needed to match the
BioPCA and IBCM performances (section 8B).

5. Analytical fixed point solutions of the BioPCA model

We assume that the average background 〈s〉 = sd = 〈c〉
∑NB
γ=1 ŝγ is subtracted from s, from the input to the BioPCA inhibitory

neurons, and from y; hence, the effective background to consider here is s̃ =
∑NB
γ=1 c̃γ ŝγ , with 〈c̃γ〉 = 0 and 〈c̃2γ〉 = σ2 for all

components γ. The LN activity is h(t) = LM s̃(t) and the PN response is y(t) = s̃(t)−Wh(t). The covariance matrix, from
which a PCA with NB components can be computed, is

C = 〈̃ss̃ᵀ〉 = σ2
∑
γ

ŝγ ŝᵀγ = UDUᵀ ,
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G Analytical W weights with IBCM neurons

where U is Ns × NB, with its columns containing the NB principal component vectors with non-zero eigenvalue, and D is
NB×NB and diagonal with the principal values in it, σ2

i , i ∈ {1, 2, . . . , NB}. Since the ŝγ are not orthogonal in general, these
eigenvalues are not all equal to the variance σ2, but should be on the same scale.

Given a background, U and D are known; we can thus express the steady-state solution of the BioPCA model in terms of
these PCA matrices. From Lemma 3 in Minden et al., 2018 [47], we expect the BioPCA model with NI = NB neurons (one
per background component) to have the following stationary solution:

L′ = D (principal values) (85)
LM = ΛUᵀ (projection on principal components) (86)

where, recall, L′ = L−1. The input projections give interneuron activities of

h(t) = LM s̃(t) = ΛUᵀs̃(t) .

We insert the BioPCA stationary solution into the W equation 72, where we average over fast s̃ fluctuations, assuming a
separation of time scales between these fluctuations and slow M , L, W learning, as in the IBCM case. Writing the W equation
in matrix form, this leads to

dW
dt = α 〈y(t)hᵀ(t)〉 − βW

= α(I−WΛUᵀ) 〈̃ss̃ᵀ〉UΛᵀ − βW

Setting the W derivative to zero, we can rearrange to isolate W ,

W (βI/α+ ΛDΛᵀ) = UDΛᵀ .

Since D åand Λ are both diagonal, the matrix in parentheses on the left-hand side is diagonal with entries β/α + Λ2
iiσ

2
i . It is

full-rank when NI ≤ NB, so we can invert the equation explicitly. Since DΛᵀ is also diagonal, we find

W = Udiag
(

Λiiσ2
i

β/α+ Λ2
iiσ

2
i

)
. (87)

Inserting this W back in the expression for the PN response, y(t) = s̃−Wh, we find

y = s̃−WΛUᵀs̃ = Udiag
(

β/α

β/α+ Λ2
iiσi

2

)
Uᵀs̃ (88)

where we have used the fact that UUᵀ is a projector on the background subspace to write s̃ = UUᵀs̃, and where
Λii = ΛPCA(1 − λr(i + 1)/NB) for i = 0, 1, . . . , NI. Hence, we see that the BioPCA network projects the inputs on the
principal directions (Uᵀs̃), reduces the amplitude of each component by a factor β/α

β/α+Λ2
ii
σi2

, then reassembles these compo-
nents (leftmost U ). Comparing to equation 84 for the IBCM model, the latter has a better reduction by a factor of approximately
(hsp − hns)2 in the denominator, hence we need to increase the Λ scale in the BioPCA network to match the performance of
these models, as explained in section 8B. We check some of these predictions against numerical simulations in a background
with log-normal (Fig. S6B-C) and turbulent (Fig. 4C-D) concentration statistics. We also check that these properties are rela-
tively robust against OSN noise (Fig. S8); the first NB neurons still capture odor directions corresponding to real odors, while
additional neurons align with orthogonal OSN noise components (which are part of the full background PCA decomposition).

6. Analytical results for a two-odor simplified background process
To gain further analytical insight into the convergence dynamics of IBCM neurons in particular, we study the simplest non-
trivial background, illustrated in Fig. S4A-B. It consists of two odors (sa, sb) with fluctuating proportion ν(t) following a
Ornstein-Uhlenbeck process (section 2B),

s(t) =
(

1
2 + ν(t)

)
sa +

(
1
2 − ν(t)

)
sb . (89)

We start by calculating the average fixed points of the IBCM neurons synaptic weights, mi. The fixed point equations 54
are identical for all neurons, so we focus on one neuron and omit index i. As in section 4, we assume that time scales are well
separated, replace Θ = 〈h2〉, and neglect correlations between ν, Θ, and m. We work with reduced weights and activities hi,
averaged over fast fluctuations, so overlines and 〈 〉 are implied for the rest of the section. Individual neurons’ weights m can be
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recovered from equation Eq. (55). Moreover, for this simple background, the learning rate can be chosen constant, µ〈Θi〉 = µ.
Hence, the fixed point equation to solve here is

0 = µ 〈h2s(t)〉 − 〈Θ〉 〈hs(t)〉

Now, we rewrite
s(t) = sd + ν(t)ss ,

where we have defined sd = 1
2 (sa + sb) (deterministic part) and ss = sa − sb (stochastic part). We examine the dot products

of synaptic weights with these components, hd = m · sd and hs = m · ss, such that h(t) = hd + ν(t)hs. We can solve for the
two dot products hd and hs because they specify the fixed points completely for NB = 2 background components. In term of
these quantities, the fixed point equation becomes

0 = 〈(hd + νhs)2(sd + νss)〉 − 〈(hd + νhs)2〉 〈(hd + νhs)(sd + νss)〉
0 = (h2

d + σ2h2
s − h3

d − hdh
2
sσ

2)sd + (2hshd − h2
dhs − σ2h3

s )σ2ss

Since sd and ss are linearly independent, both coefficients must be zero, leading to a system of two equations for hd and hs,

0 = h3
d − h2

d − σ2h2
s + hdh

2
sσ

2

0 = σ2hs(h2
d + σ2h2

s − 2hd) .

There is a trivial solution hs = hd = 0, which is unstable. The other solutions are, by inspection,

hd = m · sd = 1 and hs = m · ss = ± 1
σ
,

or, in terms of the dot products with sa and sb,

m± · sa = 1± 1
2σ and 1∓ 1

2σ .

Hence, we have two different stable fixed points, which we call m+ and m− to indicate which sign the dot product with
ss takes. Figure S4C shows the convergence of a two-neuron network to these fixed points. To interpret these expressions,
consider the response at the fixed point to some input sample s(t):

h±(t) = m± · (ss + ν(t)sd) = 1± ν(t)
σ

(90)

We notice that h± = 0 when ν = ∓σ, that is, the IBCM neuron is non-responsive to an odor component one standard deviation
away on one side of the average background, while it responds strongly to odors on the other side of the average. Hence, in this
simplified background, the specificity property of IBCM neurons translates into selecting inputs one standard deviation away
from the average.

A. Analytical results: PN inhibition. From the steady-state solution for m, we can also compute the steady-state inhibitory
weights w. We assume there are NI = 2 neurons, one at each fixed point ±.

Averaging the W equation 72 over background fluctuations, writing out y = s −WLMs, and focusing on the column for
one neuron j, we have

d 〈wj〉
dt = α 〈hj(s−WLMs)〉 − β 〈wj〉 ∀j . (91)

To solve for wj , we set the derivative to zero, and we assume there are NI = 2 IBCM neurons, one at each fixed point ±. We
still assume a separation of time scales, and assume the m are equal to their average fixed point values, so at any time t, the
IBCM neuron activity h(t) is given by Eq. (90). We assume the two neurons converge to fixed points + and −, respectively.
We thus establish equations to solve for the wj weights fixed point values, w+ and w−. We have

dw±
dt = 0 = α

〈(
1± ν(t)

σ

)[
sd + ν(t)ss −w+

(
1 + ν(t)

σ

)
−w−

(
1− ν(t)

σ

)]〉
− βw± .

Solving for w+ and w−, we find answers summarized as

w± = α

2α+ β
(sd ± σss) (92)
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B Analytical results: convergence time

Hence, each IBCM neuron inhibits the off-average component for which it is selective, s(ν = ±σ). Combining the two IBCM
neurons, the instantaneous PN activity is reduced to

s(t) = sd + ν(t)ss − h+w+ − h−w−

= sd −
α

2α+ β

(
1 + ν

σ

)
(sd + σss)−

α

2α+ β

(
1− ν

σ

)
(sd − σss)

= β/α

2 + β/α
s(t) . (93)

Figure S4F-G show close agreement at steady-state between numerical simulations and equations 93 and 92. Hence, by learning
NB = 2 linearly independent components w± that are one standard deviation away from the average background, the network
is able to suppress any s(t) from that background, in real time, to a fraction β

2α+β of its original amplitude. Therefore, not
only the average, but also the variance of the background is reduced: background fluctuations are actively suppressed by the
IBCM-inhibitory neuron pairs. However, new odors would not be suppressed in the same way, because they have a component
orthogonal to the vector space of learnt background.

B. Analytical results: convergence time. The convergence time of the m weights of an IBCM neuron can be estimated
analytically in the two-odor simplified background; this analysis reveals the main parameters influencing how long it takes to
habituate to a fluctuating background. Numerically, we observe that with the α, β rates chosen,W weights converge at a similar
pace.

We again make a quasi-static approximation on the threshold Θ, assuming it averages over the fast background fluctuations
but also converges fast enough to track the slow variations of m,

Θ = 〈(m · sd + νm · ss)2〉 = h2
d + σ2h2

s

where we made use of 〈ν〉 = 0 and h(t) = hd + ν(t)hs. Then, we derive dynamical equations for the slow variables hd and
hd, by taking the dot product of dm

dt with ss and sd, averaging over fast time scales of ν(t), and using the quasi-static Θ above.
To simplify calculations, we assume that the two odor vectors, sa and sb, have the same norm (like the ŝγ in the general case
are unit normed); in this case, the vectors sd and ss are orthogonal. Making use of these properties, we calculate for instance,
for hd,

dhd

dt =
〈dm

dt · sd

〉
= µ 〈(hd + νhs)(hd + νhs −Θ)〉 s2

d

= µ
(
h2

d + σ2h2
s − hd

(
h2

d + σ2h2
s
))

s2
d

= µs2
d(1− hd)

(
h2

d + σ2h2
s
)
. (94)

By a similar calculation, we find for hs

dhs

dt = µσ2s2
shs
(
2hd −

(
h2

d + σ2h2
s
))

. (95)

From equations Eq. (94) and Eq. (95), we can conclude there will be two phases to the dynamics if the initial values of
hs(0) = εs and hd(0) = εd are small, and σ2 is small also. The only positive term in dhs

dt contains hd; hence, as long as hd is
small, hs will remain close to zero. The first phase therefore consists in the growth of hd to its steady-state value of 1, while hs
remains approximately equal to its initial value, εs. We call td its duration. After hd has converged, the second phase consists
in the growth of hs. We call ts the duration of that phase. Hence, hs reaches steady-state after a total time of td + ts.

We compute td (first phase duration) by integrating equation Eq. (94) from 0 to some fraction ξ (close to unity; we use
ξ = 0.9 in practice) of the steady-state hd = 1, with the assumption that h2

s is approximately constant and sub-dominant in that
phase, i.e. h2

s ≈ ε2s ≈ 0. We find ∫ ξ

εd

dhd

h2
d(1− hd) =

∫ td

0
µs2

ddt

⇒ td = 1
µs2

d

[
1
εd
− 1
ξ

+ ln
(
ξ(1− εd)
εd(1− ξ)

)]
(96)

where s2
d = ‖sd‖2.

Then, once hd ≈ 1, the second phase starts. We neglect sub-dominant terms and we integrate from td (time at which hd ≈ 1
but hs ≈ εs still) to td + ts. We integrate hs from εs to ±ξ/σ: depending on the sign of the initial value εs, the system goes to
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either fixed point ±1/σ (same sign as the initial value). Hence,

dhs

dt ≈ µs2
sσ

2hs

⇒
∫ ±ξ/σ
εs

dhs

hs
= µs2

sσ
2hs

∫ ts+td

td

dt

⇒ ts = 1
µs2

sσ
2 ln

∣∣∣∣ ξσεs
∣∣∣∣ . (97)

Fig. S4D and E show that the approximations Eq. (96) and Eq. (97) hold well in a range of initial values εs between 0.005
and 0.05, and εd between 0.01 and 0.1. Importantly, these analytical expressions show that convergence time is faster if initial
conditions are larger (note inverse ε terms) and the noise σ2 is larger. It means that initial conditions must be chosen to avoid
very small dot products with inputs initially. Then, larger background fluctuations trigger faster convergence too, at least in this
simple background model. This is a surprising property of the IBCM model: fluctuations drive the dynamics.

C. BioPCA neuron on the two-odor simplified background. We also characterized the behavior of the BioPCA model
in this simplified background. Since the background effectively has one principal direction, ss (Fig. S7A), a single BioPCA
neuron is needed to capture it. Then, the matrixM is only a row vector mᵀ and the matrix L is only a scalar `, so L′ = `′ = 1/`.
Likewise, W is a column vector w and the matrix Λ is just the scalar parameter Λ. Since we assume BioPCA receives the input
with the average subtracted, the background we consider is s̃ = ν(t)ss. We illustrate how to solve the BioPCA steady-state
equations in this simple case. With h = ν(t)mᵀss/`

′, the dynamical equations simplify to

1
µM

dmᵀ

dt = (ν(t)mᵀss/`
′)ν(t)sᵀs −mᵀ

1
µL

d`′

dt = ν(t)mᵀss/`
′)2 − Λ2`′

Averaging over ν(t) and setting the derivatives equal to zero, we have two fixed point equations,

0 = σ2hs/`
′ss −m

0 = σ2h2
s/`
′2 − Λ2`′

where we have defined hs = mᵀss. The first equation shows that m is parallel to the first principal component: m =
‖m‖ss/‖ss‖. To find its magnitude, we take the dot product of that equation with ss, which allows to factor out hs and solve
for `′. We find that `′ does converge to the first principal eigenvalue, which is σ2‖ss‖2 in this simplified background,

L11 = 1/L′11 = 1
σ2‖ss‖2

. (98)

From the second equation, we then find hs = Λσ2‖ss‖3, which means that m has a norm ‖m‖ = Λσ2‖ss‖2. Hence, we have
m parallel to the first principal component,

m = σ2‖ss‖ss . (99)

Also, the instantaneous response of this neuron to s̃ is h(t) = `m · s̃(t) = Λ‖ss‖ν(t). Inserting these expressions in the w
equation for this single neuron,

dw
dt = α(Λ‖ss‖ν(t))(ν(t)ss −w(Λ‖ss‖ν(t)))− βw .

Averaging over ν(t) and solving for w, we find that it is also a vector parallel to ss,

w = σ2Λ‖ss‖
σ2‖ss‖2Λ2 + β/α

ss . (100)

Lastly, computing the PN instantaneous activity once the BioPCA neuron has reached its learning fixed point, we find

y(t) = s̃(t)−WLM s̃(t) = β/α

β/α+ σ2Λ2‖ss‖2
ν(t)ss . (101)

Fig. S7 shows that these analytical predictions for m, L, w, and y(t) match numerical simulations very well. Hence, by
learning the direction of fluctuations along the first principal component, the BioPCA neuron reduces the mean and standard
deviation of fluctuations by a factor β/α

β/α+σ2Λ2‖ss‖2 , to be compared with the reduction achieved by the IBCM network, in
equation 93.
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A Introducing a scale factor Λ in the IBCM model

7. Testing different L-norms for the W Hebbian learning rule
The Hebbian learning rule for W used in the main text (derived in Methods) causes our proposed models to subtract the entire
component of the input lying in the background subspace. It gives them a sub-optimal performance, limited to the similarity
between the new odor and its orthogonal component (Figures 5, S10). To start exploring alternative W rules that could better
exploit the odor-specific projections learnt by IBCM neurons, we considered the effect of using different Lp-norms in the cost
function from which theW dynamics are derived. We write a cost function forW weights based on the Lp-norm of PN activity
and the entry-wise Lq-norm of W (generalization of the Frobenius norm, which corresponds to q = 2), defined as

‖y‖p =
(
NS∑
i=1
|yi|p

)1/p

‖W‖q =

 NS∑
i=1

NI∑
j=1
‖Wij‖q

1/q

.

In the cost function, we square terms to preserve direct comparisons with the default L2-norm cost function:

LW = 1
2‖y‖

2
p + β

2α‖W‖
2
q .

Taking gradient descent dynamics on this loss function gives a generalized Hebbian learning rule,

dWij

dt = α‖y‖2−pp |yi|p−1sgn(yi)hj − β‖W‖2−qq |Wij |q−1sgn(Wij) . (102)

Notice that it reduces to the main text rule when p = q = 2. We performed numerical experiments of habituation and new
odor recognition, analogous to Fig. 2, for various p, q choices in this generalized Hebbian rule. For each (p, q) choice, we
optimized the performance with a grid search over a few α and β learning rate values, centered on relevant windows (e.g., a
smaller p requires a smaller α to prevent numerical instabilities). Unfortunately, different p, q choices did not fundamentally
alter the model performance for habituation (Fig. S9A-C) or new odor recognition (Fig. S9D-F); in fact, the default L2-norm
provided the best results. Hence, more strongly nonlinear versions of manifold learning, such as online manifold tiling [57], or
learning rules with positive feedbacks to learn the optimal matrix P of section 1, would be needed to further improve new odor
recognition performance.

8. Projection weights scale factor, Λ
As explained in Methods, we defined a parameter Λ controlling the scale of M weights and compensating for the regularization
on W . Here, we explain how to introduce Λ in the IBCM model, and how to set this parameter to make BioPCA and IBCM
perform equivalently.

A. Introducing a scale factor Λ in the IBCM model. We start with the equations for a single neuron. We seek to introduce
Λ where appropriate in the equations to maintain the exact same dynamics, only with the numerical values of m weights
(including their initial values) scaled by some factor Λ. By definition, as we scale m ∼ Λ, then h = m · s ∼ Λ as well. The
IBCM equation contains terms of the form h − Θ, with Θ ∼ h2; to keep these terms matched, we need Θ ∼ Λ, which we
achieve by letting Θ→ h2/Λ. Hence, we start by modifying the threshold equation to

dΘ
dt = 1

τΘ
(h2/Λ−Θ) . (103)

We do not need to rescale the learning rate here, because both sides have a homogeneous scaling ∼ Λ. However, in the m
equation, we need to rescale the learning rate to preserve the dynamics, because the right-hand side has terms ∼ h2. To keep
both sides scaling as dm

dt ∼ Λ, we modify the m equation to

dm
dt = µΘ

Λ h(h−Θ)s(t)− εµΘ

Λ m, . (104)

Moreover, since the scale of Θ ∼ Λ, we need to rescale it in the Θ-dependent learning rate (from our variant of the Law and
Cooper version of IBCM),

µΘ = µ0

Θ/Λ + kΘ
. (105)
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The generalization to a network of IBCM neurons is straightforward, since Λ is a unique scale parameter for all neurons. Each
Θi equation has the rescaled term h

2
i /Λ as in 103. All terms in neuron i’s mi equation, including those from coupling with

other neurons j, have their learning rates µΘj divided by Λ, as in 104. Also, Θi is divided by Λ in the denominator of each
learning rate µΘj as in eq. 105.

These are the IBCM equations we use for general Λ values. In Fig. S11, we characterize the performance of the network
for habituation and new odor recognition as as function of the scale Λ, and we observe that ΛIBCM = 1 is large enough to
maximize the performance.

B. Scaling the BioPCA model for performance equivalent to IBCM. As explained in Methods, the scale Λ is already
built into the BioPCA model, in the matrix Λ intervening in the L equation. ΛPCA is set to 1 by default [47], but this leads to
a smaller M weights magnitude than by default in the IBCM model. For this reason, Fig. S11 shows that the BioPCA model
requires a ΛPCA > 1 to achieve the same performance.

For other simulations where we compare the two models, we use our analytical results on the IBCM and BioPCA models to
estimate beforehand what ΛPCA value should yield a comparable performance from both models. As derived in Eq. (84), the
PN response is reduced, in an IBCM network, by a factor

fIBCM = β/α

β/α+ σ2(hsp − hns)2Λ2
IBCM +NB

(
h

2
d + σ2hdhns/ 〈c〉+ σ2hns(hsp − hns)

)
Λ2

IBCM

where we have explicited how ΛIBCM controls this factor by multiplying the default-scale LN activities, hsp, hns, hd – recall
that these are the specific, non-specific, and average alignments of the IBCM fixed points, derived in section 4.

In comparison, Eq. (88) shows that the PN activity in a BioPCA network is reduced along each principal direction by a factor
of approximately

fPCA = β/α

β/α+ σ2Λ2
PCA

.

We set ΛPCA to make these two factors equal, which occurs at

fIBCM = fPCA ⇒ ΛPCA = β

ασ2
1− fIBCM

fIBCM
. (106)

So, to set up parameters for a numerical simulation, we compute the statistics of the chosen background (〈c〉, σ2, m3), the
analytical predictions for the IBCM fixed points (hsp, hns, hd), and we set ΛPCA to these parameter values inserted in Eq. (106).
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B Scaling the BioPCA model for performance equivalent to IBCM
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Fig. S1. Comparing manifold learning and predictive filtering. Supplement to Fig. 1E. (A) Minimized loss function for new odor recognition in a simple background
(Ornstein-Uhlenbeck), for the combined strategies (purple) and either single strategy (blue, red), as a function of the autocorrelation time τ , for fixed olfactory space
dimensionality. The combined strategy is always better, but manifold learning explains essentially all the loss reduction at low autocorrelation times (LP,v ≈ LP ). (B)
Same, as a function of the scaled olfactory space dimension, ÑS = NSσ

2/σ2
new, for fixed autocorrelation time τ = 50 steps. Most of the loss reduction comes from one

strategy or the other on either side of the crossover region; manifold learning dominates in high dimensions. (C) Autocorrelation function of the concentration fluctuations in
the turbulent background of Fig. 1B-C, showing an autocorrelation time of∼ 1.7 s.
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Fig. S2. New odor recognition compared to background recognition after habituation. Supplement to Fig. 2. (A) Histograms of the Jaccard similarity between the
response to the mixture (background and new odor) and the most similar background odor, across all repeats (new odors, background samples, etc.) described in Fig. 2A,
for two tested new odor concentrations. Low similarity is better: it means that background odors are suppressed and do not dominate the response to the new odor, due
to habituation. In the absence of habituation, the similarity to background odors remains high. (B) Scatter plots of the similarity to the new odor (y axis, larger is better)
versus the similarity to the background (x axis). Manifold learning models are generally above the diagonal, meaning their response is more similar to the new odor than to
the background, while habituation by average subtraction (as well as no habituation) produce responses still dominated by the background fluctuations (below diagonal). (C)
Jaccard similarity between zmix and znew plotted as a function of the magnitude of the new odor component orthogonal to the background (or equivalently, of the distance
between the background odors and the new odor), in each trial. For all models, the performance improves as the new odor is less similar to the background. (D) For the
IBCM model, improvement in Jaccard similarity compared to no habituation (JIBCM − JNone). Habituation by manifold learning almost always (> 95 % of trials) provides
an improvement, except for rare background samples (< 5 %) where background odors are all in blanks or in very dilute whiffs (then the new odor, by chance, is not masked
by the background). In (B), (C), and (D), each point is the median across test times and background samples in each individual background simulation (of which there are
100 repeats).
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Fig. S3. Selective states are the only stable fixed points in the IBCM model. Eigenvalue with the largest negative real part in the Jacobian matrix obtained in the linear
stability analysis of the IBCM model (section 4F), evaluated for each possible fixed point in (A) the weakly non-Gaussian background of Fig. 3, (B) the log-normal background
of Fig. S6, and (C) the turbulent background of Figs. 1B-C, 2, 5. The Jacobian matrix derived in eq. 71 is diagonalized numerically for each possible choice of specific and
non-specific odors. In the three background examples considered, the only stable fixed points, i.e., fixed points where even the largest eigenvalue has a negative real part, are
those where the neuron is specific to only one odor, i.e., selective states. The saddle points where the neuron is equally sensitive to all odors, in red, have some eigenvalues
with positive real parts (largest is shown), and some with negative real parts.
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Fig. S4. IBCM model learning dynamics on a simplified background model. (A) Schematic of the simplified background model described in section 6: a 1D manifold
generated by two odors sa, sb with fluctuating proportion ν(t) following a Ornstein-Uhlenbeck process with 〈ν〉 = 0, σ2 = 0.09, autocorrelation time τb = 20 ms. The
deterministic part is sd = 1

2 (sa + sb) and the stochastic part, ss = sa − sb. The two odors are randomly sampled from the default distribution (exponential iid elements,
then normalized). (B) Time series and stationary distribution of the ratio of odors a and b. (C) Alignment of the two IBCM neurons with the background odors. One neuron
becomes specific to sa, the other, to sb. The average dot products at steady-state match the analytical fixed points calculated in 90, h± = 1 ± 1/(2σ). (D) Analysis of
the two-phase dynamics of an IBCM neuron. Left: visualized in terms of the alignments (dot products) with odors a and b, m first reaches a saddle point, then one of the
two selective stable fixed points, respectively at times td (eq. 96) and ts closely matching their analytical values (equations 97 and 96). Right: visualized in terms of the
alignments hd and hs with the deterministic and stochastic components, sd and ss, the saddle at time td corresponds to the time at which the deterministic part hd reaches
its fixed point average value 1, and the final steady-state, when the stochastic part reach its fixed point value ±1/σ. (E) Scaling of the convergence times td (left) and ts
(right) as a function of the initial dot product magnitudes, εd and εs. The numerical simulations match the analytical expressions, valid for small εs. (F) Time series of the
inhibitory weights (elements of W ), following the Hebbian dynamics of eq. 91, for the two neurons in the network (weights of LN j are in column j of W ). The steady-state
values match closely the analytical values derived in eq. 92. (G) Reduction in PN activity after habituation, compared to the background norm. The steady-state reduction
matches the analytical prediction (eq. 93) and is reached once the two neurons select one odor each.
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Fig. S5. IBCM learning depends on higher-oder moments of the background distribution. (A) Three-odor background with Gaussian concentration fluctuations: each
odor has cγ = gγ where gγ follows a Ornstein-Uhlenbeck process (with 〈g〉 = 1/

√
NB, σ2

c = 0.09, correlation time τ = 20 ms). Left: when the third moment is
zero, synaptic weights mi = mi − η

∑
j 6=i

mj have non-isolated fixed points on the codimension-two ring defined by constraints Eq. (59) (hyperplane) and Eq. (60)

(hypersphere). The figure is showing the first three dimensions. Center: All neurons converge to these constraints. Right: alignments with individual odors can take a
continuous range of values and do not split into specific and non-specific odors for each neuron. (B) Same as (A), but with a small non-zero third moment added to the
background concentrations statistics, by taking c = g + εg2 for ε = 0.2, leading to 〈(c− 〈c〉)3〉 ≈ 0.01. Left: the fixed points become isolated, individual neurons first
converge to the codimension-two ring of the Gaussian case, then slowly approach one of three selective fixed points near that ring (driven by the small third moment). Center:
for each neurons, the sums of hγs and h

2
γs have similar values to the Gaussian case, perturbed by the small third moment. Right: alignments converging to selective fixed

points with dot product values hsp (with one odor), hns (with NB − 1 odors); three neurons highlighted. Odor vectors were chosen to be symmetric around the origin in the
first three dimensions, to clarify the geometric picture.
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Fig. S6. Habituation to log-normal background statistics. (A) (Left) Excerpt from the concentration time series of NB = 6 odors, and (right) histogram of the
concentrations showing they follow a log-normal distribution. (B) In a six-neuron BioPCA network, learning dynamics of the L matrix diagonal entries, which converge to
the background’s principal values, as predicted in section 5 (horizontal dashed lines). (C) (Top) Alignment error (defined in Methods) of the BioPCA M weights with the
background subspace, showing that the synaptic weights converge to the principal components vectors, and (bottom) time series of the average diagonal and off-diagonal
elements magnitude in L, showing the matrix becomes nearly diagonal, as predicted. (D) Time series of NI = 24 IBCM neurons’ alignment with the background odors
ŝγ , with three neurons highlighted (NB = 6 dot products each). Each neuron aligns with one odor and reaches dot product magnitudes close to the analytical expressions
for hsp, hns (section 4E). Different neurons select different odors. (E) Table summarizing the alignment of each IBCM neuron (with three highlighted). Plotted values are
the dot products hγ averaged over the last 15 minutes of the simulation example. (F) Time series of the W weights in the IBCM network, showing their convergence to the
analytical predictions (equation 82). (G) Example PN time series during habituation by IBCM, BioPCA, and optimal manifold learning networks, compared to the absence of
habituation (OSN input). (H) Performance of the different models for new odor recognition in log-normal backgrounds, tested in a sample background, across 100 new odors,
10 background samples and 10 test times in that simulation. The plot compares the Jaccard similarity between mixture and new odor responses to the similarity between
mixture and background odor responses. Individual dots are medians across background samples and test times. The plot shows that after habituation by the manifold
learning models, the response is more similar to the new odor (above the diagonal), while that is not the case in the absence of habituation (below diagonal).
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Fig. S7. BioPCA model learning dynamics on a simplified background model. We simulate a network with one BioPCA interneuron habituating to the the same two-odor
toy model used in Fig. S4. (A) The first principal component (PC) corresponds to the stochastic component ss along which the background fluctuates. (B) Time series of the
synaptic weights m (single-row matrix M ) of the BioPCA neuron, which converge to the elements of the first PC vector multiplied by σ2‖ss‖ (dashed lines), as predicted in
eq. 99. (C) Time series of the self-coupling L11 of this neuron, which converges to the inverse of the eigenvalue (dashed), eq. 98. (D) Time series of the inhibitory weights w
(single-column matrix W ), which converge to the first PC vector with a scale given in eq. 100. (E) Alignment error of the m (solid line) and w (dashed) vectors with the first
PC. Both alignment errors are below 0.1 %; w aligns especially well due to its slow Hebbian dynamics (fluctuations are amplified by nonlinearities in the BioPCA equations).
(F) PN activity norm, ‖y(t)‖ (solid blue line), closely matching the analytical predictions for its average (dark orange) and instantaneous (dashed orange) values given the
background trajectory, derived in eq. 101. The response to the background is reduced to∼ 2 % of its original amplitude.
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Fig. S8. Robustness against OSN noise in the IBCM and BioPCA manifold learning models. (A) Illustration of the OSN noise considered. Turbulent backgrounds
with six odors are simulated as usual, then independent Gaussian white noise is added to each OSN input at each time point. We consider simulations in NS = 100
dimensions (100 OSNs). (B) Excerpt from the input time series of four OSNs, showing the turbulent background contribution to the input (grey) and the total input with
noise added (green). We illustrate the process with noise amplitude σOSN = 0.01; we will consider different amplitudes in panel (H). (C) Time series of the alignment of
IBCM neurons with background odors, showing that neurons still become selective for true odors while ignoring the added Gaussian noise components. (D) Response of
each IBCM neuron, hj(t), to the parallel (top) and orthogonal (bottom) components of the background, normalized by the average norm of these components, ‖s//‖ or
‖s⊥‖. The time series are smoothed with a moving average filter over a window of 3 s, to visualize the average response amplitude. The parallel background component
includes the actual turbulent background odors and the component of the Gaussian noise in that subspace; the orthogonal part contains the noise components orthogonal
to background odors. We see that IBCM neurons are only responsive to the true olfactory background, not to noise. (E) Similar to (D), but for BioPCA neurons, which also
respond only to the true background subspace. (F) Learning dynamics of the L matrix diagonal elements in the BioPCA network, showing imperfect convergence to the
principal values of the background (dashed lines). The first dominant principal component (PC) is missed, but there are NB = 7 neurons roughly capturing the background
subspace, while remaining neurons capture the small PCs along the pure Gaussian noise directions (eigenvalues equal to σOSN). (G) Norm of the PN response to the noisy
turbulent background over time, showing habituation despite the OSN noise, in all manifold learning models. (H) Performance of the various models for new odor recognition
as a function of the OSN noise amplitude σOSN. Numerical experiments similar to those of Fig. 2, repeated for each σOSN value across 64 backgrounds, 100 new odors, 5
test times and 4 background samples at each time. Lines indicate the average Jaccard similarity, and shaded areas, the standard deviation across repeats. For small noise,
the performance remains unchanged, then it rapidly degrades for all models as the OSN noise becomes comparable in magnitude to the new odors. We used NI = 24
IBCM neurons, and NI = 12 BioPCA neurons.
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Fig. S9. Performance for various Lp norms in W ’s cost function learning rule. (A) Reduction of the mean, (B) variance, (C) and third central moment of the norm
of the PN response after habituation by IBCM of BioPCA networks. We consider various p, q norm choices in the generalized Hebbian learning rules derived in section 7.
For each p, q combination, we performed a grid search over learning rates α and β; the bar graph reports the best performance for each p, q; the α, β rates producing this
performance are annotated above the bars. (D) Mean and (E) median Jaccard similarity between the response to mixtures and the response to the new odor alone, after
habituation. We test for various p, q combinations as in (A)-(C). (F) Variance in the Jaccard similarity; lower variance is better when the mean or median similarity is high – it
signifies that the network is more consistent across backgrounds and trials.
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Fig. S10. Odor recognition performance as a function of dimensionality and new odor concentration. Supplement to main Figure 5. (A) Jaccard similarity as a function
of new odor concentration, for each tested dimensionality separately. (B) Jaccard similarity as a function of dimensionality, for each tested new odor concentration. Lines
indicate the mean Jaccard similarity, and shaded areas, the standard deviation across repeats. “Rand. odors” indicates the similarity between two odors drawn at random, to
show that the similarity of the response to the new odor is significantly higher than the similarity that would occur by chance.
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Fig. S11. Effect of the M weights scaling parameter Λ, to match the IBCM and BioPCA models. (A) Habituation performance, quantified by reduction in the mean,
variance, and third moment of the PN response to the background, y. Habituation runs are performed on the same background time series, with different Λ values for each
model. (B) New odor recognition performance, quantified by the increase in mean Jaccard similarity between the response to mixtures and the new odor tag, for two new odor
concentrations. Same background example as (A), testing 100 new odors at the end (shaded area: standard deviation across tested odors). BioPCA and IBCM can be made
to perform equally well by setting Λ appropriately (Λ ∼ 10 times larger for BioPCA). Vertical dashed lines indicate the scale at which numerical instabilities are expected to
arise according to a nonlinear stability analysis of the Euler integrator (section 2F). Simulations were run in NS = 25 dimensions and with default parameter values.
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Table S1. Definition of olfactory network model parameters

Type Symbol Definition

Abbreviations

OSN Olfactory sensory neuron (input layer)
PN Projection neuron (second layer, fly)

M/T Mitral/tufted cells (second layer, mouse)
KC Kenyon cells (third layer, fly)
PC Pyramidal cells (third layer, mouse)
LN Lateral inhibitory interneuron (inhibitory layer)

IBCM Intrator, Bienenstock, Cooper, Munro (inhibitory layer)
O-U Ornstein-Uhlenbeck process
PCA Principal components analysis

Dimensions

NS Number of OSN types, dimension of input and PN layers
NI Number of inhibitory neurons
NB Number of background odor components
NK Number of Kenyon cells in the tag layer

Weight
matrices

M NI ×NS projection weights matrix, rows are mj

W NS ×NI inhibitory weights matrix, columns are wj

L NI ×NI coupling weights matrix

Other
dynamical
variables

s NS-dimensional input vector
y NS-dimensional vector of PN activities

mj Projection weight vector of the jth LN (jth column of M )
hj Uncoupled activity of the jth LN neuron, given by mj · s
Θj Uncoupled activity threshold of the jth IBCM neuron
hj Activity of the jth LN neuron after feedforward coupling
Θj Activity threshold of the jth IBCM neuron after coupling
wj Inhibitory weights out of the jth LN neuron (jth row of W)
z Neural tag of an odor projected on Kenyon cells

W rates
α Learning rate of inhibitory weights W
β Decay (regularization) rate of W

IBCM
parameters

µIBCM Learning rate of projection weights M
η Coupling strength of IBCM neurons (off-diagonal Lij )
τΘ Averaging time scale of thresholds Θj

ΛIBCM Scale of M weights
Asat Saturating amplitude of IBCM neuron activity
kΘ Minimum denominator in the adaptive learning rate (Law variant)
ε Decay rate of M weights

BioPCA
parameters

µ Learning rate of projection weights M
µL Learning rate of coupling weights L

ΛPCA Scale of weights M
λrange Range over which Λ’s diagonal decreases
µavg Rate of averaging for the mean subtracted from BioPCA inputs

Background
parameters

〈c〉 Average odor concentration (from any distribution)
σ2 Variance of odor concentrations (from any distribution)
m3 Third moment of odor concentrations (from any distribution)

tw,min Lower cutoff of whiff durations (turbulent)
tw,max Upper cutoff of whiff durations (turbulent)
tb,min Lower cutoff of blank durations (turbulent)
tb,max Upper cutoff of blank durations (turbulent)

c0 Concentration scale in turbulent pc(c) (turbulent)
αc Lower concentration plateau in pc(c) (turbulent)
〈g〉 Average of O-U process g(t)
σ2
g Variance of O-U process g(t)
τb Autocorrelation time (O-U-based backgrounds)
ε Third moment factor in c = g + εg2 (weakly non-Gaussian)
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B Scaling the BioPCA model for performance equivalent to IBCM

Table S2. Value of model and simulation parameters. Fig. S2 uses the same parameters as 2. Fig. S3 uses the same parameters as
the simulations related to each panel (A: Fig. 3, B: Fig. S6, C: Fig. 2). Fig. S10 uses the same parameters as 5. Time steps in simulations
correspond to 10 ms (such that 360, 000 steps make 60 minutes). Λ∗ is the ΛPCA value predicted to make it equivalent to IBCM, given in
eq. 106.

Type Param.
Figure

2 3 4 5 S4 S5 S6 S7 S8 S9 S11

D
im

s. NS 25 25 25 50–103 25 25 25 25 100 25 25
NB 6 3 6 6 2 3 6 2 6 6 6

NK/1000 1 - - 1–40 - - 1 - 4 1 1

R
at

es

Duration (min) 60 53 53 60 13 40 53 13 60 60 60
α/10−4 1 2.5 1 1 2.5 2.5 1 2.5 1 Vary 1
β/10−4 0.2 0.5 0.2 0.2 0.5 0.5 0.2 0.5 0.2 Vary 0.2

IB
C

M

NI 24 6 24 24 2 32 24 - 24 24 24
µIBCM/10−3 1.25 1.5 1.25 0.75 2.5 2.5 0.75 - 0.75 1.25 1.25
τΘ (steps) 1600 200 1600 2000 300 150 200 - 2000 1600 1600
η/10−2 2.5 25/3 2.5 2.5 20 1.56 2.1 - 2.5 2.5 2.5
ΛIBCM 1 1 1 1 1 1 1 - 1 1 Vary
Asat 50 ∞ 50 50 ∞ ∞ 50 - 50 50 50
kΘ 0.1 - 0.1 0.1 - - - - 0.1 0.1 0.1

ε/10−2 0.5 0 0.5 0.5 0.5 0 0 - 0.5 0.5 0.5

B
io

P
C

A

NI 6 - - 6 - - 6 1 12 10 6
µPCA/10−4 1 - - 1 - - 5 5 1 1 1

Λ2
PCA
µPCA

µL 2 - - 2 - - 2 2 2 2 2
ΛPCA Λ∗ - - Λ∗ - - Λ∗ 5 Λ∗ Λ∗ Vary
λrange 0.5 - - 0.5 - - 0.8 0.5 0.5 0.5 0.5

µavg/10−4 1 - - 1 - - 5 5 1 1 1

Tu
rb

ul
en

tb
ac

k.

τw (step) 1 - 1 1 - - - - 1 1 1
Tmax,w (step) 500 - 500 500 - - - - 500 500 500
τb (step) 1 - 1 1 - - - - 1 1 1

Tmax,b (step) 800 - 800 800 - - - - 800 800 800
c0 0.6 - 0.6 0.6 - - - - 0.6 0.6 0.6
αc 0.5 - 0.5 0.5 - - - - 0.5 0.5 0.5

O
-U

-b
as

ed 〈g〉 - 1/
√

3 - - 0 1/
√

3 −0.5 0 - - -
σ2
g - 0.09 - - 0.09 0.09 0.09 0.09 - - -

τb (steps) - 2 - - 2 2 2 2 - - -
ε - 0.2 - - 0 0, 0.2 0 0 - - -
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