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Time‑lapse monitoring of fertilized 
human oocytes focused 
on the incidence of 0PN embryos 
in conventional in vitro fertilization 
cycles
Tatsuya Kobayashi1*, Hiroshi Ishikawa1, Kumiko Ishii1, Asuka Sato1, Natsuko Nakamura1, 
Yoshiko Saito1, Hisataka Hasegawa2, Maki Fujita3, Akira Mitsuhashi1,4 & Makio Shozu1

We aimed to investigate why the incidence of embryos derived from oocytes with no pronuclei (0PN) 
decreases using time-lapse monitoring (TLM) versus fixed-point assessment in conventional IVF 
cycles. We analyzed 514 embryos monitored with TLM 6–9 h after insemination and 144 embryos 
monitored using microscopic assessment 18–21 h after insemination. The primary endpoint of 
this study was the incidence of 0PN-derived embryos in short insemination followed by TLM. The 
secondary endpoint was the duration of insemination. As exploratory endpoints, we analyzed the 
blastulation rate and cryo-warmed blastocyst transfer outcome of embryos with early PN fading, 
whereby PN disappeared within < 20 h following the initiation of insemination. The incidence of 
0PN-derived embryo reduced more significantly through TLM than through fixed-point observation. 
The microscopic assessment time was more significantly delayed in the 0PN-derived embryo than that 
in the 2PN-derived embryo. The embryo with early PN fading formed good-quality blastocysts, and 
their pregnancy outcomes were similar to those of other embryos. Most 0PN-derived embryos in the 
fixed-point assessment might have resulted from missed observation of PN appearance in the early-
cleaved embryos. TLM or strict laboratory schedule management may reduce 0PN-derived embryos by 
reducing missed PN observations.

The appearance of pronuclei (PN) in oocytes is widely used to assess fertilization in human in vitro fertiliza-
tion (IVF) programs. Oocytes showing two pronuclei (2PN), 17–20 h after insemination, are judged here as 
normally fertilized, and blastocysts that develop from the 2PN-derived embryos are transferred to the uterus. 
Most oocytes showing no pronucleus (0PN) during PN assessment are unfertilized, but a small number of oocytes 
judged as 0PN continue to grow to the first cleavage stage, so-called 0PN-derived embryos. The primary reason 
for 0PN-derived embryos is thought to be due to PN being overlooked in the microscopic assessment at a fixed 
time point1. Some 0PN-derived embryos develop into morphologically normal blastocysts, and there are reports 
of healthy babies being born from their transfer1–10. However, transfer of the 0PN-derived embryo is not recom-
mended as per the European Society of Human Reproduction and Embryology (ESHRE) guidelines; thus, most 
of them are discarded without being transferred11.

PN fading of normally fertilized oocytes occurs approximately 23–25 h after insemination, and the PN of 
fast-growing embryos may fade earlier than those of normally growing embryos12,13. These growth-accelerated 
embryos may account for the apparent 0PN-derived embryos when PN is assessed by microscopic fixed-point 
observation. Time-lapse monitoring (TLM) helps identify the morphokinetics of cultured oocytes and embryos, 
and could potentially prevent missed PN observations by facilitating the continuous observation of the mor-
phology of the oocytes as well as PN appearance14. Since the TLM system is expensive, clarifying the cause of 
0PN embryo development and obtaining information for the application of fixed-point observation may help 
facilitate better management of their resources while achieving favorable outcomes.
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In this study, we retrospectively compared the incidence of 0PN-derived embryos using TLM and microscopic 
fixed-point observation for PN assessment in conventional IVF (cIVF) cycles. The primary endpoint of this 
retrospective study was the incidence of 0PN-derived embryo in short insemination followed by TLM, which 
indicated that the occurrence of a 0PN-derived embryo was due to missed PN observation. We analyzed the dura-
tion of insemination and the early morphokinetics of embryos as secondary endpoints to clarify the conditions 
under which 0PN embryos develop. Finally, as exploratory endpoints, we analyzed the developmental potential 
as well as the outcomes of transferring embryos in which the PN faded within 20 h of initiating insemination. 
These endpoints indicate the clinical value of embryos with early PN fading.

Methods
Study population.  This retrospective, observational cohort study investigated the IVF cycles of couples 
who had undergone the cIVF programs from 2016 to 2020 at Chiba University Hospital, Chiba, Japan. We per-
formed 238 cIVF cycles during this period. We switched the insemination and fertilization monitoring protocols 
from long insemination followed by the microscopic fixed-point observation to short insemination followed by 
TLM in March 2017. Identical insemination media were used for all IVF procedures in this study. We analyzed 
197 cIVF cycles obtained from 101 couples undergoing cIVF treatment at our hospital. Cases with an insemi-
nation time of 18–21 h were assigned to the fixed-point observation group (33 couples, 48 cycles), while cases 
with an insemination time of 6–9 h were assigned to the TLM group (77 couples, 149 cycles). Nine couples were 
included in both groups as thewy underwent separate IVF cycles using fixed-point observation and TLM. We 
excluded those cycles in which the insemination time was neither 18–21 nor 6–9 h (< 6 h = 1 cycle, 9–18 h = 38 
cycles, 21 h <  = 2 cycles).

Ovarian stimulation, oocyte retrieval, cIVF, and assessment of PN appearance.  Ovulation 
was induced by both controlled ovarian stimulation and minimal ovarian stimulation. We used recombinant 
follicle-stimulating hormone (Gonal-f, Merck, NJ, USA) and human menopausal gonadotropin (Ferring, Fer-
ring pharmaceuticals, Switzerland) for controlled ovarian stimulation, and final oocyte maturation was induced 
using 9000  IU of human chorionic gonadotropin (HCG Mochida, MOCHIDA PHARMACEUTICAL CO., 
LTD., Tokyo, Japan) at the largest follicle grew to 18 mm in diameter. We prescribed a daily dose of oral clo-
miphene citrate (CLOMID tablet, Fuji Pharma Co., Ltd., Tokyo, Japan) for minimal ovarian stimulation, and 
final oocyte maturation was induced by nasal gonadotropin-releasing hormone agonist spray (Suprecur nasal 
solution 0.15%, Sanofi, Paris, France) depending on the diameter of the dominant follicle (≥ 20 mm) and serum 
estrogen levels (200 pg/ml/follicle). Approximately 34 h after inducing oocyte maturation, we retrieved oocytes 
by aspirating follicles using a 23–20-18G tapered needle (cat. OPU-A80L 18–20-22G300B; Kitazato Corpora-
tion, Shizuoka, Japan), guided by transvaginal ultrasonography. We partially cut away the cumulus cells from 
the cumulous-oocyte complexes using a 23G needle, examined the first polar body under a stereomicroscope 
(IX-71, OLYMPUS, Tokyo, Japan), and used the oocytes at metaphase I and II for cIVF. The oocytes were first 
transferred into 1 mL of ORIGIO Sequential Fert (cat. 83,020,060, CooperSurgical Fertility and Genomic Solu-
tions, Målov, Denmark) and preincubated for 3 h until the insemination procedure. For the fixed-point observa-
tion group, we added 5 or 10 million spermatozoa into a culture dish and co-incubated them with the oocytes 
at 37 °C, with 6% CO2 and 5% O2 in a multi-gas incubator (BL-43MD, TOSC, Tokyo, Japan) for 18–21 h before 
assessing the appearance of the PN. For the TLM group, after 3 h of preincubation, we conducted insemination 
for 6–9 h and transferred the oocytes to the TLM incubator (EmbryoScope, Vitrolife, Gothenburg, Sweden). 
After insemination in both groups, we denuded the attached cumulus cells and the extra sperm from the oocytes 
by gently pipetting them using glass microcapillaries. We assessed the PN appearance under a microscope (IX-
71, OLYMPUS) in the fixed-point observation group and then transferred all oocytes into EmbryoSlide culture 
dishes (cat. FT-S-ES-D; Vitrolife, Gothenburg, Sweden). In contrast, in the TLM group, we assessed PN appear-
ance using EmbryoViewer (Vitrolife). We judged oocytes with two pronuclei as having undergone normal ferti-
lization. These were subsequently cultured to the blastocyst stage and cryopreserved. After moving to the time-
lapse incubator, the appearance of pronuclei was continuously monitored by TLM in both groups. We classified 
the cleaved embryos lacking PN at fixed-point observation or during TLM for 48 h after the commencement of 
insemination as 0PN-derived embryos. We classified failed cleavage oocyte lacking PN as true 0PN (unfertilized 
oocyte) in both groups.

Embryo culture in EmbryoScope and the annotation of TLM.  We cultured embryos to the blasto-
cyst stage using Continuous Single Culture Complete (cat. 90,165; FUJIFILM Irvine Scientific, Santa Ana, CA, 
USA). Nine focal plane images were taken every 10 min using EmbryoScope for the TLM. We recorded the time 
from the initiation of insemination to the fading of both PNs as the time of PN fading (tPNf), and time from the 
initiation of insemination to the first cell cleavage as t2, according to the ESHRE guidelines for embryo monitor-
ing, using the Embryo Viewer15. We continued these evaluations for 48 h after insemination.

Frozen‑thawed embryo transfer.  We evaluated the blastocysts in line with the Gardner criteria and 
regarded grade 4BB or higher blastocyst as good-quality blastocysts16. We cryopreserved all good-quality blas-
tocysts by vitrification using the Cryotop Safety Kit (Vitrification Kit, cat. 82,516–82,520; Kitazato Corporation) 
according to the manufacturer’s protocols. After warming with the Cryotop Safety Kit (Thawing Kit, cat. 82,522, 
Kitazato Corporation), we later transferred the single cryopreserved good-quality blastocyst under transvaginal 
ultrasound guidance using an embryo transfer catheter (Kitazato Corporation). We confirmed implantation by 
detecting a gestational sac using transvaginal ultrasonography.
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Subgroup analysis.  ESHRE recommends that fertilization check be performed by PN assessment at 
16–18 h after insemination according to the ESHRE/Alpha Istanbul consensus17. However, most IVF centers 
perform PN assessment after 16–20 h from insemination for convenience of clinical work10. Therefore, in this 
study, we defined embryos in which tPNf was < 20 h as embryos with earlier PN fading. We compared the blasto-
cyst development rate, good blastocyst rate, implantation rate, and live birth at single cryo-warmed good-quality 
blastocyst transfer cycles between the early PN fading embryos and others.

Statistical analysis.  Statistical analyses were performed using JMP Pro version 15.0.0 (SAS Institute Inc., 
Cary, NC, USA). We performed the Chi-square test and Fisher’s exact test to compare patient characteristics and 
PN number, and the Wilcoxon test to compare patient age, mean number of inseminated oocytes, insemination 
time, tPNf, and t2 between the two groups. We also analyzed the relationship between tPNf and t2. In addition, 
we performed the Chi-square test and Fisher’s exact test to assess the developmental ability and subsequent IVF 
outcomes of the embryos. We considered p-values of < 0.05 as statistically significant.

Human rights statement and informed consent.  This study was performed in accordance with the 
Declaration of Helsinki. This study was reviewed and approved by the Biomedical Research Ethics Gradu-
ate School of Medicine, Chiba University (Approval reference No. 3711). Due to the retrospective nature of 
the study, the requirement for written informed consent from each individual was waived by the Biomedical 
Research Ethics Graduate School of Medicine, Chiba University. Consent for this study was obtained via an opt-
out approach through our hospital website.

Results
Incidence of 0PN‑derived embryos in cIVF cycles.  The patient characteristics are summarized in 
Table  1. There were no significant differences in patient age between the TLM and fixed-point observation 
groups. However, indication for IVF and the proportion of controlled ovarian stimulation cycles significantly 
different between the TLM and fixed-point observation groups. The mean numbers of inseminated oocytes 
per cycle were 3.5 ± 3.9 in the TLM group and 3.0 ± 2.9 in the fixed-point observation group (p = 0.2526). We 
observed 0PN-derived embryos in 5 out of 48 cycles in the fixed-point observation group.

The outcome of PN observed in each group is summarized in Table 2. We observed that there were no 0PN-
derived embryos in the TLM group, whereas there were 12 0PN-derived embryos out of the 144 oocytes (8.33%) 
in the fixed-point observation group. The proportion of the 2PN-derived embryos tended to be higher in the TLM 
group than in the fixed-point observation group (67.1% vs. 61.8%), although the difference was insignificant. 
The ratio of 1PN, 3PN, 4PN, or more-derived embryos and unfertilized oocytes was not significantly different 
between the groups.

Clinical outcome of 0PN‑derived embryos in cIVF cycles.  The clinical outcome of the 0PN-derived 
embryos is summarized in Table 3. We cultured 12 0PN-derived embryos for the blastocyst stage. Following the 
culture, six of them developed to the blastocyst stage, and five were good-quality embryos. With the patients’ 
consent, two 0PN-derived embryos were transferred singly, and two live babies were obtained.

Morphokinetic analysis and correlation between tPNf and t2 of embryos.  We speculated that 
the main reason for 0PN-derived embryos developing by the microscopic fixed-point observation was missed 
PN observation, which was thought to be caused by the early PN fading of the growth-accelerated embryos. To 

Table 1.   Patient characteristics and ovarian stimulation protocol. (1) Female factors include women with 
ovulation disorders, tubal factors, and uterine anomalies, or otherwise unexplained infertility. (2) All patients 
who had a male factor were indicated for ICSI. (3) Controlled hyperstimulation was based on recombinant 
follicle-stimulating hormone injections and nasal gonadotropin-releasing hormone agonist sprays. (4) Minimal 
stimulation was based on oral clomiphene citrate tablets. Age is shown as the mean ± standard deviation, and 
all other data are shown as number (percentage). IVF in vitro fertilization; PN pronuclei; TLM time-lapse 
monitoring.

TLM Fixed-point observation P-value

Patient number 77 33

Patient age (years) 37.4 ± 4.50 37.8 ± 4.39 0.6354

Indication for IVF

Female factors(1) 53 (68.8) 29(87.9) 0.0356

Male factors(2) 0 (0.0) 0 (0.0) –

Others 24 (31.2) 4(12.1) 0.0356

Cycle number 149 48

Ovarian stimulation protocol

Controlled hyperstimulation(3) 64 (42.3) 11 (22.4) 0.0129

Minimal stimulation(4) 76 (51.0) 34 (71.4) 0.0161

No stimulation 9 (6.7) 3 (6.1) 1.0000
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clarify the deflection of observation time in the microscopic observation group, we compared the time from the 
initiation of insemination to the fixed-point observation between the 0PN-derived embryos and 2PN-derived 
embryos. The time was significantly longer (p = 0.0021) in the 0PN-derived embryos (mean ± standard deviation 
[SD] = 20.5 ± 0.44 h, n = 12, [range; 19.9–21.0 h]) than that in the 2PN-derived embryos (mean ± SD = 19.9 ± 0.66 h, 
n = 89, [range; 18.5–21.0 h]).

Next, we measured the t2 and tPNf of 2PN-derived embryos in the TLM group and compared them with 
the t2 of the 0PN- and 2PN-derived embryos in the fixed-point observation group. In the fixed-point observa-
tion group, tPNf and t2 could not be analyzed because TLM was temporarily interrupted in five 2PN embryos 
due to a mechanical error (out of focus). No PN fading occurred in two and six embryos in the fixed-point 
observation and the TLM groups, respectively. The t2 of 0PN-derived embryos in the fixed-point observation 
group (mean ± SD = 22.4 ± 1.46 h, n = 12, [range; 20.2–25.6 h]) reached significantly sooner (p < 0.0001) than 
that of a 2PN-derived embryo in the fixed-point observation group (mean ± SD = 27.3 ± 3.32 h, n = 82, [range; 
22.5–40.0 h]) and 2PN-derived embryo (mean ± SD = 27.4 ± 6.4 h, n = 339, [range; 19.9–75.1 h]) in the TLM 
group (Fig. 1A).

In the TLM group, the mean tPNf, including 2PN, 1PN, 3PN, and more, was 25.88 ± 9.72 h (95% confidence 
interval range; 24.95–26.81 h [range; 17.5–120.8 h]). The mean tPNf of the 2PN embryo was 25.2 ± 8.12 h (n = 341, 
95% confidence interval range; 24.28–26.02 h [range; 17.5–120.8 h]) in the TLM group. Figure 1B demonstrates 
the proportion of embryos showing PN fading at 18–22 h from the initiation of insemination in both groups. 
In the TLM group, the proportion of embryos in which the PN faded within 18 h after insemination was 0.2% 
(1/514, 2PN = 1) but increased to 7.59% (39/514, 2PN = 36, 1PN = 2, and 3PN = 1) at 20 h after insemination. We 
observed a positive correlation between t2 and tPNf of cleaved 2PN-derived embryos before 48 h after insemina-
tion in the TLM group (Fig. 1C, y =  − 1.74 + 0.97x, r = 0.95). The mean t2-tPNf of these embryos was 2.55 ± 0.88 h 
(n = 331, [range; − 0.5–9.8 h]).

Clinical outcome of early PN fading embryos in TLM group.  To clarify the developmental ability of 
the 2PN-derived embryos with earlier PN fading, we compared the rates of blastocyst development, good-qual-
ity blastocyst, implantation, and live birth after single cryopreserved blastocyst transfer between the embryos 
in which tPNf was < 20 h (n = 36) and others (n = 301) in the TLM group. The patient characteristics are sum-
marized in Supplementary Table S1. There were no significant differences in patient age and indication for IVF 
between the TLM and fixed-point observation groups. We excluded eight embryos from this analysis because 
these embryos were transferred at the cleavage stage. The rates of blastocyst development, good-quality blasto-
cyst development, implantation, and live birth were not significantly different between the two groups (Table 4).

Discussion
This study demonstrated that the incidence of 0PN-derived embryos significantly reduced after introducing 
short insemination followed by TLM. Sequential observation of the embryos using TLM revealed that the PN of 
growth-accelerated embryos fades earlier than that of normal-growing embryos; thus, most of the 0PN-derived 

Table 2.   Pronuclei observation in each group. An unfertilized oocyte is defined as 0PN with cessation of 
cleavage. Data are shown as numbers (percentages). PN pronuclei; TLM time-lapse monitoring.

TLM Fixed-point observation P-value

2PN 345 (67.1) 89 (61.8) 0.2742

0PN before cleavage 0 (0) 12 (8.33)  < 0.0001

1PN 19 (3.70) 4 (2.78) 0.7983

3PN 50 (9.71) 14 (9.72) 1.0000

4PN or more 16 (3.11) 6 (4.17) 0.5987

Unfertilized oocyte 85 (16.6) 19 (13.2) 0.3679

Total 514 (100.0) 144 (100.0)

Table 3.   Clinical outcome of 0PN-derived embryos in the fixed-point observation group. Data are expressed 
as numbers (percentages).

n (%)

No. of cultured 0PN-derived embryo 12

No. of blastocyst (%) 6 (50.0)

No. of good-quality blastocyst (%) 5 (41.7)

No. of blastocyst transfer 2

No. of embryo implanted (%) 2 (100)

No. of live birth (%) 2 (100)
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embryos may result from missed PN observations in growth-accelerated embryos when using a fixed-point 
observation. We also identified that in the embryos showing early PN fading, blastocyst development ability and 
pregnancy outcomes were similar to those showing later PN fading.

Although many observations of PN-stage embryos by TLM have been reported so far, no reports have focused 
on the incidence of 0PN embryos. The incidence of 0PN-derived embryos was relatively high in our labora-
tory before the introduction of TLM for oocyte PN assessment, and it was 8.3% in the fixed-point observation 
group during the study period. This rate is comparable to that from previous reports2,18,19. All the 0PN-derived 
embryos were detected in the cases in which PN was microscopically assessed later than 20 h, corresponding to 
approximately 15% of the total in the fixed-point observation group. TLM for the PN assessment revealed that 
PN in 7.59% of embryos (39/514) had already disappeared at 20 h after insemination (Fig. 1B). The mean t2 of 
the 0PN-derived embryos reached 4.8 h sooner than that of the 2PN-derived embryos. Moreover, two healthy 
babies were born following the 0PN-derived blastocyst transfer during the study period. These results suggest 
that the early fading of PN in growth-accelerated embryos results in the appearance of PN being overlooked and 
misjudged as a 0PN-derived embryo. Recently, Fu et al. reported that rapidly developed 0PN-derived embryos 
have better developmental ability8, and these findings are consistent with those of our present study. The incidence 
of 0PN embryos in cIVF may be affected by human errors, and this can be reduced by making minor changes 

Figure 1.   Time from insemination to first cleavage, the proportion of PN faded embryo, and correlation 
between t2 and time of PN fading. (A) The time from the initiation of insemination to first cleavage (t2) in 0PN- 
and 2PN-derived embryos in the fixed-point observation group and 2PN-derived embryos in the TLM group 
(n = 12, 82, and 339, respectively). The 0PN-derived embryos had a significantly earlier t2 than the 2PN-derived 
embryos in both groups. Data were analyzed using the Wilcoxon test. **P < 0.0001. (B) The proportion of PN 
faded embryo after 18–22 h from insemination. In the TLM group, the proportions of PN faded embryo at 
18–22 h from insemination were 0.20% (1/514, 2PN = 1), 2.5% (12/154, 2PN = 12, 3PN = 1), 7.59% (39/514, 
2PN = 36, 1PN = 2, 3PN = 1), 15.6% (80/514, 2PN = 72, 1PN = 3, 3PN = 4, 4PN or more = 1), and 25.5% (131/514, 
2PN = 115, 1PN = 4, 3PN = 9, 4PN or more = 3), respectively. In the fixed-point observation group, proportions 
of PN faded embryos were 3.6% (5/139, 2PN = 5) at 21 h after insemination and 10.8% (15/139, 2PN = 15) 
at 18–22 h post-insemination. (C) The correlation between t2 and time of PN fading (tPNf) of 2PN-derived 
embryos in the TLM group (n = 331). There was a significant positive correlation observed between t2 and tPNf. 
PN pronuclei; TLM time-lapse monitoring.

Table 4.   Clinical outcome of earlier PN fading embryos in TLM group. Data are shown as numbers 
(percentages). PN pronuclei; TLM time-lapse monitoring; tPNf time of PN fading.

tPNf ≤ 20 h tPNf > 20 h P-value

No. of cultured 2PN-derived embryo (total) 36 309 –

No. of cultured 2PN-derived embryo (to blastocyst stage) 36 301 –

No. of blastocyst (%) 27 (75.0) 202 (67.1) 0.3377

No. of good-quality blastocyst (%) 17 (47.2) 134 (44.5) 0.7578

No. of good-quality blastocyst transfer 4 77 –

No. of embryo implanted (%) 3 (75.0) 21 (27.3) 0.0757

No. of live birth (%) 1 (25.0) 17 (22.1) 1.000
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to the laboratory protocols. Tightened observation time of 17–20 h after insemination may help reduce missed 
PN observations in the routine laboratory work.

Short insemination is required to modify the PN assessment protocol from the traditional fixed-point obser-
vation to TLM; therefore, the safety, harmfulness, and impact of PN fading in short insemination protocols 
should be addressed. Short insemination can prevent damage to the embryo from reactive oxygen species derived 
from excess spermatozoa20,21. A systematic review and meta-analysis revealed that short insemination time was 
associated with higher pregnancy rates than standard insemination, without affecting normal and abnormal 
fertilization rates22. Thus, we considered that the short insemination time in the TLM protocol was unlikely to 
affect the process negatively. The incidence of normal and abnormal fertilization rate was not significantly differ-
ent between the fixed-point observation and TLM groups, except the incidence of 0PN-derived embryos. These 
results further support the validity of the modified TLM combined with short insemination.

The developmental ability of embryos showing early PN fading remains a topic of debate. An early fading 
of PN is a predictor of implantation in the early-stage embryo transfer cycle derived from 2PN embryos23–25. In 
contrast, it has been reported that there were no cases of pregnancy that occurred following fresh embryo transfer 
of embryos in which PN fading occurred before 20.75 h after insemination26. Embryos with early PN fading had 
a similar blastocyst development potential, as well as similar implantation and live birth rates after cryopreserved 
blastocyst transfer than embryos with later PN fading in this study. Although there was no statistically significant 
difference, the implantation rate was higher in embryos that showed early PN fading than in other embryos. This 
indicates that embryos with earlier PN fading are equally capable of normal development. Further studies are 
needed for the embryo transfer outcome of the embryos with early PN fading.

There are several limitations in this study. First, this was a single-arm retrospective study conducted on a small 
sample size. Although we did not observe any 0PN-derived embryos among a total of 514 inseminated oocytes 
in the TLM group, these results do not entirely refute the existence of true 0PN-derived embryos. Further accu-
mulation of cases is necessary to draw a definitive conclusion. Second, we had to change the insemination time 
from 18–21 to 6–9 h for TLM. This might be a confounding factor for the incidence of 0PN-derived embryos. We 
cannot completely exclude the possibility that the short insemination time was related to the reduced incidence of 
0 PN-derived embryos in the TLM group. Third, intracytoplasmic sperm injection (ICSI) cycles in patients with 
male factor infertility were not included in this study. A small number of 0PN-derived embryos were observed 
in the ICSI cycles, even when the oocyte was immediately transferred to the time-lapse incubator after perform-
ing ICSI (data not shown). Chen et al. reported that 0PN-derived embryos had lower blastulation potential in 
ICSI cycles than in IVF cycles5. This finding indicates that 0PN-derived embryos may develop through other 
mechanisms related to male factors other than the missed PN observations. Another limitation is that we did not 
perform genetic testing for the 0PN and 0PN-derived embryos since preimplantation genetic testing (PGT) is 
not allowed in IVF without some facilities in Japan. Therefore, it is unknown whether the oocytes we considered 
unfertilized were haploid. Although the 0PN-derived embryos we transferred reached live birth, PGT should be 
considered as much as possible for 0PN-derived embryo transfer, taking into account abnormal fertilization5.

In summary, most of the 0PN-derived embryos in the microscopic fixed-point assessment may result from 
missed observation of PN appearance in early-cleaved embryos. TLM for human oocytes after short-term insemi-
nation is among other options of performing fertilization checks by examining the appearance of PN in cIVF 
cycles. However, 0PN can be reduced by strict schedule management of assisted reproductive technology labora-
tory without using TLM. The embryos with early PN fading have similar developmental potential and IVF out-
comes as those whose PN fade later in frozen-thawed embryo transfer derived from cIVF. Therefore, preventing 
missed observation of PN appearance by TLM or strict laboratory schedule management may contribute to an 
increased number of transferable embryos in daily laboratory work.
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