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A B S T R A C T

In dryland areas, the increasing demand for sustainable production needs to effectively utilize and manage res-
idue. The aim of this study was to evaluate the potential, quality, and quantity assessment of sesame residue in
dryland areas. Quantification of residue potential was performed at <650, 650–850, 850–1050, and >1050 m
elevation by summing the weight of stack, standing residue, and straw. Whereas, assessment in the residues
nutrient content was performed at <650, 650–850, 850–1050, and >1050 m elevation and age of residue (fresh
and old). The TN, S and P in the residue were determined by Kjeldahl digestion Method, wet acid digestion
Method, and two percent acetic acid (CH3COOH) as extracting to extract PO4 respectively. Atomic absorption
spectrophotometer was used to determine micronutrient cations such as Fe, Zn, and Cu. B was determined by
extraction using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids to plant tissue digests. The nutrient
potential was calculated by multiplying nutrient content in residue with the amount of residue estimated ha�1. R
software (R version 3.5.2) was used to analyze the data. The result indicates that during the last 20 years, the total
cultivated land size covered by sesame was 170,000 (ha) and total grain yield of 0.09 Mt. This implies that the size
of cultivated land put under sesame cultivation has increased by 79.5%. On average 2.01 t ha� 1 of residue was
produced annually and about 0.34 Mt yr�1 of residue was harvested from sesame production. The age of residue
differed significantly (p < 0.05) on TN, S, P, Zn, Fe, Cu, and B content of sesame residue. Nutrient content in
residue was ranged from 34.55–24.53 g TN/kg, 9.6–4.2 g S/kg, 5.2–4.3 g P/kg, 23–14.6 mg Zn/kg, 130.23–94.78
mg Fe/kg, 17–6.2 mg Cu/kg and 10.67–9.12 mg B/kg during fresh and old residue analysis respectively. Elevation
differed significantly (p < 0.05) for TN, S, P, Zn, and Fe. Nutrient content in residue was ranged from 27.1–32.2 g
TN/kg, 6–8.5 g S/kg, 6.6–4.1 g P/kg, 20.8–17 mg Zn/kg, 109–116 mg Fe/kg, 12.9–10.4 mg Cu/kg and 10.1–9.6
mg B/kg for the elevation range of <650 m and >1050 m respectively. The TN, S, P, Zn, Fe, Cu, and B potentially
produced from sesame residue were in the range of 49.4–69.6 kg N ha�1, 8.5–19.3 kg S ha�1, 8.7–10.5 kg P ha�1,
294–463 mg Zn ha�1, 1.99–2.62 g Fe ha�1, 125–342 mg Cu ha�1 and 183–214 mg B ha�1 respectively. This study
clearly concludes that fresh and old residue as well as elevation are critical factors that need to be considered for
exploring crop residue and its nutrient potential, quality, and quantity aspects in dryland farming systems.
1. Introduction

The ecosystems over drylands are fragile and sensitive to many
changes such as climate, agricultural, farming, and cropping practices
(Reynolds et al., 2007; Reed et al., 2012). Expansion of dry-lands asso-
ciated with an increase in aridity has a direct consequence on desertifi-
cation and farming (i.e., land degradation in arid, semi-arid, and dry sub
-humid areas), and is a central issue for sustainable development, espe-
cially in the face of population growth (Reynolds et al., 2007). Arid and
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semi-arid regions comprise almost 41% of the world's land area and are
inhabited by some 700 million people and approximately 60% of these
dry-lands are in developing countries (Parr et al., 1990; Feng et al.,
2013).

Agriculture has undergone drastic changes over the last few decades,
and farms have increasingly become more specialized and more inten-
sive, with arable production often being concentrated in different regions
of a country (McNeill et al., 2005). Agricultural activities (e.g.,
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deforestation, burning, plowing, and intensive grazing) and expansions
contribute substantially to the carbon pool (Lal and Kimble, 1997).

Agricultural production generates a large number of crop residues
approximately 4 billion metric tons per year globally (Lal, 2005), and 1
billion tons of carbon in the form of crop residues may be available
(Metzger and Benford, 2001). Crop residues are often mistakenly regar-
ded as “agricultural waste” or something of little or no value, but they are
not a “waste” (Lal, 2004). Restoring soil carbon is essential to enhancing
soil quality, sustaining and improving food production, maintaining
clean water, and reducing atmospheric CO2 (Lal et al., 2004). Some
general effects of crop residues left on the soil surface are protected from
erosion forces, maintains soil organic matter, addition to the available
pool of nutrients, and improve crop yield (Pimentel et al., 1995; Clapp
et al., 2000; Beri et al., 1995; Karlen et al., 1994; Linden et al., 2000).

Crop residue provides food and habitat for soil fauna (earthworms),
recycles plant nutrients, improves crop production, biofuel production,
and enhances biodiversity (Lal, 2004; Viator et al., 2005; Bahadur et al.,
2015). Some view the use of crop residues for biofuel production as an
opportunity to give these “agricultural wastes” an economic value while
reducing the over-dependence on fossil fuels without consideration of
maintaining soil carbon, and they are valuable assets when returned to
the soil (Wilhelm et al., 2007). The amount and nutrient content of the
residue is hard to approximate and depends on factors such as time,
tillage, grazing, elevation, temperature, precipitation, and practices
(Gelderman, 2009). Burning of crop residue results a loss of 98–100% of
N, 75% of S, 21% of P, and 35% of K (Gelderman, 2009).

The amount of total residue produced varies from year to year
depending on variations in inter alia weather, water availability, soil
fertility, and farming practices (Bahadur et al., 2015). The potential of
crop residue of major cereals, pulses, oilseeds, and commercial crops for
recycling of valuable plant nutrients for sustained crop production is
enormous (Bahadur et al., 2015). The amount of nutrients in post-harvest
crop residues is highly variable because it is determined by differences
between individual plant species (Torma et al., 2018). Determination of
nutrient content in residue has to be taken into account when calculating
the fertilizer requirement of the subsequent crop in order to achieve
better resource utilization, thereby reducing the risk of eutrophication
and improving farm profits by reducing expenditure on fertilizer
(Bahadur et al., 2015).

Knowledge of the amount and nutrient contents of sesame plant
residues and their potential in terms of plant nutrition regarding the age
of crop reside and elevation is critically important, particularly in dryland
farming. However, virtually no studies have explored the potential,
quality, and quantity assessment of sesame crop residue in dry land
‘vertisol’ where sesame cropping has continuously practiced. Therefore,
the aim of this study was to explore the potential, quality, and quantity of
Figure 1. Location (a) and elevati
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sesame crop residue regarding the age of residue and elevation
differences.

2. Methodology

2.1. Description of the study area

‘Kafta-Humera’ (Figure 1a) is located between 13�450 to 14�280 north
latitude and 36�200 to 37�310 east longitude in ‘Tigrai’ regional state of
Ethiopia. It is bordered by Eritrea and the Sudan Republic in the north
and west, respectively. Most of the area is flat topography with an alti-
tude that ranges between 510–1863 m (Figure 1b) above sea level
(m.a.s.l) and sesame is potentially grown from 500 to 1600 m.a.s.l
(Terefe et al., 2012). The study area has agroecological classes such as
warm moist, warm semi-arid, and warm sub moist low lands (Figure 1a).
It is generally characterized by arid climatic conditions with a mean
annual temperature of 28.3 �C and a mean annual rainfall of 615.5 mm,
which ranges from 300 mm to 800 mm (Figure 2). The rainy season is
limited from June to September.

2.2. Experimental design

Age of residues (Fresh and old) and elevation differences were
considered for the estimation of sesame residue and its nutrient potential.
The age of residue referred herewith as the fresh residue and old residue
to indicate 5 and 200 days old sesame residue left over the surface after
harvest. Whereas, the elevation was classified as <650, 650–850,
850–1050 and >1050 m. This study was carried out in a homogeneous
soil type of ‘vertisol’.

2.3. Crop residue estimation

A 20 years data on sesame cultivation were taken from ‘Kafta-
Humera’Office of Agriculture towards understanding the total cultivated
land that falls under sesame cultivation and the grain yield obtained in
those years. A total of 200 sesame residue samples were used for crop
residue estimation and nutrient analysis. In order to quantify the mass of
sesame residue, 50 samples of the stack and standing residues as well as
straw were taken from each elevation ranges of <650 m, 650–850 m,
850–1050 m and >1050 m. Moreover, the analysis of nutrient content
and potential in sesame residue were taken from 100 residue samples for
each age of residue and 50 residue samples for each elevation difference.
The residue samples were stored in cloth bags. The mass of stack residue
and straw was calculated from the stack remained above the surface in a
unit hectare of selected sesame cultivated land. Whereas, the mass of
standing residue were determined from a plot area 20 (5 � 4) m2 of each
on (b) map of the study area.



Figure 2. Mean monthly rainfall, maximum and minimum temperature.
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selected sesame cultivated land. Collectively, the total mass of sesame
residue was calculated as a sum of the mass of stack, standing residue,
and straw. Stack residues are interpreted as residue gathered in one place
during isolating grain from the residue. Whereas, standing residues are
the bottom parts of the crop that did not cut and remains raised on the
surface after harvest. The mass of sesame residue was calculated ac-
cording to the formula of Bahadur et al. (2015).

Mass of sesame residue¼Mass of stack þMass of standing residueþ Straw

(1)

2.4. Nutrient analysis

Prior to analysis, fresh and old residue plant samples were dried in a
dust-free, forced draft oven at a temperature of 80 �C (176 �F), which is a
temperature sufficient to remove moisture without causing appreciable
thermal decomposition. The dried plant samples were reduced to pass
through a 10-mesh (2-mm) screen to ensure a greater degree of unifor-
mity in sample composition, the tissue was mechanically ground in a ball
mill. Elemental concentration analysis in sesame residue was carried out
for total nitrogen (TN), phosphorous (P), sulfur (S), zinc (Zn), iron (Fe),
copper (Cu) and boron (B). The TN, S, and P in the residue were deter-
mined by Kjeldahl digestion Method (Bradstreet, 1965; Bremner and
Mulvaney, 1982), wet acid digestion Method (Pritchard and Lee, 1984)
and using two percent acetic acid (CH3COOH) as extracting to extract
PO4 as described by Ulrich et al. (1959) respectively.

The procedure outlined by Lindsay and Norvell (1978) was followed
for determining micronutrient cations viz., Fe, Zn, and Cu by using
atomic absorption spectrophotometer. B was determined by extraction
using a mixture of hydrochloric (HCl) and hydrofluoric (HF) acids (van
der Lee et al., 1987). The extract is then filtered through a Whatman 42
filter paper on its equivalent for TN, P, S, Zn, Fe, Cu, and B de-
terminations. Finally, nutrient potential per hectare of sesame residue
was calculated using Gelderman (2009) formula.

Nutrient potential

¼ Amount of nutrient in residue*Amount of residue per hectare (2)

2.5. Data analysis

All the field and laboratory data were analyzed using R software (R
version 3.5.2). Before analysis, normality and homogeneity checking of
the data were performed using the Shapiro-Wilk Test for normality and
Levene's Test for Equality of Variances respectively. Themean differences
among season and elevation categories were tested using analysis of
variance (Two Way ANOVA). Pearson correlation analysis was also done
to assess the correlation among nutrients concentrations in sesame
residue.
3

3. Results and discussion

3.1. Nutrient composition of vertisols of the study sites

The soil laboratory analysis conducted for the composite soil samples
taken from a depth of 0–20 cm results indicated that the proportions of
soil particle size distributionwere 47.7,47.4,46.6, and 45.7 for clay, 25.7,
30.1, 27.9, and 29.1 for silt and 22, 17.3, 18.7, and 16.6 for sand at the
altitude of <650, 650–850, 850–1050 and >1050 respectively (Table 1).
TN were 0.12%, 0.12%, 0.11% and 0.11% on<650, 650–850, 850–1050
and >1050 respectively (Table 1) and rated moderate as per Tekalign et
al. (1991). Available P content of the soil on <650, 650–850, 850–1050
and >1050 were 10.5, 10.7, 11.0, and 11.5 mg/kg respectively (Table 1)
and rated as low for plant growth and it is indicative of soil capable of
significant yield responses to application of the appropriate level of the
nutrient.

Similarly, Olsen and Dean (1965) stated as the P content of less than
12 P kg ha�1 in soil indicates a crop response to P fertilizers, between 12
and 24 kg P ha�1 indicates a probable response. The available S nutrient
content of the soil at <650, 650–850, 850–1050 and >1050 were 12.92,
13.42, 14.17 and 15.39 mg/kg respectively (Table 1). Moreover, Zn
nutrient content of soil at <650, 650–850, 850–1050 and >1050 were
39.9, 39.6, 38.0 and 36.0 mg/kg respectively (Table 1). Kiekens (1995)
reported a typical range of zinc in soils of 10–300mg kg�1 with a mean of
50 mg Zn kg�1. Finer texture soils like clay have higher CEC values and
therefore have highly reactive sites and can retain more Zn than lighter
textured soils (Shukla and Mittal, 1980). Furthermore, B content of the
soil at <650, 650–850, 850–1050 and >1050 were 10, 9.8, 9.8 and 8.7
mg/kg respectively (Table 1). As a general rule, B toxicity occurs when
soils contain concentrations greater than 12 mg/kg B (Hall, 2010). Cu
content of the soil at <650, 650–850, 850–1050 and >1050 were 12,
11.4, 10.9 and 10.9 mg/kg respectively (Table 1). In addition, Fe content
of the soil at <650, 650–850, 850–1050 and >1050 were 111.1, 110.9,
110.9 and 110.1 mg/kg respectively (Table 1).

3.2. Sesame area coverage, grain yield, and residue potential

Based on the 20 years data, the result shows that the total average
cultivated land covered by sesame was 170,000 ha which accounts for 44
% of the total cultivated land of 386,364 ha (Figure 3). Accordingly, the
size of sesame cultivated land during 1999 and 2018 was observed
45,918 ha and 223,825 ha respectively. This indicates that the currently
cultivated land covered by sesame has increased by 79.5 % compared
with the cultivated land covered by sesame before 20 years ago showing
that more than the double land size has been brought into sesame
cultivation during this period of time. This result agrees with the report
of Ayana (2015) which stated that the total production area of sesame in
Ethiopia has increased by 61.23 %.



Table 1. Initial soil nutrient composition of Vertisols.

Altitude (m a.s.l) Soil nutrient content Particle size distribution (%)

TN Av.P Av.S Zn B Cu Fe Clay Silt Sand

% mg/kg

<650 0.12 10.5 12.92 39.9 10.0 12.0 111.1 47.7 25.7 22

650–850 0.12 10.7 13.42 39.6 9.8 11.4 110.9 47.4 30.1 17.3

850–1050 0.11 11.0 14.17 38.0 9.8 10.9 110.9 46.6 27.9 18.7

>1050 0.11 11.5 15.39 36.0 8.7 10.9 110.1 45.7 29.1 16.6

Figure 3. Comparison of area coverage and grain yield of sesame over time.

Figure 4. Bar errors showing sesame residue with elevation difference.
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The total annual grain production of sesame was calculated to be 0.09
Mt (Figure 3). The ratio between grain yield and size of cultivated land
covered by sesame was about 5.1. This implies that the annual average
grain yield was 5.1 times greater than the area being covered by sesame.
The increment in the size of cultivated land by sesame and annual vari-
ability in grain yield of sesame may be related to land-use change and
expansion of cultivated land, inconsistency in the use of fertilizer, crop
rotation, and climate variability. A study by Deininger and Byerlee
(2011) revealed that within only 5 years (2004–2009) around 1.2 million
ha of land was converted into arable land in Ethiopia. It was also reported
that during the last 300 years,>50% of the land surface has been affected
by land-use change activities, >25% of forests have been permanently
cleared, agriculture occupies >30% of the land surface (Vitousek et al.,
1997; Hurtt et al., 2006, 2011).

Elevation difference showed a significant (p < 0.05) influence on the
average mass of sesame residue. The average sesame residue obtained at
<650 m, 650–850 m, 850–1050 m, and >1050 m elevation were 26.8,
21.2, 17.5, and 15 qt/ha respectively (Figure 3). Moreover, the highest
(26.8 qt/ha) and lowest (15 qt/ha) values for the average mass of sesame
residue were perceived in the lowest (<650 m) and highest (>1050 m)
elevation respectively. This study revealed that the amount of sesame
residue production increases as elevation decreases due to the accumu-
lation of nutrients in low elevated areas through leaching down and
erosion conditions from the high elevated area that results in high
biomass production and cropping practices such as shifting cultivation,
intercropping and crop rotation. Moreover, due to elevations of great
variability and its influence on microclimate; the production of sesame
crop residue had greatly affected. Charan et al. (2013) has similarly re-
ported that elevation had shown a great variability and its influence on
microclimate that leads to producing different amount of residue. Jain
et al. (2014) has also reported that there was a large variation in plant
residues generation in India due to their cropping intensity, and biomass
productivity (see Figure 4).

Generally, the average mass of sesame residue produced was 20.13
qt/ha. Considering this and the total area of sesame cultivated land, a
total mass of 0.34 Mts of sesame residue were produced. The estimated
sesame residue to grain yield ratio is around 3.7. In reports by Jain et al.
(2014) plant residue to grain ratio varied between 2.0–3.0 for oilseed
4

crops whereas our result show higher by 0.7 considering the maximum
ratio. The possible reasons for the variation could be due to crop-specific
residue estimation, environmental, social, and climatic issues. The esti-
mates of Jain et al. (2014) were also in line with other reports in liter-
ature stated by Pathak et al. (2006, 2010) have estimated 253 Mt of plant
residue generation in India by the year 2010.

3.3. Nutrient concentration and potential in sesame residue

Macro and micronutrient concentration analysis for the type of ses-
ame residue and elevation were performed. The selected elemental
concentration in sesame residue that was analyzed based on the weight of
dry matter includes TN, S, P, Zn, Fe, Cu, and B.

3.3.1. Total nitrogen, sulfur, and phosphorous concentration
TN concentration differed significantly (p < 0.05) with the type of

sesame residue (Table 3). A higher TN concentration was observed in the
fresh residue (34.55 g/kg) than old residue (24.53 g/kg). Similarly, TN
potential of 49.4 kg N ha�1 and 69.6 kg N ha�1 were produced during old
and fresh residue respectively. Moreover, TN concentration at >1050 m
elevation differed significantly (p < 0.05) with <650 m and 650–850 m
elevation (Table 2). However, there was no significant differences in the
TN concentration of sesame among <650 m, 650–850 m, and 850–1050
m elevation. As shown in Table 2; the TN concentration in sesame residue
on <650 m, 650–850 m, 850–1050 m, and >1050 m elevation was 27.1,
28.4, 30.6, and 32.2 g/kg respectively. In this case; the highest (32.2 g/



Table 2. Mean and standard error of elemental concentration with elevation difference (n ¼ 100).

Elevation (m) Dry matter (%) Macronutrient concentration in crop residue on a dry weight basis

TN (g/kg) S (g/kg) P (g/kg) Zn (mg/kg) B (mg/kg) Fe (mg/kg) Cu (mg/kg)

<650 80.9a � 2.06 27.1a � 0.76 6.05a � 0.08 6.15a � 0.08 20.8a � 1.80 10.1a � 0.23 109a � 0.80 12.9a � 0.50

650–850 84.8a � 4.25 28.35a � 0.98 6.05ab � 0.11 5.0ab � 0.11 18.4ab � 1.38 10.1a � 0.23 112ab � 0.38 12.0a � 0.45

850–1050 85.0a � 2.08 30.55ab � 1.55 7.0ab � 0.17 3.9ab � 0.17 18.85ab � 2.84 9.8a � 0.30 113ab � 0.84 11.1a � 0.59

>1050 85.3a � 2.68 32.15b � 0.75 8.5b � 0.08 3.8b � 0.08 16.95b � 1.39 9.6a � 0.50 116b � 0.39 10.4a � 0.93

Note: Margins sharing a letter in the group label are not significantly different at the 5% level.
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kg) and lowest (27.1) values of TN were observed on the highest (>1050
m) and lowest (<650 m) elevation respectively. Collectively, from this
study, it is understood that TN concentration decreased in old residues
and decreased as elevation decreases and increased in fresh residues and
increased as elevation increases (Table 4). The variation for TN con-
centration in sesame residue could be resulted due to the variability on
the loss of substantial amounts of nitrogen (N) in the forms of ammonia
and leaching in the form of nitrate. De Ruijter et al. (2010) has reported
ammonia volatilization was 5–16 percent of the N content of residues
when placed on top of the soil. McNeill et al. (2005) has indicated that
besides leaching of N in the form of nitrate from elevated areas of land,
substantial emissions of N as ammonia are also associated with land
spreading of residues and manures. It was also stated that nitrogenous
fertilizers are the largest single source of GHG emissions from arable
agriculture (Galloway et al., 2008; Smith et al., 2008). Furthermore,
there are reports of the potential loss of N by volatilization during spring
was greater than in years with normal rainfall amounts and represented a
significant portion of aboveground plant N mass (Turner et al., 1997).

As reported in Table 3, the varying age of sesame residue significantly
(p< 0.05) influenced S concentration in sesame residue. The highest (9.6
g/kg) and lowest (4.2 g/kg) values of S concentration in sesame residue
were perceived during fresh and old residue analysis respectively.
Perhaps fresh residue increased S concentration by more than double
compared with the old residue. The S potentially produced from sesame
residue was recorded 8.5 kg S ha�1 to 19.3 kg S ha�1 during old and fresh
residue analysis respectively. This implied that old residues decreased S
concentration by 5.4 g/kg (56.25%) compared with fresh residues
(Table 3). Furthermore, elevation difference significantly (p < 0.05)
influenced S concentration in sesame residue (Table 2 and Figure 5b).
The S concentration has notably recorded as 6.0, 6.1, 7 and 8.5 g/kg for
<650 m, 650–850 m, 850–1050 m and >1050 m elevation respectively
(Table 2). Similarly, the highest elevation (>1050 m) resulted in higher S
concentration and potential than the lowest elevation (<650 m). This
result indicated that the S concentration of sesame residue increases
substantially with increase in elevation and vice versa. In literature, it
was reported that the factors which affect the rate of S emission from
plants include temperature, light intensity, plant age, and plant injury
(Grundon and Asher, 1988; Trust and Fry, 1992). It was also reported
that the S emission from plants in agroecosystems may range from about
0.1 to 3 kg S ha�1 yr�1 (Aneja et al., 1991). However, our study shows a
higher S emission than what was reported by Aneja et al. (1991) and this
may be resulted due to a specific type of plant residue and climate
Table 3. Mean and standard error of elemental concentration in fresh and old residu

Type of residue Dry matter (%) Macronutrient concentration in crop residue on a

TN (g/kg) S (g/kg) P (g/kg)

Fresh residue 78.5a � 1.87 34.55b � 0.68 8.5b � 0.08 5.2b � 0

Old residue 89.5b � 1.99 24.53a � 0.73 7.15a � 0.08 4.3a � 0

Note: Margins sharing a letter in the group label are not significantly different at the
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variability. Plants may release measurable amounts of volatile S into the
atmosphere (Rennenberg, 1984) as well as the emission of H2S and other
volatile S compounds have been proposed as a mechanism for removing
excess inorganic S in plant tissues (Rennenberg, 1984; McNeill et al.,
2005).

Age of residue significantly (p < 0.05) influenced P concentrations in
sesame residue (Table 3). P concentration of 5.2 and 4.3 g/kg in sesame
residue were observed during fresh and old residue respectively. More-
over, potential ranges of 8.7–10.5 kg P ha�1 were produced from sesame
residue. However, the highest (10.5 kg P ha�1) and lowest (8.7 kg P ha�1)
P potential were perceived during fresh and old residue respectively. This
result indicated that old sesame residues decreased the P concentration
and potential by 17 % compared to fresh residues (Table 3). This study
agreed with the reports of Lozier et al. (2017) which reported that
water-extractable P concentrations in vegetation increased with plant
decomposition and decreased following runoff events indicating that the
plant P was removed by runoff. But, the P concentration of sesame res-
idue differed significantly (p < 0.05) with elevation (Table 2 and
Figure 5c). The P concentration of sesame residue was recorded as 6.6,
5.5, 4.2, and 4.1 g/kg for <650 m, 650–850 m, 850–1050 m, and >1050
m elevation categories respectively (Table 2). Moreover, 8.3 kg P ha�1,
8.5 kg P ha�1, 11.1 kg P ha�1 and 13.4 kg P ha�1 P potential were pro-
duced in <650 m, 650–850 m, 850–1050 m and >1050 m elevation
respectively. This result revealed that as elevation increases, the P con-
centration of sesame residue decreases, and vice versa. This kind of
variation could be brought due to high biomass production in low
elevated areas and less P uptake by plants due to low biomass production
in high elevated areas (Liu, 2013). Furthermore, runoff removes a sub-
stantial amount of P from soils of high elevation that may have an impact
on the P uptake by plants. However, as reported by McDowell et al.
(2011); P concentrations in crops tended to increase with soil P avail-
ability, as measured by Mehlich-3 extractable soil P concentration. This
difference agrees with studies of forage harvested on a monthly basis in
New Zealand by Crush et al. (1989) and on an annual basis in the U.S. by
Pederson et al. (2002).

3.3.2. Zinc, iron, cupper, and boron concentrations
The age of residue significantly (p < 0.05) influenced the Zn con-

centration of sesame residue (Table 3). Zn concentration of sesame res-
idue recorded in fresh and old residues was 23 mg Zn kg�1 and 14.6 mg
Zn kg�1 respectively. Furthermore, Zn potential of 463.5 mg Zn ha�1 and
294.3 mg Zn ha�1 were produced during fresh and old residue
e (n ¼ 100).

dry weight basis

Zn (mg/kg) B (mg/kg) Fe (mg/kg) Cu (mg/kg)

.08 22.93a � 1.25 10.67b � 0.20 130.23a � 1.25 17.0b � 0.41

.08 14.58b � 1.34 9.12a � 0.22 94.78b � 1.34 6.2a � 0.43

5% level.



Figure 5. Total nitrogen concentration (a), Sulfur concentration (b) and Phosphorous concentration (c).
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respectively. In comparison, the fresh residue has resulted in higher Zn
concentration and potential than old residue. This result revealed that Zn
concentration in the fresh residue was 63.5 % higher than Zn concen-
tration in old residues. In addition, varying elevation differed signifi-
cantly (p < 0.05) Zn concentration in sesame residue (Table 2). Zn
concentration of 20.8 mg Zn kg�1, 18.4 mg Zn kg�1, 18.8 mg Zn kg�1 and
Figure 6. Zinc concentration (a), Iron concentration (b), C
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17 mg Zn kg�1 in sesame residue were observed on<650 m, 650–850 m,
850–1050 m and >1050 m elevation respectively (Table 2 and
Figure 6a). Moreover, Zn potential of 419.2 mg Zn ha�1, 370.9 mg Zn
ha�1, 378.9 mg Zn ha�1 and 342.6 mg Zn ha�1 were produced due to
<650 m, 650–850 m, 850–1050 m, and >1050 m elevation respectively.
Therefore, the highest Zn concentration (20.8 mg Zn kg�1) and potential
opper concentration (c) and Boron concentration (d).



Table 4. Average elemental concentration for both type of residue (fresh and old) and elevation.

Elevation (m) Fresh residue (n ¼ 100) Old residue (n ¼ 100)

TN (g/kg) P (g/kg) S (g/kg) Zn (mg/kg) B (mg/kg) Fe (mg/kg) Cu (mg/kg) TN (g/kg) P (g/kg) S (g/kg) Zn (mg/kg) B (mg/kg) Fe (mg/kg) Cu (mg/kg)

<650 35.3 6.8 9.7 27.9 11.35 149.4 16.8 18.9 5.5 2.4 13.7 8.78 68.6 9.0

650–850 34.2 5.4 8.3 24.4 11.1 132.5 18.6 22.5 4.6 3.8 12.4 9.05 91.5 5.4

850–1050 34.4 4.3 9.4 21.5 10.15 117.0 16.8 26.7 3.5 4.6 16.2 9.15 109.0 5.4

>1050 34.3 4.2 11.2 17.9 10.1 122.0 15.8 30.0 3.4 5.8 16.0 9.21 110.0 5.0
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(42.1 mg Zn ha�1) were perceived at the lowest elevation (<650 m) than
all other elevation categories. This study is in line with the reports of
Shah et al. (2013) and Nazir et al. (2015) that shown the permissible
limit of zinc in plants is 50 mg/kg. In this study, in the entire analyzed
residue samples, Zn concentrations were recorded below the permissible
limit. At the same time elevation (Figure 6a), Zn in the residue has shown
differences in its concentration levels due to differences in landforms and
localized management. Mathew et al. (2016) has reported that plant
residue micronutrients have shown in their concentration levels probably
be explained by difference in land forms especially in the mountainous
areas which associated with localized management.

Fe concentration of sesame residue was differed significantly (p <
0.05) in fresh and old sesame residues (Table 3). Fe concentration in
fresh and old residues was 130.23 mg Fe kg�1 and 94.78 mg Fe kg�1 of
sesame residue respectively (Table 3). Sesame residue has a potential of
producing Fe that was ranged from 1.99 g Fe ha�1 to 2.62 g Fe ha�1 as the
least one regarded for old residue and highest for fresh residue. This
result shows that Fe concentration was higher in fresh residues than old
ones and vice versa. Furthermore, Fe concentration differed significantly
(p < 0.05) with elevation difference (Table 2 and Figure 6b.). Concen-
tration of 109 mg Fe/kg, 112 mg Fe/kg, 113 mg Fe/kg and 116 mg Fe/kg
were analyzed on < 650 m, 650–850 m, 850–1050 m, and >1050 m
elevation respectively (Table 2). Sesame crop residue at an elevation of
<650 m, 650–850 m, 850–1050 m, and >1050 m were produced Fe
potential of 2.3 g Fe ha�1, 2.35 g Fe ha�1, 2.37 g Fe ha�1, and 2.44 g Fe
ha�1. The concentration of free Fe2þ, Fe3þ, and Zn2þ in plant tissues is
low because Fe and Zn cations are either incorporated into enzyme
proteins or complexes with low-molecular-weight organic compounds
(Frossard et al., 2000). Fe can be temporarily stored in protein bodies
such as phytoferritin (Briat et al., 1995) which is found in seeds, xylem,
and phloem and in chloroplasts of leaves (Smith, 1984). Zn enzyme
proteins are involved in many physiological activities and growth pro-
cesses and high Zn contents are therefore found in meristematic tissues.
Zn is therefore important in plant tissues which are subjected to oxidative
stress (Frossard et al., 2000; Cakmak and Marschner, 1988).

Cu concentration of sesame residue differed significantly (p < 0.05)
in fresh and old residues (Table 3). Cu concentration in fresh and old
residues was recorded as 17.0 mg Cu kg�1 and 6.2 mg Cu kg�1 respec-
tively showing that fresh residue has 2.74 times higher Cu content than
old residue. The permissible limit of copper for plants is 10 mg/kg
Table 5. Pearson correlation for elemental concentration in sesame residue.

Variables Cu Zn TN

Cu 1.00 -0.65* 0.76**

Zn 1.00 0.73**

TN 1.00

Fe

B

P

S

* and ** indicates significance level at p < 0.01 and 0.05 respectively.
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recommended by WHO (Hassan et al., 2012; Nazir et al., 2015). In this
case, all the collected plant samples concentration of copper was recor-
ded above the permissible limit. This implies that sesame residue had the
potential to produce Cu in the range of 125–342.1 mg Cu ha�1. The Cu
concentration of sesame residue did not differ significantly (p < 0.05)
with elevation difference (Table 2 and Figure 6c). However, Cu con-
centration of 12.9 mg Cu/kg, 12.0 mg Cu/kg, 11.1mg Cu/kg and 10.4mg
Cu/kg were recorded for <650 m, 650–850 m, 850–1050 m and >1050
m elevation respectively (Table 2). Moreover, sesame residue had the
potential of producing around 260 mg Cu/ha, 241.9 mg Cu/ha, 223.8 mg
Cu/ha, and 209.7 mg Cu/ha at <650 m, 650–850 m, 850–1050 m and
>1050 m elevation categories respectively. In comparison, the highest
Cu concentration (12.9 mg Cu/kg) and potential (260 mg Cu/ha) was
observed at the lowest elevation (<650 m) than all other elevation cat-
egories. In addition, Cu in the residue due to elevation (Figure 6c) have
shown a difference in its concentration levels due to the difference in
landforms and localized management. Mathew et al. (2016) has reported
that plant residue micronutrients have shown in their concentration
levels probably be explained by the difference in landforms especially in
the mountainous areas which associated with local management.

B concentration in sesame residue differed significantly (p < 0.05)
for fresh and old residues (Table 3). B concentration in the fresh and
old residue was 10.67 mg B kg�1 and 9.12 mg B kg�1 respectively.
Sesame residue has the potential of producing B that ranges from 183
to 214.89 mg B ha�1. B concentration in sesame residue did not differ
significantly (p < 0.05) with elevation (Table 2 and Figure 6d).
Perhaps, the B concentration of residue on <650 m, 650–850 m,
850–1050 m, and >1050 m elevation were 10.1 mg B/ha, 10.1 mg B/
ha, 9.8 mg B/ha, and 9.6 mg B/ha respectively (Table 2). Moreover,
202.7 mg B/ha, 202.7 mg B/ha, 196.7 mg B/ha, and 192.6 mg B/ha
were the potential B that could be produced for the elevation of <650
m, 650–850 m, 850–1050 m, and >1050 m respectively. There was an
accumulation of boron in the lower slope positions (Knight and Far-
rell, 2000). Moreover, Boron is readily soluble in water and should
move with the flow of water through the landscape. Thus, because the
lower slope positions represent catchment areas in the field and
periodically experience waterlogged conditions, boron would be ex-
pected to accumulate in these areas. Therefore, in this study B con-
centration in sesame residue was higher for fresh residue and highest
elevation than old residue and lowest elevation respectively (Table 4).
Fe B P S

0.81** 0.89** 0.22 0.50

-0.76** 0.86** -0.67* 0.81**

0.78** 0.74** 0.53 0.86**

1.00 -0.88** -0.30 0.72**

1.00 0.14 0.70*

1.00 0.50

1.00
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The increase in B may be resulted due to less volatilization and
decomposition processes during fresh residue and the residue accu-
mulated in higher elevated areas. The chance of B availability under
drought conditions or low organic matter content reduced because of
organic matter breakdown (Shorrocks, 1997).

3.4. Correlation among elemental concentrations in sesame residue

The correlation among elemental concentration in sesame residue
for TN, S, P, Zn, Fe, Cu, and B were performed using correlation
analysis.

The result revealed that Cu highly significantly (p < 0.01) corre-
lated with TN, Fe and B with the value of r ¼ 0.76 and r ¼ -0.81 and r
¼ 0.89 respectively (Table 5). Similarly, Zn highly significantly (p <

0.01) correlated with TN, Fe, B and S with the value of r ¼ 0.73, r ¼
0.76, r ¼ 0.86 and r ¼ 0.81 respectively. Furthermore, TN highly
significantly (p < 0.01) correlated with Fe, B and S with the value of r
¼ 0.78 and r ¼ 0.74 and r ¼ 0.86 respectively (Table 5). In addition,
Fe highly significantly (p < 0.01) correlated with B and S with the
value of r ¼ -0.88 and r ¼ 0.72 respectively (Table 5). Some micro-
nutrients reveal synergism with macronutrients for example the
addition of Zn resulted in a higher yield of wheat on calcareous soil,
and the increase due to Zn was largest at the highest addition of
macronutrients (Sakal, Singh, and Sinha, 1988). Nitrogen and S
fertilization also may catalyze higher production of phytosiderophores
and have been reported in soil and field experiments to increase Zn
and Fe content in wheat (Kutman et al., 2011; Shi et al., 2010).
Whereas, B with S, Cu with Zn and Zn with P significantly (p < 0.05)
correlated with value of r ¼ 0.70, r ¼ -0.65 and r ¼ 0.67 respectively
(Table 5). In the absence or low concentrations of zinc, phosphorus
uptake and transport increased in the shoot and its concentration
increased in the leaves, as a result, can cause toxicity in the plant.
Metabolism defect in plant cells that is related to zinc and phosphorus
imbalance, so by increasing the phosphorus concentration, zinc tasks
are impaired at specific positions in the cells (Das et al., 2005;
Alloway, 2008). Imtiaz et al. (2003), reports that the application of Zn
had an adverse effect on the Cu concentration in the plant tissue of
wheat due to competition for the same sites for absorption into the
plant root. Zinc deficiency leads to iron (Fe) deficiency, due to prevent
of transfer of Fe from root to shoot in zinc deficiency conditions
(Rengel et al., 1998; Rengel and Romheld, 2000). Zinc deficiency
decreases plant growth by increasing the concentration of boron in the
young leaves and tips of the branches. The application of zinc
increased boron uptake by plants in the soils with sufficient stores
(Rengel et al., 1998). There is a negative interaction between zinc and
copper (Cu) due to effect antagonism and the same membrane trans-
port protein (Moustakas et al., 2011). Several micronutrient contents
increased as N fertility increased (Bruns and Ebelhar, 2006). S is also
known to interact with almost all essential macronutrients, secondary
nutrients, and micronutrients. These interactions can either enhance
or reduce the growth and yield of crops by influencing nutrient uptake
and utilization (Abdin et al., 2003).

4. Conclusions

This study clearly concludes that the age of residue (fresh and old)
and elevation are critical factors that need to be considered for quanti-
fying sesame residue and its nutrient management in dryland farming
systems. Lower elevation has a higher amount of sesame residue pro-
duction, induced due to high biomass production, and cropping prac-
tices. Fresh residues had the potential of producing higher TN, S, P, Zn,
Fe, Cu, and B than old residues. Besides potential leaching in highly
elevated areas, substantial emissions of N as ammonia and volatile losses
of S is higher in old residues than fresh ones. Whereas, higher potential of
P in sesame residue occurred on lower elevated areas due to potential
runoff removal from higher elevated areas.
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