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Abstract 

The helicases are motor proteins participating in a range of nucleic acid metabolisms. RNA helicase families are 
characterized by the presence of conserved motifs. This article reports a comprehensive in silico analysis of Bos taurus 
DExH/D helicase members. Bovine helicases were identified using the helicase domain sequences including 38 
DDX (DEAD box) and 16 DHX (DEAH box) members. Signature motifs were used for the validation of these proteins. 
Putative sub cellular localization and phylogenetic relationship for these RNA helicases were established. Compara-
tive analysis of these proteins with human DDX and DHX members was carried out. These bovine helicase have been 
assigned putative physiological functions. Present study of cattle DExH/D helicase will provides an invaluable source 
for the detailed biochemical and physiological research on these members.
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Background
A fundamental cellular action of RNA helicases is to 
unwind nucleic acid duplexes and thus, they are required 
for different cellular processes involving RNA. Among 
these helicases several members perform their func-
tions in pre-mRNA processing and ribosome biogenesis 
(Linder 2006). The DEAD and DEAH are the subgroups 
of the DExH/D family (Staley and Guthrie 1998). The 
DDX code is used for DEAD box and DHX is used for 
DEAH box. The basis of nomenclature of these DExH/D 
helicases is the composition of conserved amino acids 
in their motif II. DEAD-box and DEAH-box, helicases 
have D-E-A-D (Asp, Glu, Ala and Asp) and D-E-A-H 
(Asp, Glu, Ala and His) amino acids respectively at this 
motif. These proteins have role in RNA metabolism 
viz. transcription, translation, RNA editing and fold-
ing, nuclear transport, RNA degradation and RNA-
ribosomal complex formations (Linder and Daugeron 
2000; Patel and Donmez 2006). These helicases belong 
to superfamily 2 (SF2) of the six super families in which 
all the helicases have been classified (Caruthers and 

McKay 2002; Tanner and Linder 2001). DExD/H-box 
proteins have been reported from all the living organ-
isms (Umate et al. 2011; Tuteja and Tuteja 2004a, 2004b; 
Hartung et al. 2000). The core of these enzymes contains 
two RecA-like domains separated by a short linker. The 
N-terminal and C-terminal domains are designated as 
DEAD-domain and helicase domain respectively (Cordin 
et al. 2006; Pyle 2008). These domains participate in RNA 
(substrate) binding and ATP hydrolysis. Alignments of 
the protein sequences obtained from various organisms 
have revealed nine highly conserved motifs in DEAD-box 
proteins (Q, I, Ia, Ib, and II–VI) and eight in DEAH-box 
proteins I, Ia, Ib, II, III, IV, V and VI (Tuteja and Tuteja 
2004a, 2004b; Tanner et  al. 2003). Among these motifs, 
motif II (or Walker B motif ) along with motif I (or Walker 
A motif ) and Q-motif are necessary for ATP binding and 
hydrolysis (Tanner et al. 2003) whereas, motifs Ia, Ib, II, 
IV and V may be involved in RNA binding (Svitkin et al. 
2001).

Genome sequencing of variety of organisms have 
revealed the presence of different numbers of DExH/D 
helicases. In a genome-wide comparative study 161, 149, 
136 and 213 different RNA helicase genes have been 
identified in Arabidopsis thaliana, Oryza sativa, Zea 
mays and Glycine max respectively (Xu et al. 2013). Also, 
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31 DEAD and 14 DEAH putative RNA helicases have 
been reported from human beings (Umate et al. 2011).

Recently, Steimer and Klostermeier summarised 
involvement of RNA helicases in infection and diseases 
(Steimer and Klostermeier 2012). For example dysregula-
tion of these helicases has been linked to a wide variety 
of cancers. In addition, these proteins have a role in the 
replication of viruses such as Foot and mouth disease 
virus infection in cattle and HIV virus in human beings. 
RNA helicases A (DHX9) has been associated with cat-
tle FMD disease (Radi et  al. 2012; Lawrence and Rieder 
2009). We can reveal prognostic and diagnostic mark-
ers and identify potential drug targets by characterizing 
these helicases.

Cattle are economically important domesticated 
ungulates. Phylogenetic analysis has shown a distant 
clad for cattle as compared to humans and rodents 
(Murphy et al. 2004) and around 800 breeds have been 
established serving as resource for the genetics of com-
plex traits studies. The genome sequence for domesti-
cated cattle (Bos taurus) was assembled and published 
in 2009 (The Bovine Genome Sequencing and Analysis 
Consortium 2009). The sequence reveals presence of a 
minimum 22,000 genes in cattle. In the present study, 
sequenced cattle genome was used to evaluate the num-
ber of DEAD-box and related family proteins which 
might be present, along with their phylogeny. The com-
position of these bovine motor proteins have also been 
analysed. In silico analysis of bovine DExH/D helicases 
provided the putative role of these proteins in various 
RNA metabolism processes which might be operating 
in Bos taurus.

Methods
Database search and enlistment of RNA helicases
The sequences for DExH/D family members encoded by 
Bos taurus were downloaded from NCBI/BLAST (http://
www.ncbi.nlm.nih.gov.nih.gov). Amino acid sequence 
of eIF4A1 (Swiss-Prot Id-Q3SZ54) was obtained first 
from Swiss-Prot using the key words eIF4A1 Bos tau-
rus. The input sequence so obtained was used in the 
Cow RefSeq protein database available at NCBI/BLAST 
home. The cow genome sequences were searched using 
program BLASTP-Compare protein sequence against 
‘BLAST Cow sequences’ resource. Finally tentative lists 
of DExH/D family members were compiled and all pro-
teins (DExH/D family members) were assigned unique 
Swiss-Prot IDs, protein names and gene names. After 
identification of bovine RNA helicases their phylogenetic 
analysis was carried out along with helicases of other ani-
mals of veterinary importance like horse, pig and sheep. 
For this key words DEAD and DEAH helicase along with 
animal name were used to download homologs from pig, 

horse and sheep from Swiss-Prot database for phyloge-
netic analysis of these DExH/D helicases vis a vis bovine 
helicases. The amino acid sequences of both families of 
RNA helicases were aligned and the neighbour-joining 
method in MEGA 5.0 was applied to examine their evo-
lutionary relationship (Tamura et al. 2011).

Specific sequences of Bos taurus were used for BLASTP 
search against human homologs as described above to 
compare their homology. Protein sequences were vali-
dated by the presence of signature motifs. Predictive 
molecular weight and isoelectric point for the RNA heli-
cases were calculated from Sequence Manipulating Suite 
(http://www.bioinformatics.org/sms2/). Protein localiza-
tion was studied using WoLF PSORT (http://www.gen-
script.com/psort/wolf_psort.html) program.

Motif identification and phylogenetic analysis
The signature motifs for the protein family were identified. 
Protein sequences of DEAD and DEAH members were 
first aligned using ClustalW2 program available at http://
www.ebi.ac.uk/Tools/msa/clustalw2/ and alignment files 
were downloaded. Conserved motifs in bovine DExH/D 
were also identified using the MEME suite (version 4.9.1) 
at meme.nbcr.net/meme/cgi-bin/meme.cgi. Finally list of 
signature motifs was generated. Phylogenetic analysis was 
performed using MEGA5 program (http://www.megas-
oftware.net/) by the Neighbour-Joining method (NJ) with 
parameters; complete deletion option, p-distance and 
bootstrapping method with 1000 replicates (Tamura et al. 
2011). Final image was obtained using the MEGA5 pro-
gram. Domain analysis was performed using the program 
Scan Prosite (http://expasy.org) and these domain struc-
tures were used in the figures.

Results and discussion
Identification and validation of Bos taurus DExH/D family 
members
Genomes of all organisms have genes encoding RNA 
helicases. Although various comprehensive analyses of 
these helicases are available in various organisms, limited 
studies have been conducted on the role of RNA heli-
cases in cattle. The studies of biological function of cat-
tle RNA helicases can unravel their roles and can help in 
understanding different diseases in cattle and also help 
in improving economically important traits. Fifty four 
DExH/D family members of RNA helicases were identi-
fied in Bos taurus in the present study, amongst which 38 
members belonged to DDX family (DEAD) (Table 1) and 
16 members to DHX family (DEAH) of RNA helicases 
(Table  2). Further analysis of cattle helicase sequences 
with MEME suite suggested the pattern of amino acids 
occurrence in signature motifs validating the protein 
family members. Besides characteristic residues of 

http://www.ncbi.nlm.nih.gov.nih.gov
http://www.ncbi.nlm.nih.gov.nih.gov
http://www.bioinformatics.org/sms2/
http://www.genscript.com/psort/wolf_psort.html
http://www.genscript.com/psort/wolf_psort.html
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.megasoftware.net/
http://www.megasoftware.net/
http://expasy.org


Page 3 of 13Suthar et al. SpringerPlus  (2016) 5:25 

motifs, some residues were found to be conserved around 
each motif of various DExH/D family members. The 38 
bovine DDX members identified were DDX1, DDX3X, 
DDX3Y, DDX4, DDX5, DDX6, DDX10, DDX17, DDX18, 

DDX19A, DDX19B, DDX20, DDX21, DDX23, DDX24, 
DDX25, DDX27, DDX28, DDX31, DDX39A, DDX39B, 
DDX41, DDX42, DDX43, DDX46, DDX47, DDX49, 
DDX50, DDX51, DDX52, DDX53, DDX54, DDX55, 

Table 1  Summary of the features of the Bovine DDX member proteins

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively

Bos Taurus Human Isoelectric  
point

Molecular  
weight (kDa)

Localization % Coverage 
with human

% Identity 
with human

DDX1 DDX1 7.23 82.43 C,N 100 97

DDX3X DDX3X 7.2 73.15 N 100 99

DDX3Y DDX3Y Isoform2 7.39 73.17 N 100 91

DDX4 DDX4 Isoform1 5.96 79.46 N,C 100 91

DDX5 Dead box polypeptide 5 9.21 69.16 N 100 100

DDX6 DDX6 8.93 54.39 N 99 99

DDX10 DDX10 9.17 101.18 N 100 89

DDX17 DDX17 Isoform1 8.75 72.33 N,C 100 99

DDX18X1 DDX18 10.04 75.13 N,M 100 90

DDX19A DDX19A 6.72 54.00 C,N, 100 97

DDX19B DDX19B Isoform1 8.54 54.46 M,N,C 95 98

DDX20 Dead box polypeptide 
20

6.77 92.71 N,C 100 88

DDX23 DDX23 10.22 95.67 N 100 99

DDX24 DDX24 10.01 94.53 N 100 81

DDX25 DDX25 6.33 54.63 C,N 100 93

DDX27 DDX27 9.89 87.10 N 100 95

DDX28 DDX28 10.75 60.02 M,C,N 99 85

DDX31 DDX31 10.43 80.87 N 99 79

DDX39A DDX39A 5.39 49.15 C,N 100 96

DDX39B DDX39B 5.38 48.97 C,N 100 99

DDX41 DDX41 6.94 69.83 C,N,M 100 99

DDX42 DDX42 7.28 107.56 N,C 96 95

DDX43 Dead box polypeptide 
43

8.77 72.04 N 99 76

DDX46 DDX46 IsoformX1 9.87 117.46 N,C 100 99

DDX47 DDX47 IsoformX1 9.64 50.92 N 100 96

DDX49 DDX49 9.82 44.39 C,N,M 99 91

DDX50 Dead box polypeptide 
50

9.64 82.60 N,C 100 97

DDX51 DDX51 7.56 60.69 N,C 98 82

DDX52 DDX52 10.32 67.52 N,C 100 91

DDX53 DDX53 9.88 68.47 N 99 68

DDX54 DDX54 10.68 102.72 N 94 90

DDX55 DDX55 9.83 68.61 N,C 100 94

DDX56 DDX56 Isoform1 9.02 61.27 N,C,M 100 93

DDX59 DDX59 8.03 67.45 N,C 100 77

EIF4AI EIF4AI Isoform1 5.12 46.15 N 100 100

EIF4AII EIF4AII 5.13 46.41 N 100 100

EIF4A-III EIF4A-III 6.69 46.85 N,M 100 99

Nucleolar RNA Hel2 Isoform1(DDX21) 9.87 87.25 N,C 100 89
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DDX56, DDX59, eIF4AI, eIF4AII and eIF4AIII (Table 1). 
In all, 9 motifs (Q, I, Ia, Ib, II, III, IV, V and VI) were 
identified in these proteins which are shown in Fig.  1. 
The signature motifs in DDX protein showed consensus 
sequences as GFxxPxxIQ (Q), AxxGxGKT (I), PTRELA 
(Ia), TPGR (Ib), DExD (II), SAT (III), FVxT (IV), RGxD 
(V) and HRxGRxxR (VI). In the case of DDX49 three 
motifs namely; TPGR, DExD and SAT were found miss-
ing (Fig. 1). The 16 DHX members that could be identified 
were DHX8, DHX9, DHX15, DHX16, DHX29, DHX30, 
DHX32, DHX33, DHX34, DHX35, DHX36, DHX37, 
DHX38, DHX40, DHX57 and DHX58 (Fig.  2). Consen-
sus sequences GxxGxGKT (I), TQPRRV (Ia), TDGML 
(Ib), DExH (II), SAT (III), FLTG (IV), TNIAET (V) and 
QRxGRAGR (VI) were found in the members of DHX 
proteins. Some motifs in two DHX members i.e. DHX32 
and DHX58 were not found (Fig. 2). In protein DHX32, 
SAT, TNIAET and QRxGRAGR motifs were absent, 
and instead of motif DExH; DDIH motif was observed. 
In DHX58 conserved motif DECH was observed and 
remaining motifs were missing. QRxGRAGR motif was 
not observed in the DHX38 protein (Fig. 2). Four mem-
bers i.e. DHX32, DHX58, DHX38, and DDX49 showed 
variable conserved motifs and need biochemical evidence 
for confirmation. Figure 3 describes patterns in different 
motifs of DDX and DHX helicases using Hidden Markov 
Model (HMM). In Fig 3a, b position specific probability 
is represented by the size of particular amino acid residue 
in different motifs, larger the size more will be probability 
of occurrence.

Phylogenetic analysis
Phylogenetic analysis of DExH/D helicases was per-
formed to elucidate evolutionary relationship. On ana-
lysing bovine helicase with that of horse, pig and sheep 
(Fig.  4a, b) it was observed that some DEAD box heli-
case family members could be subdivided into nine 
subgroups in all the species taken into consideration. 
However, DDX 6, DDX 10, DDX 11, DDX 24, DDX 26, 
DDX 27, DDX28, DDX 31, DDX 41, DDX 47, DDX49, 
DDX 51, DDX52, DDX 54, DDX 55, DDX 56, DDX58 
and DDX 59 members of DEAD box of all these species 
could not be included in above nine subgroups (Fig. 4a). 
Similarly, DHX family members could also be subdi-
vided into four subgroups for all the species (Fig.  4b). 
However, DHX15, DHX32 and DHX40 could not be 
included in the any of these four subgroups (Fig. 4b). The 
extent of similarity indicates toward conserved struc-
ture of DExH/D helicases in all the species studied dur-
ing evolution but their functions remained to be defined 
by biochemical analysis. In second analysis, relationship 
amongst bovine helicases was carried out (Fig. 5a, b for 
DDX and DHX respectively). Phylogenetic analysis estab-
lished close relationship between different members. 
The closely related members within DDX subfamily are 
DDX17-DDX5, DDX43-DDX53, DDX42-DDX46, DDX4-
DDX3X-DDX3Y, DDX41-DDX59, DDX39A-DDX39B, 
DDX19A-DDX19B, EIF4A members, DDX10-DDX18, 
DDX56-DDX51, DDX47-DDX49, DDX27-DDX54 
and DDX50-DDX21. Similarly, within DHX members 
DHX8-DHX16, DHX33-DHX35, DHX15-DHX32 and 

Table 2  Summary of the features of the Bovine DHX member proteins

N, M and C represent Nuclear, Mitochondrial and Cytoplasmic localization, respectively

Bos Taurus Human Isoelectric Point Molecular  
weight (kDa)

Localization % Coverage 
with human

% Identity 
with human

DHX8 DHX8 8.33 140.28 N 99 98

DHX9 Helicase A 6.88 141.97 N 90 95

DHX15 DHX15 7.48 90.95 N 100 99

DHX16 DHX16 Iso1 6.39 119.88 N,C 100 98

DHX29 DHX29 8.67 155.28 N 99 93

DHX30 DHX30 Iso1 8.61 135.97 M,C,N 100 97

DHX32 DHX32 4.79 83.88 C,N 100 89

DHX33 DHX32 Iso1 9.23 79.75 N,C 98 92

DHX34 DHX34 7.96 128.80 N,C 100 88

DHX35 DHX35 Iso1 8.66 78.89 N 99 96

DHX36 DHX36 Iso1 7.87 114.85 N,M 100 92

DHX37 DHX37 8.93 129.02 N,C,M 100 85

DHX38 PRP16 6.55 140.19 N 100 95

DHX40 DHX40 Iso1 8.83 88.52 N,C 100 99

DHX57 DHX57 7.69 155.76 N,C 96 91

DHX58 DHX58 8.63 77.19 C,N 100 83
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Fig. 1  The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DDX proteins

Fig. 2  The amino acid sequence of conserved motifs constituting the RNA helicases of bovine DHX proteins
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DHX36-DHX57 show close relationship. All these mem-
bers occur as separate clades.

In Silico Characterization of Bovine DExH/D family 
members
Putative molecular weights and isoelectric points 
of bovine DExH helicases were determined in silico 
(Tables  1 and 2). Similarly predictive subcellular locali-
zations of these proteins were examined (Tables  1 and 
2). These helicases varied in their isoelectric point and 
molecular subunit mass. Isoelectric point of DDX mem-
bers varied from 5.12 (EIF4AI) to 10.68 (DDX54) whereas 
pI for DHX members ranged between 4.79 (DHX32) 
and 9.23 (DHX33). 24 DDX and 8 DHX members had 

pI above 8. Molecular mass for these helicases ranged 
between 44.39 kDa (DDX49) and 117.46 kDa (DDX46) in 
case of DDX members and between 77.19 kDa (DHX58) 
and 155.76  kDa (DHX57) for DHX members. The pre-
dictive pI value and molecular mass will help in isola-
tion and purification leading to further characterization 
of these helicases. Analysis with WoLF PSORT program 
indicated that cattle RNA helicases are localized in the 
nucleus, cytoplasm and mitochondria (Tables 1 and 2).

Comparative analysis of human and bovine DExH/D family 
members and putative function assignment
Bos taurus has a 2.86 billion bp long genome with 
a minimum of 22,000 genes (The Bovine Genome 

Fig. 3  The schematic diagram of motifs of DExH/D helicases. a and b represent motifs for bovine DEAD and DEAH proteins respectively. The sche-
matic diagrams were derived from MEME suite and generated automatically by Meme software based on scores
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Sequencing and Analysis Consortium 2009). Simi-
larly, 2.91 billion bp long human genome has around 
20,000–25,000 genes (International Human Genome 
Sequencing C 2004). Cattle genome encodes all 
orthologs of human DExH/D family members. Bovine 
DEAD box RNA helicases has typically Q motif, ATP 
binding and Helicase C-terminal domains as found 
in human helicases. Domain structures of bovine 
DExH/D RNA helicases as compared with that of 
human helicases indicated high similarity between 
the two species (Figs.  6 and 7). Despite this identity 
DDX17, DDX18, DDX24, DDX27, DDX31, DDX42, 
DDX49, DDX51, DDX53 and DDX54 show difference 
in positions of domains as compared to human heli-
cases (Fig.  6). In bovine DDX49 typically overlapping 
of ATP binding and Helicase domain was observed. 
Interestingly, both bovine and human DHX32 showed 
only ATP binding domain and no other domain was 
observed. Further, levels of homology amongst human 
and bovine DExH/D RNA helicases are shown in 
Tables  1 and 2. Bovine DEAD helicases showed high 
similarity with their human counterpart (identity 
76–100 %).

The higher similarity of these bovine helicases with well 
characterized human helicases can help to predict their 
functions in cattle developmental processes also. The 
putative functions of these helicases have been summa-
rized in Tables 3 and 4. The importance of DExH/D RNA 

helicases in environmental stress is becoming evident 
(Shih and Lee 2014). DDX1, 3, 5, 6, 17, 21, 24, 47, DHX9 
and DHX36 are associated with various viral infections. 
Similarly DDX6 and DDX19 are associated with neuro-
logical disorders, as summarised previously (Steimer 
and Klostermeier 2012). This manuscript presents first 
report on genome-wide comprehensive analysis of 
bovine DExH/D helicases providing valuable information 
regarding classification and putative function of these 
RNA helicases, essential for growth and development. 
Identification of bovine counterparts of helicases associ-
ated with various stress and diseases can be exploited as 
prognostic and diagnostic markers.

Conclusions
Bos taurus genome encodes 54 DExH/D family members 
(38 DDX and 16 DHX). Present work describes their evo-
lutionary relationship, putative functions, pI, molecular 
weight and localization. Despite high similarity with well 
characterized counterparts, for some members, func-
tions could not be predicted which needs further analy-
sis. Hence, this study emphasises towards some bovine 
DExH/D members requiring further biological charac-
terisation. Similarly, bovine DDX49 and DHX32 need 
biochemical characterization as they showed unique 
properties. Association analysis of these members with 
different abiotic and biotic stress may facilitate new diag-
nostic markers and drug targets.

Fig. 4  Phylogenetic analysis of RNA helicases from cattle, pig, horse and sheep. a and b represent DEAD box and DEAH box helicases from four 
species respectively. DEAD and DEAH amino acid sequences were aligned with ClustalW, and phylogenetic tree was constructed using the neigh-
bour joining method in MEGA 5.0 software
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Fig. 5  Phylogenetic analysis of Bovine DExH/D helicases. a and b represent analysis of bovine DEAD and DEAH respectively
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Fig. 6  Schematic diagrams of domain organisation in bovine DEAD helicases. Domain analysis was conducted using Scan Prosite (http://expasy.
org). The domain structures were downloaded and used for figure generations. The number shown in black and red colour indicates the amino 
acids spanning motifs in bovine and Human DEAD box proteins

http://expasy.org
http://expasy.org
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Fig. 7  Schematic diagrams of domain organisation in bovine DEAH helicases. Domain analysis was conducted using Scan Prosite (http://expasy.
org). The domain structures were downloaded and used for figure generations. The number shown in black and red colour indicates the amino 
acids spanning motifs in bovine and Human DEAH box proteins

http://expasy.org
http://expasy.org
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Table 3  Putative functions of DDX members

Protein Function Ref.

DDX1 Associated with ARE mediated mRNA decay Chou et al. (2013)

DDX3X, DDX3Y DDX3X can bind with DNA, RNA splicing, nuclear transport of RNA and transla-
tional regulation

Franca et al. (2007); Rosner and 
Rinkevich (2007)

DDX4 Bovine vasa homolog (BVH) and is expressed in gonads Bartholomew and Parks (2007)

DDX5, DDX17 Splicing and transcriptional regulation Auboeuf et al. (2002)

DDX6 Spermatogenesis and localized in spermatogenic cells Kawahara et al. (2014)

DDX10 Ribosome assembly Savitsky et al. (1996)

DDX18 Hematopoiesis and deletion resulted into p-53 depended cell arrest in G1 Payne et al. (2011)

DDX19 m-RNA nuclear transport by remodelling of RNP particles through nuclear pore 
complex

Collins et al. (2009)

DDX20 Transcriptional regulation, splicing process and mi-RNA pathway Takata et al. (2012)

DDX23 Pre-mRNA splicing Ismaïli et al. (2001)

DDX24 Innate immune signalling regulation Ma et al. (2013)

DDX25 Posttranscriptional regulations of genes for spermatid elongation & completion 
of spermatogenesis

Dufau and Tsai-Morris (2007)

DDX27 ND

DDX28 Cellular division Loo et al. (2012)

DDX31 Transcription of rRNA gene and assembly of 60 s ribosomal subunit Bish and Vogel (2014)

DDX39 mRNA splicing, genome integrity and telomere protection Yoo and Chung (2011)

DDX41 Type 1 interferon response Zhang et al. (2011a)

DDX42 Function as chaperon Uhlmann-Schiffler et al. (2006)

DDX43 ND

DDX46 Pre-mRNA splicing Hozumi et al. (2012)

DDX47 Pre-RNA processing Sekiguchi et al. (2006)

DDX49 ND

DDX51 Ribosome synthesis and formation of 3′end of 28S rRNA Srivastava et al. (2010)

DDX52 ND

DDX53 ND

DDX54 Maintenance of central nervous system Zhan et al. (2013)

DDX55 ND

DDX56 Assembly of pre-ribosomal particles Zirwes et al. (2000)

DDX59 Pathogenesis of orofaciodigital syndrome Shamseldin et al. (2013)

EIF4A eIF4F complex formation and facilitates translation Harms et al. (2014)

Nucleolar RNA Hel2 (DDX21) RNA processing during interphase of mitosis De Wever et al. (2012)
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