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1  | INTRODUC TION

Sexual dimorphism often accounts for most of the morphological 
variation seen within a sexually reproducing species (Darwin, 1871; 
Fairbairn, Blanckenhorn, & Székely, 2007). Two main themes account 
for dimorphism both predicated on the reproductive differences 
between males and females and the production of phenotypes at 
unique optima (Fairbairn, 2013; Rohner, Teder, Esperk, Lüpold, & 

Blanckenhorn, 2018). Dimorphism may be the result of intersexual 
selection, such as when females prefer unique attributes among 
males, or intrasexual selection. Intrasexual competition among 
males can result in massively different body sizes and unique struc‐
tures not found in females (Fairbairn, 1997; Fairbairn et al., 2007). 
Similarly, female‐dominated size differences between sexes also 
occur when selection drives reproductive output in females (Ralls, 
1976). Importantly, over phylogenetic time scales, sexual dimorphism 
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Abstract
Sexual‐size dimorphism (SSD) is ubiquitous across animals and often biased in the di‐
rection of larger females in snakes and other ectothermic organisms. To understand 
how SSD evolves across species, Rensch's rule predicts that in taxa where males are 
larger, SSD increases with body size. In contrast, where females are larger, SSD de‐
creases with body size. While this rule holds for many taxa, it may be ambiguous for 
others, particularly ectothermic vertebrates. Importantly, this rule suggests that the 
outcomes of SSD over phylogenetic time scales depend on the direction of dimorphism 
predicated on the difference in reproductive efforts between males and females. Here, 
we examine SSD in the context of Rensch's rule in Thamnophiini, the gartersnakes 
and watersnakes, a prominent group that in many areas comprises the majority of the 
North American snake biota. Using a dated phylogeny, measurements of gape, body, 
and tail size, we show that these snakes do not follow Rensch's rule, but rather fe‐
male-biased SSD increases with body size. We in turn find that this allometry is most 
pronounced with gape and is correlated with both neonate and litter size, suggesting 
that acquiring prey of increased size may be directly related to fecundity selection. 
These changes in SSD are not constrained to any particular clade; we find no evidence 
of phylogenetic shifts in those traits showing SSD. We suggest several ways forward to 
better understand the anatomical units of selection for SSD and modularity.
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can follow a few trends depending on which sex is larger, known as 
Rensch's rule (Rensch, 1950, 1959).

As one of the latest contributors to the modern synthesis, 
Bernard Rensch addressed problems related to understanding di‐
versification and commented on general trends in sexual‐size di‐
morphism (SSD) at taxonomic scales above the population (Rensch, 
1950, 1959). Rensch stated that in taxa where males are larger, SSD 
increases with body size. In contrast, where females are larger, SSD 
decreases with body size. This suggests in part that selection on SSD 
at the level of the species is thus magnified in effect at larger body 
sizes for males with weaker effects on females (Chown & Gaston, 
2010; Webb & Freckleton, 2007). This can, of course, be driven 
by sexual selection favoring larger males; however, in the case of 
female‐biased SSD, this pattern may be the result of female com‐
petition for mates, differences in age between the sexes, or as in 
many cases, due to fecundity selection, where greater energy is ex‐
pended to produce offspring in greater number or more frequently 
(Cox, Skelly, & John-Alder, 2003; Fairbairn, 1997; Liao, Zeng, Zhou, 
& Jehle, 2013; Preziosi & Fairbairn, 2000; Remeš & Székely, 2010). 
Finally, correlational selection may tie selective increases in one sex 
with that of another sex (Liao, Liu, & Merilä, 2015).

While Rensch's rule is well supported in male-biased SSD, it is 
often not for the reverse female-biased SSD (Webb & Freckleton, 
2007). In several studies, the trajectory of female‐biased SSD is re‐
flective of Rensch's rule for males, where the degree of SSD increases 
with body size (Liao, 2013; Liao & Chen, 2012; Lu, Zhou, Zhao, & 
Liao, 2014; Webb & Freckleton, 2007). While more rarely studied, 
selection in support of Rensch's rule may not act on body size alone, 
but may affect different parts of anatomy independently. Modularity 
across organismal anatomy in the context of sexual dimorphism has 
been examined previously (Emlen, Hunt, & Simmons, 2005; Preziosi & 
Fairbairn, 2000; Taylor et al., 2017), but generally understudied with 
respect to testing Rensch's rule. However, size and shape of cranial 
sexual dimorphism in New World opossums has been shown to not 
follow Rensch's rule given body size (Astúa de Moraes, 2010).

In addition, it is often unknown whether Rensch's rule is being 
driven by threshold changes in specific clades; species with signifi‐
cant SSD at larger body sizes may not be evenly distributed across 
the phylogeny but rather constrained to particular clades (Baker & 
Wilkinson, 2001; Ceballos, Adams, Iverson, & Valenzuela, 2013). This 
would then suggest that SSD might not change continuously over the 
phylogeny with body size, but rather occur in leaps associated with 
significant shifts in morphospace within clades, which itself may be 
associated with adaptive radiation within particular niches.

For the most part, ectotherms, and particularly snakes, show 
more female-biased SSD than endotherms (Cox, Butler, & John-
Alder, 2007). In those cases, Rensch's rule may or may not be sup‐
ported (Webb & Freckleton, 2007). Specifically, snakes often show 
female‐biased SSD (Shine, 1994) which can be associated with 
consuming larger prey and therefore increased fecundity or tran‐
sition to viviparity (Daltry, Wuster, & Thorpe, 1998; Shine, 1994, 
2003; Stuart‐Fox, 2009). For some snake clades, combat among 
males, mate‐searching, and sperm competition are associated with 

male-biased SSD (Bonnet, Shine, Naulleau, & Vacher-Vallas, 1998). 
At deeper phylogenetic levels, a few studies on some colubrid and el‐
apid snakes have suggested that where female‐biased SSD is known, 
positive interspecific allometry is weak and supports Rensch's rule 
(Abouheif & Fairbairn, 1997; Fairbairn, 1997; Webb & Freckleton, 
2007). Unfortunately, detailed comparative phylogenetic studies on 
snake SSD and Rensch's rule for well‐known snake groups with com‐
prehensive sampling have not been examined.

Some limited studies have suggested that Rensch's rule is sup‐
ported in snakes showing female-biased SSD (Abouheif & Fairbairn, 
1997; Fairbairn, 1997; Webb & Freckleton, 2007). For snakes, width 
and size of the head and gape are correlated with prey size (Vincent, 
Dang, Herrel, & Kley, 2006), may show differences among sex (Shine, 
1978), and are often associated with differences in prey type. This 
is most prominent where females consume larger or different types 
of prey (Mushinsky, Hebrard, & Vodopich, 1982; Shine, 1991; White 
& Kolb, 1974) and may be associated with enhanced fecundity (Cox 
et al., 2007; Seigel & Ford, 1987; Shine, 2000). Sexually selected 
traits may reveal positive allometries relative to body size (Eberhard 
et al., 2018) and modularity via selection (Goswami, Smaers, Soligo, 
& Polly, 2014; Klingenberg, 2014; Olson & Miller, 1958), but it is 
unclear whether SSD with respect to Rensch's rule shows the out‐
comes of independent selection on these two features.

Here, we examine gape, body, and tail size in New World garter‐
snakes, watersnakes, and related taxa (Thamnophiini) to understand 
whether female‐biased sexual‐size dimorphism reflects Rensch's 
rule and shows unique allometry across body and tail size and gape. 
We also determine if increases in body size are related to increased 
fecundity by associating body size with litter and neonate size. Using 
a phylogenetic approach, we determine if SSD is concentrated in 
specific clades of watersnakes or if they are randomly distributed 
across the tree. These snakes have been well‐studied ecologically, 
behaviorally, morphologically, and phylogenetically and are a prom‐
inent feature of the snake fauna of North America (Burbrink, Chen, 
Myers, Brandley, & Pyron, 2012; Gibbons & Dorcas, 2004; Guo et 
al., 2012; McVay, Flores-Villela, & Carstens, 2015; Rossman, Ford, 
& Seigel, 1996), though the evolution of SSD across this group is 
unknown. Our results help understand if increases or decreases in 
SSD follow Rensch's rule, are associated with reproduction, and are 
reveal shared changes in particular groups of these snakes.

2  | METHODS

2.1 | Data

We examined only adults of 1,535 specimens among 49 thamnophi‐
ine taxa (81.7% species, remaining taxa were unavailable in suffi‐
cient number to properly estimate error around measurements; Data 
S1–S4). Where hemipenes were not fixed externally, each speci‐
men was sexed by making a small incision into the ventral side of 
the tail to identify the presence or absence of hemipenes. Snout–
vent length (SVL), tail length (TL), head length (HL), and head width 
(HW) were measured to the nearest millimeter. For each species, 
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we attempted to measure equal numbers of males and females of 
up to 20 samples for each sex. We also collected data from the lit‐
erature on maximum litter and neonate size (Data S1–S4). Both HL 
and HW were transformed into a standard gape index by convert‐
ing these measurements into the area of an ellipse (King, 2002). 
Because the formula would require the measurement of HW and HL 
to each be taken from the origin of the ellipse, we divided each of 
these measurements by 2 to account for the distance from the ori‐
gin: π × (HL/2) × (HW/2). As discussed by King (2002) and Miller and 
Mushinsky (1990), this index is useful for estimating maximum gape 
and therefore suggests that HL and HW each contribute uniquely 
to estimating this index. To understand if these head measurements 
uniquely contribute to estimating gape index, rather than just as‐
suming a single measure is a useful proxy for gape, we took raw 
measurements and regressed HL and HW by sex through the origin 
using standardized major axis regression (SMA) to determine if these 
deviate from isometry by rejecting a slope of 1.0 using the R package 
“smatr” (Warton, Duursma, Falster, & Taskinen, 2012). Therefore, 
even if these measurements were correlated, rate changes over the 
sizes of Thamnophiini could suggest that they contribute uniquely to 
estimating gape and therefore neither variable should be used sepa‐
rately as a measure of this index.

2.2 | Testing Rensch's rule

We first log-transformed all traits and determined if they showed 
significant phylogenetic signal using Blomberg's K test to understand 
if relatives resemble each other under Brownian motion. We used 
the function phylosig in the R package “phytools” (Revell, 2012) with 
the standard 1,000 simulations for the random test to yield enough 
power to determine significance. We removed phylogenetic non‐
independence using phylogenetic independent contrasts (PIC) in the 
R package (R Core Team, 2018) “Ape” (Paradis, Claude, & Strimmer, 
2004). We used the most recent dated species tree of Thamnophiini 
(Data S2) from McVay et al. (2015) to account for phylogenetic inde‐
pendence. To examine relationships between traits for testing SSD, 
we used the model II reduced/standardized major axis regression, 
reviewed in Smith (2009), which was used to study allometry with 
Rensch's rule in Wu, Jiang, Huang, and Feng (2018) in the R package 
“smatr” (Warton et al., 2012). We compare our SMA results to ordi‐
nary least squares (OLS) given the more frequent usage of the lat‐
ter, but note that given symmetry in error estimation of variables 
from both sexes and the lack of a single direction of inference (e.g., 
male sizes predicting female sizes or vice versa) suggests that SMA 
is the more appropriate choice. Using PIC‐transformed variables, we 
regressed traits through the origin (Garland, Harvey, & Ives, 1992; 
Legendre & Desdevises, 2009), tested for a significant relationship, 
and assessed if traits were changing allometrically if slopes signifi‐
cantly deviated from 1.0, thus supporting Rensch's rule.

We used SMA to regress female SVL on male SVL to determine 
if female size changes allometrically relative to males. The way we 
have designed these tests, placing female trait dominance on the 
axis of ordinates, indicated that slopes significantly >1.0 showed that 

female‐biased dimorphism increased as female body size increased, 
whereas slopes significantly <1.0 supported male‐biased dimor‐
phism. Slopes at 1.0, suggested no bias in sexual‐size dimorphism 
associated with increases in male or female body size. Similarly, we 
regressed the difference in female and male gape on the difference 
in female and male SVL, female gape on male gape, and female TL on 
male TL. We determined if gape allometry was significantly different 
from SVL allometry by seeing if gape slopes were significantly differ‐
ent from SVL using SMA regressions. To determine if any detected 
SSD allometry in favor of females was also related to litter size, we 
regressed litter size to female SVL. We also regressed neonate size 
on female SVL to understand if increased litters were also associated 
with increased neonate size, which would suggest that litter sizes do 
not increase at the expense of neonate body size.

2.3 | Phylogenetic trait shifts

These continuous traits (gape, SVL, and TL by sex, and differences 
between genders) were fit to three standard models of evolution, 
accounting for completely neutral evolution in Brownian motion 
(BM), accommodating selection and drift in Ornstein–Uhlenbeck 
(OU), and rapid early and rapid morphological changes in early 
bursts (EB; Butler & King, 2004; Felsenstein, 1985; Harmon et al., 
2010) using the R package “geiger” (Harmon, Weir, Brock, Glor, & 
Challenger, 2008). Because any of these models of trait evolution 
may not be an appropriate candidate for these data, we assessed 
model adequacy using the R program “Arbutus” (Pennell, FitzJohn, 
Cornwell, & Harmon, 2015). Here, we fit each model (BM, OU, and 
EB) to each of the traits using maximum likelihood and compared 
observed fits to simulations under each model (n = 100 simulations, 
a standard number of replicates for providing statistical power for 
rejection with these tests) using six standard test statistics that sum‐
marize violations to models and have well‐defined statistical proper‐
ties, which include: (1) Msig—the mean of squared contrasts, which 
measures the overall rate and provides estimates if rates are over‐ or 
underestimated, (2) Cvar—the coefficient of variation of the absolute 
value of contrasts, where if observed values are greater than simu‐
lated estimates then rate heterogeneity is not properly estimated, (3) 
Svar—slope of the regressed absolute value of the contrasts against 
expected variables, used to understand if contrasts are smaller or 
larger than expected given branch lengths, (4) Sasr—slope of the re‐
gressed absolute value of the contrasts against the ancestral state 
estimated for a corresponding node, which determines if there is 
variation in rate relative to the value of a trait, (5) Shgt—the slope of 
the regressed absolute value of the contrasts against node depth, 
which provides estimates of variation relative to time, (6) Dcdf—the 
D‐stat from the Kolmogorov–Smirnov test estimated by comparing 
the distribution of contrasts to that of a standardized normal distri‐
bution where the mean is 0 and the standard deviation is equal to the 
root of the mean of squared contrasts, which estimates deviations 
from normality (Pennell et al., 2015). We used Akaike information 
criteria weights considering sample size (wAICc) to determine statis‐
tical support for all models.
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We examined if traits associated with allometric SSD corre‐
spond with phylogenetic shifts in these traits. Shifts in these traits 
across the phylogeny would suggest that SSD may be concentrated 
in particular clades and not necessarily occurring gradually across 
the phylogeny. To explore traits space in relation to phylogeny, we 
graphed the difference female–male gape and SVL across tree space 
using the function phylomorphospace in the R package “phytools” 
(Revell, 2012). We used the R package “PhylogeneticEM” (Bastide, 
Ané, Robin, & Mariadassou, 2018) which implements a maximum-
likelihood method to automatically determine if shifts in traits 
happened and where putative shifts occurred on the phylogeny 
of Thamnophiini. We used the scalar Ornstein–Uhlenbeck model 

(scOU) model in the function PhyloEM(), Kmax (maximum number 
of shifts) set to 10, which accounted for a very large number of ex‐
pected changes for a tree with only 47 internal nodes, and the num‐
ber of alpha values on the grid (nbr_alpha) set to 10. We note that 
higher values of alpha provide a finer grid for searching with added 
computational time, though our results remain constant by increas‐
ing alpha by intervals of 20 up to 100. We ran this five times to en‐
sure consistency among results. We chose the number of best shifts 
by estimating the mean of Gaussian vector among 10 predicted 
number of possible shifts using the “LINselect” method described in 
Bastide et al. (2018), which uses a penalized‐likelihood approach to 
find the appropriate number of shifts (BGHml).

F I G U R E  1   Bootstrapped regressions (light blue) and standard deviation (SD) for traits corrected by phylogenetically independent 
contrasts (PIC): (a) differences in gape by sex and snout–vent length (SVL), (b) female SVL and male SVL, and (c) difference in tail length 
(TL) and (d) litter size by female SVL. Statistics on each panel show on the first row standard major axis (SMA) regression coefficient of 
determination (r2) and significance (p), and on the second line, slope and significant allometry (significance from slope = 1) are displayed
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3  | RESULTS

Both HL and TL measured from Thamnophiini were correlated 
(ρ = 0.98; p = 2.2 × 10−16) but each trait uniquely contributed to 
gape given that SMA regressions of HL and HW showed allom‐
etry with significant deviance from a slope of 1.0 by sex (r2 = 0.99; 
p = 2.2 × 10−16). All traits (SVL, TL, and gape) were transformed by 
PIC, and each was regressed between males and females using SMA 
showed significance (r2 = 0.892–0.916; p = 2.2 × 10−16; Figure 1) and 
supported allometry (r2 = 0.379–0.6.23 and tests of isometry re‐
jected at p = .019–7.61 × 10−6). Similar results for all tests were found 
using OLS (all other results in the text refer to SMA results), but 
with SVL not significantly rejecting isometry (Table S1). Difference 
in gape regressed against difference in SVL between females and 
males was significant and allometric (r2 = 0.892; p = 2.22 × 10–16). 
However, difference in female and male TL regressed on difference 
in SVL was not significantly allometric (r2 = 0.175; p = 2.56 × 10−1). 
The slope of gape difference versus TL difference on SVL was much 
larger for the former (gape = 5.292, TL = 1.127) and also signifi‐
cantly different (SMA r2 = 0.963; p = 2.22 × 10–16). Both clutch size 
and neonate size regressed against SVL were significant, r2 = 0.235 
(p = 2.22 × 10–16) and r2 = 0.281 (p = .001), respectively, and showed 
allometry (p = .001–.002) (Table S1).

None of the trait evolution models investigated were conclu‐
sively supported given that AIC model weights (wAICc) only varied 
from 52% to 71% (Table S2). Brownian motion models had the high‐
est weights on the most traits (n = 4), followed by OU (n = 3 for 
all trait‐difference models), and then EB (n = 2). Additionally, using 
model adequacy tests, most of the six test statistics were not signifi‐
cantly different (two‐tailed test) from the simulations for each of the 
three models. This suggested that any of the three models was an 
adequate fit for these trait data (Table S3). For instance, over all tests 
across all traits, only 4% of the statistics were significant and never 
a majority for any particular trait. We detected no trait shifts across 
Thamnophiini using the scOU model (Figure 2). All five separate runs 
produced the same results and selected the same model; raw BGHml 
model selection for number of shifts against their penalized likeli‐
hoods suggested 0 shits at 605.70 was preferred when compared to 
increasingly higher values after 1 shift (711.84).

4  | DISCUSSION

In contrast to expectation and previous studies on body size, we 
show that gape, SVL, and TL associated with body size do not follow 
Rensch's rule in the watersnakes and that female‐biased SSD shows 
the same trend predicted for male‐biased SSD, where SSD increases 
with increased body sizes. Importantly, when examining the differ‐
ence in female–male gape and tail size against female–male SVL, 
gape differences increase rapidly in comparison with difference in 
tail length, suggesting that larger gapes evolve independently than 
other size‐based traits, particularly at larger body sizes (Figure 1a,b). 
For these snakes, this follows if head size is predictive of consuming 

increased prey sizes, which as we show translates into increased 
fecundity.

Our results show that even though gape, SVL, and TL are each 
correlated between males and females showing that trends of in‐
creasing size hold for both sexes, females clearly develop much 
larger gapes at larger sizes (Figure 1a,b,c). These gape sizes are sex‐
ually dimorphic, likely occur at birth, and are therefore susceptible 
to changes driven by natural selection; a previous study on body 
size and head morphology on members of Thamnophis, Storeria, and 
Nerodia suggested that sexual dimorphism in these traits was ge‐
netically and not environmentally determined (King, Bittner, Queral‐
Regil, & Cline, 1999). As with many snakes, garter and watersnakes 
species often show ontogenetic, geographic, and ecological vari‐
ation in prey type and size (Gibbons & Dorcas, 2004; Rossman et 
al., 1996). For many species though, prey size is usually correlated 
with gape or body size, with females taking larger or different types 
of prey than males (Greene, Dixon, Mueller, Whiting, & Thornton, 
1994; Mushinsky et al., 1982; Rossman et al., 1996; Shine, 1991, 
1993; White & Kolb, 1974). In contrast, in smaller to medium-sized 
taxa, prey‐size differences between males and females may not be 
as pronounced (Manjarrez, Contreras-Garduño, & Janczur, 2014). It 
is worth noting that while overall size of prey increases with gape, 
larger species will often drop smaller prey items from their diets, 
which is most pronounced in fish-eating snakes (Arnold, 1993; 
Godley, McDiarmid, & Rojas, 1984; Plummer & Goy, 1984) that also 
happen to be the largest species in Thamnophiini.

When male–male competition, finding mates, or epigamic se‐
lection does not drive SSD (Shine, 1993), it is possible that ad‐
aptation to distinct niches by sex is selected (Slatkin, 1984). For 
all Thamnophiini, however, there are no recorded instances of 
intraspecific female or male combat (Shine, 1994). One result of 
selection into distinct niches is that SSD in gape evolved in re‐
sponse to competitive displacement (Shine, 1991), though we note 
that this would indicate that males and females compete for lim‐
ited resources (Shine, 1986), something generally not noticed in 
snakes, and would predict that gape and SVL should not be well 
correlated. More likely, gape and body size are the result of sex‐
ually selected dimorphism known to yield differences in habitat 
or prey size between the sexes allowing more efficient feeding 
(Shine, 1986, 1993). Sexual dimorphism in head size is associated 
with differences in prey size for many unrelated clades of snakes 
(Meik, Setser, Mocino‐Deloya, & Lawing, 2012; Shine, 1991, 1994). 
This in turn may ultimately be driven by fecundity selection, de‐
scribed previously within some species of watersnakes (Semlitsch 
& Gibbons, 1982). Here, we show that increases in body sizes are 
associated with increased litter sizes (Figure 1d) and, importantly, 
this is also associated with increased neonate size. Both sizes of 
clutch and neonates increase allometrically with female body size. 
Therefore, reproductive output is not constrained by mass; overall 
neonate size does not remain constant with changing litter sizes. 
While it is possible for selection to increase fecundity by increas‐
ing reproductive frequency (Bull & Shine, 1979), this has not been 
recorded in these snakes, where reproduction takes place only 
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one time per year (Gibbons & Dorcas, 2004; Rossman et al., 1996). 
For Thamnophiini, the standard outcome of fecundity selection 
demonstrates that selection for larger female gapes and larger or 
longer body sizes translates into increased numbers of offspring 
(Braña & Brana, 1996; Darwin, 1871; Olsson, Shine, Wapstra, 
Ujvari, & Madsen, 2002; Valdecantos, Lobo, Perotti, Moreno 
Azócar, & Cruz, 2019). Likely, sexual dimorphism in Thamnophiini 
is the result of sexual selection on gape and diet for enhanced en‐
ergy expenditure needed to increased fecundity and neonate size.

In spite of a strict interpretation of Rensch's rule, we have estab‐
lished tight links among evolution of SSD, interspecific allometry in 
key traits, and increased fecundity. While this pattern is apparent in 
New World natricines, it is unknown if female-biased SSD follows a 
male‐biased SSD pattern in other snakes families, though females 
are generally larger in most clades of snakes (Shine, 1991). In those 
snake taxa with male‐biased SSD, it is also unclear if they follow 
Rensch's rule in instances with known male competition. Further 
comparative phylogenetic work is therefore needed to assess the 
degree of SSD with body size given behavior and fecundity across 
most snake subfamilies and families.

For Thamnophiini, we show no major shifts in SVL, TL, and gape 
across phylogeny (Figure 2). This indicates that the trend here, where 
female‐biased SSD follows male‐biased SSD for Rensch's rule, is not 
being driven by outlier clades showing extreme traits shifts. Some 
clades, like the large watersnakes, Nerodia, do show some of the most 
extreme differences in these traits between sexes and less well‐fit 
models (k = 1, 2; Figure 2) can recover this clade as having a phyloge‐
netic shift in SSD. Similar to some members of Thamnophis, Nerodia 
is composed of generally larger and more aquatic snakes, has known 
interspecific dietary differences in prey size, and females of at least 
some species prefer larger fishes (Greene et al., 1994; Mushinsky et al., 
1982; Rossman et al., 1996; Shine, 1991, 1993; White & Kolb, 1974).

Slopes are different among the traits examined here, with gape 
showing the most extreme allometry (Figure 1) suggesting some inde‐
pendence in the evolution of SSD among these features. From a func‐
tional context, this is not unexpected given that unique parts of the 
cranium, body, and tail show distinct modularity (Klaczko, Sherratt, & 
Setz, 2016; Klingenberg, 2008; Polly, Head, & Cohn, 2001). Given that 
the skull itself is modular and yet integrated for feeding, it is unclear 
which cranial elements are selected to increase gape and if these ele‐
ments become uniformly larger in species showing greater SSD.

To better understand how SSD has evolved in snakes, future work 
should consider a more detailed appraisal of morphology. Clearly 
computed tomography scanning (CT and micro‐CT) efforts could 
identify exactly what structures or muscles are being selected to 
generate head shape differences and how these change ontogenet‐
ically. Variation in these traits in turn could be addressed in a larger 
phylogenetic context to better understand how changes or even re‐
versals in SSD trends are associated with intersexual ecologies and 
behaviors over the snake tree of life. Finally, integrating sources of 
geographic variation may be useful to determine how patterns of 
SSD are manifested over the landscape given Berghman's clines and 
Rensch's rule (Blanckenhorn, Stillwell, Young, Fox, & Ashton, 2006).
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