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a b s t r a c t 

AB5 -type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens 
such as Shigella dysenteriae, Vibrio cholerae, Bordetella pertussis, and certain lineages of pathogenic Escherichia coli 

and Salmonella enterica . AB5 toxins are composed of an active (A) subunit that manipulates host cell biology 
in complex with a pentameric binding/delivery (B) subunit that mediates the toxin’s entry into host cells and 
its subsequent intracellular trafficking. Broadly speaking, all known AB5 -type toxins adopt similar structural 
architectures and employ similar mechanisms of binding, entering and trafficking within host cells. Despite this, 
there is a remarkable amount of diversity amongst AB5 -type toxins; this includes different toxin families with 
unrelated activities, as well as variation within families that can have profound functional consequences. In 
this review, we discuss the diversity that exists amongst characterized AB5 -type toxins, with an emphasis on the 
genetic and functional variability within AB5 toxin families, how this may have evolved, and its impact on human 
disease. 
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. Introduction 

Many bacterial pathogens secrete protein toxins as a major mecha-
ism of virulence that directly or indirectly contributes to their capac-
ty to cause disease. A substantial proportion of bacterial toxins have
volved to cross the host cell plasma membrane, allowing them to ma-
ipulate cellular processes within the host cell. These toxins are known
s AB-type toxins, since their biological activities and cell binding/entry
echanisms are generally carried out by distinct subunits or domains; A

ubunits (or “active ” subunits) modify specific host cell targets thereby
ltering host cell biology, and B subunits ( “binding ” or “delivery ” sub-
nits) mediate host cell binding, entry and trafficking. AB toxins can
e further classified based on the stoichiometry of the A and B sub-
nits within the toxin complex. AB5 -type toxins, composed of an active
ubunit that is carried by a pentameric B subunit delivery platform, rep-
esent a surprisingly widespread and diverse class of toxins. AB5 toxins
ave a considerable impact on human health, since they are principal
irulence factors for several important bacterial pathogens. In addition,
ue to the efficient manner in which they enter human cells and the
argeted ways in which they manipulate cell biology, AB5 toxins have a
reat deal of potential in biotechnology or as therapeutic agents. 

AB5 toxins can be divided into families on the basis of sequence sim-
larity as well as the enzymatic and biological activities of their A sub-
nits (see Table 1 ). The breadth of the AB5 toxin families varies from
hose composed of a single toxin encoded by select strains within a single
pecies ( e.g. the subtilase toxin family), to those composed of numerous
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iverse toxins that are encoded by taxonomically distant bacterial lin-
ages (the pertussis toxin family). Regardless of the family, all known
B5 toxins share several common structural and functional features. Per-
aps the most prominent conserved feature is the overall holotoxin ar-
hitecture, which consists of the A subunit sitting atop a donut-shaped
ing of five B subunits. The A and B subunits form a stable complex
sing non-covalent interactions. A salient and conserved feature of the
B5 structure is the insertion of a C-terminal 𝛼-helix from the A subunit

nto the central pore of the B subunit pentamer [ 1 , 2 ]. The A-B complex
s further stabilized by additional interactions where the A subunit sits
n the apical surface of the B subunit, although the nature and extent
f these interactions is highly variable amongst different toxins. The A
ubunits of diverse AB5 toxins are composed of an enzymatically active
1 domain, and an A2 domain that anchors the active component to

he delivery platform [2–6] . The A1 and A2 domains are connected by a
inker that is proteolytically cleaved, however the domains remained co-
alently tethered by a disulfide bond until the latter stages of the toxin’s
rafficking within target host cells. The B subunits of AB5 type toxins all
dopt similar oligosaccharide/oligonucleotide binding (OB) folds and
ssemble in an analogous way to yield the canonical pentameric ring
ith a central pore that is lined with an 𝛼-helix from each monomer [1–
] . Broadly speaking, the strategies employed by different AB5 toxins to
nter and traffic within host cells are also similar. The pentameric na-
ure of the delivery platform yields a toxin complex with multiple glycan
inding sites on each toxin, and the B subunits bind glycan receptors on
he cell surface in a manner that is thought to involve multivalent in-
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Table 1 

Summary of AB5 toxin families: intrafamily diversity and unique evolutionary features. 

Toxin family Major toxins, types, subtypes 
A subunit(s): 
Activity A subunit(s): Structure and diversity 

B subunit(s): 
Family B subunit(s) Structure and diversity 

Shiga Toxin Shiga toxin ( S. dysenteriae ) 
Shiga toxin type 1 subtypes Stx1a/c/d, 
Shiga toxin type 2 subtypes Stx2a-f ( E. 

coli ) 

RIP & Single A subunit with RIP activity. Activity 
differences amongst different family 
members 

Shiga family Homopentamers. B subunit diversity 
amongst different types/subtypes confer 
different functional properties. 

Cholera 

Toxin 

Cholera toxin ( V. cholerae ) 
Heat-labile toxin: LT-I, LT-IIa/b/c ( E. coli ) 

ADP-RT % Single A subunit with ADP-RT activity. 
Activity differences amongst different 
family members 

Cholera 
family 

Homopentamers. Substantial B subunit 
diversity amongst heat-labile toxins in 
terms of both sequence and functional 
properties. 

Pertussis 

toxin 

Pertussis toxin ( B. pertussis ), ArtAB type 
1/2 ( Salmonella ), ECPlt ( E. coli ) & other 
similar toxins. 
Substantial diversity amongst 
ArtAB/ECPlt-like toxins 

ADP-RT Single A subunit with ADP-RT activity. 
Likely some activity differences in different 
family members, but not well characterized 

Pertussis 
family 

Heteropentamers (pertussis toxin) or 
Homopentamers (ArtAB/ECPlt-like 
toxins). Very diverse glycan binding 
properties amongst different family 
members. 

Typhoid 

toxin 

PltB typhoid toxin and PltC typhoid toxin 
( Salmonella ). Substantial typhoid toxin 
diversity, but not formally divided into 
types/subtypes 

ADP-RT and 
DNase 

Two A subunits tethered by a disulfide 
bond. Unknown if there are activity 
differences in different family members 

Pertussis 
family 

Homopentamers. Some strains produce 
two toxins with the same A subunit, but 
different B subunits. Variable B subunit 
sequences/ functional properties in 
different Salmonella 

CfxAB/ 

EcxAB 

CfxAB ( Citrobacter ), EcxAB ( E. coli ) MFMP # Single A subunit with putative MFMP 
activity. Evolved via A subunit replacement 
of cholera family toxin ancestor? 

Cholera 
family 

Homopentamers 

Subtilase 

toxin 

Subtilase toxin ( E. coli ) SP $ Single A subunit with SP activity. Evolved 
via A subunit replacement of pertussis 
family toxin ancestor? 

Pertussis 
family 

Homopentamers 

% ADP-ribosyltransferase. 
& ribosome inactivating protein (RNA N-glycosidase). 
# putative metzincin family metalloprotease. 
$ serine protease. 
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eractions (avidity). Toxin binding triggers toxin uptake and retrograde
ransport via the trans-Golgi network to the endoplasmic reticulum (ER)
7–10] . Once within the lumen of the ER, the A1-A2 disulfide bond is
educed and the A1 subunit is unfolded in a process that involves pro-
ein disulfide isomerase (PDI). For most toxins, the unfolded A-subunit is
ubsequently translocated to the cytoplasm by hijacking the host cell ER
ssociated degradation (ERAD) pathway. This pathway proteolytically
egrades misfolded ER proteins, but the A1 subunit is able to escape
roteolysis and enters the cytosol, where it refolds to adopt its active
tate [ 7 , 11–13 ]. 

Despite these common features, different AB5 toxins can share lit-
le or no significant sequence similarity, and can exhibit very differ-
nt biological activities. For example, two of the most prominent AB5 
oxins, Shiga toxin and pertussis toxin, are encoded by different phyla
f bacteria, and display no significant sequence similarity in their A
r B subunits. Although the B subunits of both toxins contain the con-
erved OB-fold, their delivery platforms differ substantially in their size,
omposition, structure and glycan binding properties. The A subunits of
hese two toxins share no overt evolutionary, structural or functional
onnection, and they target unrelated aspects of host cell biology. The
ichotomy between the similarities and differences amongst AB5 toxins
oints to an ancient origin and a complex evolutionary history. Evidence
or substantial evolutionary diversification is not restricted to compar-
sons between different toxin families, but can also be observed with a
iven family. Indeed, toxins are generally carried by mobile genetic ele-
ents, and the nature of the toxins encoded by closely-related organisms

an vary, sometimes strain-by-strain. These differences can have impor-
ant implications, since variants of the same toxin can have functional
ifferences that result in altered virulence or disease properties for the
rganisms that produce them. 

There is a great deal we do not know about AB5 toxin evolution, how-
ver decades of intense study and the expansion of genomic databases
ave shed some light on this subject. A major factor that distinguishes
ifferent AB5 toxin families from one another is the enzymatic activity
f the A subunit. There are known instances wherein two toxin families
ave homologous B subunits, but unrelated A subunits. This suggests
hat new AB5 toxin families can emerge as a result of “A subunit re-
 t  

2 
lacement ”, where an enzyme encoded within the same genome as an
B5 toxin evolves the capacity to form a complex with the B subunit,
nd ultimately supplants the original A subunit ( Fig 1 a). Although the
 subunit often drives the differences between different AB5 toxin fam-

lies, the evolutionary diversification within a given family often stems
ostly from changes to the B subunit(s). Some of the major mecha-
isms that are thought to have driven the functional diversification of
B5 toxin families are summarized in Fig. 1 b. The most common way by
hich novel toxin variants emerge is through sequence changes (either
y accumulating mutations or by genetic recombination with similar
oxins) that result in new toxin phenotypes. Recently, it has become
ncreasingly clear toxin diversification can also result from acquiring
dditional B subunits, either via genome duplication (and subsequent
iversification by mutation), or by horizontal acquisition of an evolu-
ionarily distant B subunit. This new B subunit can potentially supplant
he original, leading to a toxin with a similar A subunit but a distinct
 subunit. Alternatively, the new B subunit and the original B subunit
an coexist, either assembling into a heteromeric delivery platform, or
ssembling into separate delivery platforms that can both interact with
he same A subunit. 

In this review, we discuss the evolutionary diversification of AB5 -
ype toxins, with an emphasis on genetic and functional differences
ithin AB5 toxin families. For simplicity, we discuss the subtilase and
fxAB/EcxAB toxin families within the sections concerning pertussis
nd cholera families, respectively, since they share clear evolutionary
onnections. For those seeking additional information concerning AB5 
oxins outside the scope of this review, we direct you to other AB5 toxin
eviews [ 2 , 6 ], as well as reviews focused on individual toxins or toxin
amilies: Shiga toxin [ 14 , 15 ], cholera family toxins [ 16 , 17 ], pertussis
oxin [ 18 , 19 ], subtilase toxin [20] and typhoid toxin [21] . 

. The Shiga toxin family 

.1. Overview 

Shiga toxins are a potent family of toxins produced by Shigella dysen-

eriae type 1 and an assortment of pathogenic Escherichia coli strains that
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Fig. 1. Major mechanisms of evolutionary 
change for AB5 toxins. (A) Mechanisms that 
incorporate a novel A subunit, thereby cre- 
ating a new AB5 toxin family. Left, a novel 
enzyme (red) evolves the capacity to in- 
teract with the B subunit of an existing 
AB5 toxin (blue) and ultimately replaces 
the original A subunit. Right, a novel en- 
zyme (red) evolves to form a disulfide bond 
with the A subunit of an existing AB5 toxin 
(blue), resulting in a novel toxin with two 
active subunits. (B) Mechanisms of evolu- 
tionary diversification within AB5 families. 
In most AB5 families there is sequence diver- 
sity amongst the known members generated 
by the accumulation of mutations; in some 
cases homologous recombination amongst 
related toxin variants might further con- 
tribute to this sequence diversity. In other 
cases, diversity amongst different toxins ap- 
pears to stem from larger-scale changes to 
the B subunit. This can include genetic du- 
plication of the B subunit and/or horizon- 
tal acquisition of a novel B subunit, result- 
ing in a new B subunit that can engage with 
the toxin’s A subunit. Newly acquired B sub- 
units can either (i) replace the original B 
subunit, (ii) interact with the original B sub- 
unit to form a heteromeric delivery plat- 
form, or (iii) co-exist with the original B sub- 
unit, with both B subunits interacting sepa- 
rately with the A subunit, resulting in two 
different versions of the toxin. Examples of 
toxins thought to have been subject to the 
various toxin evolutionary mechanisms are 
given in red text. 
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re collectively referred to as Shiga toxin-producing E. coli (STEC) [14] .
or both of these lineages, Shiga toxin constitutes a central virulence
actor and is thought to be directly responsible for the most severe dis-
ase outcomes commonly associated with infection. Shiga toxins can
lso be found in the genomes of assorted (and relatively rare) strains
f other enteric bacteria, although the roles of these toxins in disease
re generally not well understood [22] . Shiga toxins adopt a typical
B5 structure featuring the A subunit perched atop a ring-shaped deliv-
ry platform comprised of five identical copies of the B subunit [ 4 , 23 ].
higa toxins are ribosome inactivating protein (RIP) toxins, a biological
ctivity that has not been described for any other AB5 toxin. Similar to
ther RIP toxins (most prominently ricin), the A subunit of Shiga toxin
s an RNA N-glycosidase that depurinates a specific rRNA nucleotide
ear the 3 ′ end of the 28S rRNA [24–26] . This residue is located in the
arcin-ricin loop, a critical region of the 28S rRNA due to its interac-
ion with elongation factors, and Shiga toxin activity effectively inac-
ivates the ribosome, terminating translation. In addition to efficiently
nhibiting protein synthesis, Shiga toxins also exert other biological ef-
ects on target host cells. The ribosome damage elicited by the A sub-
nit instigates a proinflammatory host cell response mediated by MAP
inase signaling that has been dubbed the ribotoxic stress response [27–
0] . Furthermore, the binding of the B subunit to surface receptors can
lso alter the physiological state of the host cell [14] . Ultimately, the
umulative effects of Shiga toxin can lead to cell death, but can also
3 
or alternatively) trigger substantial signaling changes that are thought
o contribute to disease, including, notably, the production and release
f various cytokines [ 14 , 15 , 31 ]. The B subunit of Shiga toxin is gener-
lly specific for globotriaosylceramide (Gb3), a glycolipid that can be
ound on the cell surface. Gb3 levels vary significantly by tissue and
ell type; cell types with relatively high Gb3 levels can be found within
he kidneys, the central nervous system, and lymphoid tissues, for ex-
mple [32] . Upon binding Gb3, Shiga toxin is endocytosed, undergoes
etrograde transport to the ER, and then the A subunit undergoes ERAD-
ediated translocation to the cytosol where it re-folds and can access

ts rRNA target [ 12 , 33 ]. Shiga toxin is not the only virulence factor that
ictates the extent or nature of the virulence of the various STEC strains,
ut its activities are thought to be directly responsible for much of the
ymptomology associated with severe STEC infections. In STEC infec-
ions, Shiga toxin’s effects can be seen both in the intestines at the local
ite of infection, as well as at distal systemic sites where tissues express
igh levels of Gb3 [ 34 , 35 ]. Locally, Shiga toxin-induced damage to the
ntestinal tissue contributes to the development of hemorrhagic colitis,
hich is commonly associated with STEC infections [36–38] . In more

evere cases, Shiga toxin-induced kidney damage can lead to the devel-
pment of hemolytic uremic syndrome (HUS), a life-threatening disease
hat accounts for the majority of acute cases of kidney failure in infants
nd young children [39–41] . More rarely, Shiga toxin can also induce
evere neurological damage, which can be associated with sudden mor-



P.I. Brown, A. Ojiakor, A.J. Chemello et al. Engineering Microbiology 3 (2023) 100104 

t  

d  

d  

l  

t  

p

2

 

a  

h  

e  

b  

w  

m  

a  

t  

s  

a  

S  

S  

p  

t  

S  

i  

h  

I  

d  

c  

t  

r  

w  

s
 

o  

i  

i  

d  

s  

q  

s  

p  

t  

t  

s  

m  

a  

i  

l  

[  

o  

i  

e  

c  

i  

w  

r  

a  

i  

g  

o  

c  

c  

s  

p  

S  

s

2

 

v  

n  

e  

a  

d  

t  

t  

i  

o  

f  

[  

S  

e  

i  

w  

f  

i  

i  

S  

d  

l  

G  

t  

s  

t  

t  

h  

t  

p  

s  

e  

b  

i  

a  

l  

a  

T  

e  

i  

O  

G  

t  

e

3

3

 

p  

a  

I  

c  

c  

t  

s  

i  

A
p  

i  
ality [42] . S. dysenteriae type 1 was the source of numerous severe pan-
emics in the 19th and 20th centuries, however its global burden has
iminished in modern times, and currently represents < 5% of all shigel-
osis cases [ 43 , 44 ]. STEC remains an important pathogen worldwide; in
he US alone, STEC causes over 250,000 infections per year, a significant
ercentage of which lead to serious complications [45] . 

.2. Functional differences amongst Shiga toxins 

Within the E. coli species there is substantial genetic variation
mongst the Shiga toxins that are produced, and sequence variants can
ave functional differences that substantially affect the virulence of the
ncoding strain [46] . In E. coli , the Shiga toxin (stx) genes are encoded
y lambdoid prophages, and the diversity and spread of Shiga toxin
ithin E. coli has presumably been driven by its association with these
obile genetic elements [ 47 , 48 ]. The Shiga toxins produced by STEC

re divided into two types, Stx1 and Stx2, which are antigenically dis-
inct and are ∼60% identical at the amino acid level (both the A and B
ubunits). Within each type, there are multiple sequence variants that
re classified as subtypes. Three subtypes have been described for Stx1:
tx1a (the founding member) as well as the rarely encountered subtypes
tx1c and Stx1d [46] . Based on its amino acid sequence, the Shiga toxin
roduced by S. dysenteriae belongs within the Stx1a subtype, but for his-
orical reasons it is generally referred to as a distinct Shiga toxin type.
tx2 is more heterogenous and consists of numerous subtypes includ-
ng Stx2a-Stx2f, as well as a handful of recently identified subtypes that
ave rarely or never been isolated from clinical samples [ 46 , 49–52 ].
nterestingly, it is not uncommon for a STEC strain to encode multiple
ifferent Stx types/subtypes [53–57] . Some subtypes are much more
ommonly associated with human infection than others; for example,
he 1a, 2a, 2c are relatively common, whereas the remaining subtypes
ange from uncommon to vanishingly rare [56–58] . Within this frame-
ork, the proportion of infections caused by STEC encoding the various

ubtypes varies by location and over time. 
The characteristics of the various toxin subtypes and their impact

n virulence has been evaluated by assessing their properties in vitro,

n cell culture or animal models of infection, as well as through clin-
cal/epidemiological studies. It is evident from studies that correlate
isease outcome with Stx subtype in patients infected with STEC that
trains encoding the most common Stx2 subtypes (2a, 2c) are more fre-
uently associated with severe disease outcomes such as HUS than are
trains encoding Stx1 toxins [ 54 , 56 , 59 ]. This observation has been sup-
orted by animal models of infection and of intoxication, suggesting that
his correlation is due to the toxin itself and not (solely) genetic linkages
o other virulence factors [ 60 , 61 ]. Indeed, purified Stx2a exhibits sub-
tantially greater toxicity than Stx1 in different animal models (such as
ice, gnotobiotic pigs, and primates) and using various routes of toxin

dministration (oral, intravenous, intraperitoneally) [61–64] . Interest-
ngly, patient studies indicate that strains encoding only Stx2a are more
ikely to elicit severe disease than strains encoding both Stx1a and Stx2a
 54 , 56 , 65–69 ]. This suggests that Stx1 production dampens the effects
f the more potent Stx2 toxin, a hypothesis that is supported by stud-
es using animal models [ 70 , 71 ]. The Stx2 subtypes 2c and 2d, which
xhibit only a few amino acid changes relative to Stx2a, are also asso-
iated with a propensity to cause severe disease and increased potency
n animal models of infection/intoxication [ 55 , 72 , 73 ]. Stx2d is note-
orthy because it is known to be activated substantially by proteolytic

emoval of the two C-terminal residues of the A subunit by elastase,
n enzyme found in intestinal mucus ( Fig 2A ) [73–75] . Although less
s known about the activities of the rarer Shiga toxin subtypes, it has
enerally been observed that they are associated with milder disease
utcomes [ 53 , 58 , 76 , 77 ]. Stx1 and Stx2 have different potencies toward
ultured cell lines, with Stx1 showing increased toxicity toward some
ell types, including the Vero cell line used in numerous Shiga toxin
tudies [ 75 , 78 , 79 ]. However, Stx2 has been observed to have a greater
otency for human renal microvascular endothelial cells (HRMEC) than
4 
tx1, highlighting that the relative potencies of these toxins are cell-line
pecific [ 46 , 79 ]. 

.3. Mechanisms of Shiga toxin functional diversification 

Differences in the biochemical and functional properties between the
arious Shiga toxin types/subtypes have been observed, although it is
ot completely clear how these factors culminate in the observed differ-
nces in vivo . In general, the functional differences between toxin types
ppear to be due to sequence differences in the B subunit, or sequence
ifferences in the C-terminal residues of the A subunit that protrude
hrough the B-subunit pore and reside on the binding face of the holo-
oxin. This has been shown through mutational analyses and through us-
ng Stx1/Stx2 hybrid (or chimeric) toxins featuring the A subunit from
ne toxin type in complex with a B subunit of the other, where the
unctional differences track with the B subunit and not the A subunit
 62 , 80 , 81 ]. There is some evidence that the A subunits from different
higa toxin types can differ functionally, however this is not as well
stablished [ 82 , 83 ]. Numerous studies have revealed differences in the
nteractions of different Shiga toxins with glycan receptors. One note-
orthy subtype in this regard is Stx2e, which shows a binding preference

or globotetraosylceramide (Gb4) over Gb3 [84] ( Fig 2 A) . STEC produc-
ng Stx2e is found mainly in pigs, where Gb4 is highly expressed on ep-
thelial cells of the intestinal ileum and kidney [ 85 , 86 ]. Stx2e-encoding
TEC are rarely isolated from the human population, but represent the
ominant STEC in pigs, where they cause of severe edema and neuro-
ogical impairment [87] . Interestingly, Stx1a exhibits greater affinity for
b3 than does the more toxic Stx2a [61] . Importantly, however, Shiga

oxin’s interaction with receptors is complex and is impacted by factors
uch as the fatty acid content of Gb3, its local density, and the composi-
ion of the local membrane; differences in such factors have been shown
o differentially impact Stx1 and Stx2 [88–98] . Shiga toxin’s B subunit
as been shown to have as many as three glycan binding sites, leading
o 15 total sites per toxin, and multivalent interactions also have im-
ortant impacts on toxin binding [ 91 , 94 , 95 , 99 , 100 ]. Structural studies
how that there are differences in the nature of the ligand binding pock-
ts between Stx1 and Stx2 [23] . How differences in receptor interactions
etween Stx1 and Stx2 translate into the observed virulence differences
s not clear. One possibility is that Stx1’s greater affinity for Gb3 (as well
s Gb4) leads to the toxin being sequestered by cells that express lower
evels of Gb3, and thus less toxin reaches cells/tissues rich in Gb3 that
re associated with severe disease, such as renal endothelial cells [101] .
his is supported by animal models that show that Stx1 and Stx2 toxins
xhibit differences in tissue tropism, including a more specific target-
ng of the kidneys by Stx2 and a reduced serum half-life for Stx1 [78] .
ne factor that might contribute to this phenomenon is the kinetics of
b3 binding, as it has been observed that Stx1 exhibits a faster on rate

han Stx2, but Stx2 exhibits a slower off rate, which could improve the
fficiency of its uptake into Gb3-rich cells [95] . 

. The cholera toxin family 

.1. Cholera toxin 

Cholera toxin (Ctx) is the predominant virulence factor for the
athogen Vibrio cholerae , the etiological agent of cholera, a disease that
fflicts ∼3 million people annually, resulting in ∼100,000 deaths [102] .
t adopts the canonical AB5 structure featuring the A subunit, CtxA, in
omplex with a homopentamer of the delivery subunit, CtxB [103] . V.

holerae is a non-invasive, enteric pathogen that predominantly infects
he lumen of the small intestines [104] . Cholera toxin is produced and
ecreted at high levels from this location, and subsequently enters and
ntoxicates the neighbouring intestinal epithelial cells [16] . CtxA is an
DP-ribosyltransferase that covalently modifies the 𝛼 subunit of the Gs 
rotein signaling protein, inhibiting its GTPase activity and thus locking
t in its active state [105–107] . This leads to a substantial activation of
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Fig. 2. Examples of sequence diversity within AB5 toxin families. (A) Sequence differences amongst type 2 Shiga toxin subtypes that confer unique properties. Top: 
Amino acid sequence alignment showing the C-terminal 19 amino acids of the A subunits of the 2a, 2c, and 2d subtypes. The A subunit of the 2d subtype is activated 
by proteolytic removal of the final two amino acids by elastase (cleavage site shown with red triangle), an enzyme found in the intestinal lumen. This processing 
activates Stx2d, leading to increased toxin potency. Unlike Stx2d, other subtypes such as 2a and 2c are not activated by elastase; this difference is thought to stem 

from two amino acid differences at the C-terminus of the A subunit (red). Bottom: Amino acid sequence alignment comparing the B subunits of the 2a and 2e subtypes. 
Unlike all other known subtypes, Stx2e preferentially binds Gb4 rather than Gb3. Sequence differences that might contribute to this are in bold, and two residues 
that have been shown to be particularly important for this are highlighted in red. (B) Illustration showing the extent of sequence similarity amongst some major 
cholera-family toxin types. Percent amino acid sequence identity values amongst the indicated pairs of A or B subunits are shown. (C) Genome diagram and DNA 

sequence comparisons between type 1 and type 2 ArtAB toxins. These toxins have very similar A subunits, but their B subunits are very distantly related and share 
no significant DNA sequence similarity. Coupled with their reversed gene order, this suggests that one subtype evolved from the other by horizontal acquisition of 
a new B subunit, which supplanted the original (see B subunit replacement in Fig. 1B ). (D) Amino acid sequence comparison of the PltB sequences of the typhoid 
toxins encoded by S . Typhi and S . Javiana. These proteins have only three amino acid differences (bold/red), but exhibit very different potencies and glycan binding 
properties. In panels (A) and (D), underlined residues represent sequences removed during Sec-mediated secretion to the periplasm. 
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he downstream effector adenylate cyclase, resulting in increased con-
entrations of the second messenger cAMP. Most relevant for the patho-
enesis of V. cholera , elevated cAMP levels culminate in the activation
f ion channels that efflux chloride ions, triggering an accompanying
ow of water out of the cell [16] . Ultimately, the actions of cholera
oxin cause considerable fluid loss in the form of the “rice-water diar-
hea ” that is characteristic of cholera, which can lead to the rapid on-
et of dehydration in patients [102] . The excreted fluid contains large
umbers of V. cholerae , and it is thought that cholera toxin benefits this
acterium by facilitating transmission [108] . Recently, it was shown
hat cholera toxin also contributes to V. cholerae growth within the gas-
rointestinal (GI) tract by creating an iron-depleted environment that
onfers a selective growth advantage due to V. cholerae ’s capacity to ac-
uire haem and fatty acids from the host under these conditions [109] .
holera toxin gains access to target cells through the binding of CtxB
5 
o glycans present on the cell surface. CtxB exhibits very high affin-
ty for the ganglioside monosialotetrahexosylganglioside (GM1), which
s well established to be an important cholera toxin receptor [ 1 , 110–
12 ]. More recently, numerous studies have identified fucosylated gly-
oproteins as functional cholera toxin receptors that bind with a lower
ffinity at a distinct binding site on the CtxB subunit [113–116] . Ac-
umulating evidence suggests that, in addition to GM1, these glycopro-
ein receptors also appear to be relevant for cholera toxin pathogenesis.
nterestingly, CtxB is able to recognize histo-blood group antigens via
his secondary binding site with a preference for H determinant asso-
iated with the O blood type, providing a potential explanation for the
ncreased risk for severe disease observed for those with this blood type
 1 , 117–119 ]. 

Amongst V. cholerae strains that carry cholera toxin, the toxin’s
mino acid sequence is well conserved. The sequence diversity that has
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een observed is limited to the B subunit, with sequence variants dif-
ering by only a few amino acids. The ctx genes are encoded on a fila-
entous prophage known as CTX 𝜑 [120] and Ctx-producing V. cholerae

trains from the O1 serogroup can be classified into biotypes based on
he nature of this prophage [121] . The two major biotypes are dubbed
classical ” and “El Tor ”, although more recently strains that represent
ybrids of these two biotypes have become more prevalent [122–124] .
he CtxA sequence is identical between the classical and El Tor biotypes,
ut there are two amino acid residues that differ in their CtxB sequences.
he functional implications of this sequence variation are not fully un-
erstood, but it has been proposed that these amino acid differences
ffect receptor binding at the secondary binding site, impacting their
ssociation with blood group antigens [1] . In addition to the common
l Tor and Classical genotypes, several other ctxB genotypes have been
ound in V. cholerae , many of which are rare [ 123 , 124 ]. These stem from
ifferent combinations of amino acid changes to a handful of residues,
he impacts of which are not well understood [ 123 , 124 ]. One recent
tudy provided evidence that in the ctxB7 allele of the Haitian vari-
nt of O1, a single amino acid change within the CtxB signal sequence
ight improve the efficiency of its secretion/processing, contributing to

he increased toxin production that has been reported for these strains
125–127] . 

.2. Heat labile toxins 

Toxins that share a clear evolutionary, structural and functional re-
ationship with cholera toxin are also found within the E. coli lineage,
nd are referred to as heat-labile toxins [128] . E. coli is a genetically
nd ecologically diverse species, and different lineages or strains of this
pecies have been found to encode genetically divergent heat-labile tox-
ns. Heat labile toxins have been grouped into 4 types: type I (LT-I), type
Ia (LT-IIa), type IIb (LT-IIb) and type IIc (LT-IIc); there is also signif-
cant sequence diversity within these types [ 129 , 130 ]. LT-I toxins are
ommonly encoded on plasmids carried by E. coli of the ETEC (entero-
oxigenic E. coli ) pathotype, a major cause of traveller’s diarrhea [128] .
T-I is genetically similar to cholera toxin, exhibiting ∼80% amino acid
equence identity compared to cholera toxin (both the A and B subunits),
nd the two toxins adopt very similar structures ( Fig 2B ) [ 3 , 101 ]. In the
ontext of ETEC infections, LT-I elicits similar symptomology as cholera
oxin (although the symptoms are generally less severe) and it does so
sing an analogous mechanism involving GM1-mediated toxin uptake
nto intestinal epithelial cells via its B subunit, and ADP-ribosylation
f G 𝛼s via its A subunit [ 128 , 131 ]. The primary ligand binding pocket
f LT-I is very similar to that of CtxB, and GM1 is the dominant lig-
nd recognized by both toxins [ 3 , 111 , 132 , 133 ]. However, LT-I has been
bserved to have less stringent specificity for GM1 and also recognizes
ertain related gangliosides, albeit with a lower affinity [133–135] . Like
holera toxin, LT-I also binds glycoproteins and blood group antigens at
 secondary site [136–139] . Contrary to cholera toxin’s preference for
lood group H antigens, LT-I appears to prefer binding to blood group A
r B antigens [ 137 , 139–142 ]. Despite LT-I’s similarity to cholera toxin,
he two toxins are not functionally equivalent [143–145] . The B subunit-
riven differences in glycan binding described above are likely a major
riving force for this, but activity differences in the A subunits of cholera
oxin and LT-I have also been noted [144] . Furthermore, a recent study
ound that cholera toxin is more efficiently unfolded in the ER by PDI
han is LT-1 due to differences in the holotoxin structure, providing an-
ther potential explanation for its increased potency [146] . 

.3. Functional differences amongst heat-labile toxins 

Type II heat labile toxins adopt a similar overall structure compared
o LT-I and cholera toxin, and are also able to ADP-ribosylate G 𝛼s [147–
49] . However, E. coli strains encoding these toxins are rarely associated
ith human infection, and it is not clear if they represent bona fide vir-
lence factors within a human host. Strains encoding type II heat-labile
6 
oxins, which are encoded within prophages, have been isolated from
arious animal hosts [ 130 , 150–153 ]. The ecology and the relevant en-
ironmental reservoirs of E. coli strains that encode the various subtypes
f LT-II toxins is not clear. When compared to cholera toxin and LT-I,
he A subunits of LT-IIa, LT-IIb and LT-IIc are all ∼50–60% identical.
he B subunits of these toxins, by contrast, share little or no significant
equence similarity with cholera toxin and LT-I ( Fig 2 B). Despite this,
he B subunits of LT-II toxins exhibit a surprising extent of structural
imilarity to the cholera toxin and LT-I B subunits [ 147 , 148 ]. There are,
owever, substantial differences in the nature of the A-B subunit inter-
ctions between LT-I and LT-II toxins, and coupled with their highly
ivergent B subunit sequences, this suggests that type I and type II heat
abile toxins are distantly related [147] . Alternatively, the two types of
eat labile toxins might be the product of divergent B subunits evolving
o form a toxin with a similar A subunit. For example, the LT-II toxins
ould have emerged as a result of a horizontally acquired LT-II-like B
ubunit supplanting the original B subunit of an LT-I toxin (see Fig. 1B ,
B subunit replacement ”) [154] . This would be analogous to what has
een proposed for the two types of ArtAB toxins (described below). In
ost models of intoxication, type II heat labile toxins are less potent

han LT-I, with the notable exception of the Y1 mouse adrenal cell line
 151 , 155 ]. The B subunits of type-II heat labile toxins also recognize
angliosides, but with different specificity compared to LT-I and cholera
oxin. For example, cholera toxin strongly binds GM1 but does not rec-
gnize GD1a, whereas LT-IIb exhibits the reverse binding specificity,
howing high affinity for GD1a but no capacity to bind GM1 [ 133 , 156 ].
n addition to being different from LT-I, the different subtypes of type
I heat labile toxins also differ from one another. The A subunits and B
ubunits of type II LT-IIa, IIb and IIc share ∼70% and ∼50% amino acid
equence identity, respectively [130] . LT-IIa, IIb and IIc heat labile tox-
ns exhibit distinct glycan-binding preferences, which presumably con-
er these toxin types with different functional characteristics in the hosts
hey have evolved to target [ 148 , 151 , 157–160 ]. 

.4. CfxAB/EcxAB toxins 

Certain rare E. coli and Citrobacter strains encode a B subunit with
 70% amino acid sequence similarity to LT-I and cholera toxin, but do
ot encode a homolog of the cholera toxin A subunit [161] . In place
f the ctxA gene, these strains encode a putative metzincin family met-
lloprotease immediately upstream of the cholera toxin-like B subunit
161–163] . It has been demonstrated that these two proteins assemble
nto a canonical AB5 toxin architecture, and this novel AB5 -type toxin
s able to induce physiological changes to Chinese hamster ovary cells
 162 , 163 ]. Beyond its structure, very little is known about this toxin,
hich has been named CfxAB/EcxAB (depending on the origin species).
owever, this toxin is a noteworthy example of AB5 toxin evolution,
herein an enzyme with no prior connection to AB-type toxins appears

o have evolved to associate with the B subunit of an existing AB5 -type
oxin, resulting in a unique AB5 toxin with a novel enzymatic activity
see Fig. 1A , “A subunit replacement ”). 

. The pertussis toxin family 

.1. Pertussis toxin 

Pertussis toxin is a major virulence factor for Bordetella pertussis , a
uman-adapted bacterial pathogen that is the causative agent of whoop-
ng cough (also known as pertussis), a disease that affects an estimated
24 million people each year, resulting in over 160,000 deaths [164] . B.

ertussis differs from most other bacteria that produce well-characterized
B5 toxins with respect to both phylogeny and site of infection: most
B5 toxin producers are Gammaproteobacteria that infect the GI tract,
hereas B. pertussis is a Betaproteobacterium that infects the respira-

ory tract. Whooping cough disproportionately affects young children
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v  
although vaccine regiments have shifted pertussis’ population dynam-
cs in recent years), and the salient feature of the disease is develop-
ng intermittent coughing fits that can be severe and debilitating, often
ersisting for weeks, or longer [165–167] . In infants, B. pertussis infec-
ions can produce more severe disease, including pulmonary hyperten-
ion and pneumoniae, which can be fatal [168] . The pathogenesis of B.

ertussis requires the coordinated effects of numerous virulence factors,
owever there is strong evidence that pertussis toxin is a central fac-
or with respect to both immune evasion and eliciting disease sympto-
ology [ 18 , 19 , 169–172 ]. Pertussis toxin’s delivery platform is promis-

uous, and is able to bind diverse glycans and thus target numerous
ssorted cell types. Its active subunit - an ADP-ribosyltransferase that
odifies the activity of the 𝛼 subunit of G proteins from the Gi/o family

 affects cell signaling in a manner that can trigger a wide range of phys-
ological changes [173–175] . Accordingly, pertussis toxin is thought to
licit wide-ranging effects on its host during infection, however the rele-
ance of the assorted phenotypes that have been observed in cell culture
r animal models for human infection is not always clear. Through its
apacity to modulate host cell signaling, pertussis toxin is an impor-
ant aspect of how B. pertussis evades the immune system. It has various
mmunomodulatory effects such as altering cytokine signaling, impact-
ng immune cell migration, suppressing antibody responses, and more
176–180] . Furthermore, there is strong evidence that pertussis toxin
s partially or entirely responsible for many of the severe and/or sys-
emic symptoms associated with pertussis, such as histamine sensitisa-
ion, leukocytosis, and pulmonary hypertension [ 18 , 171 , 181 , 182 ]. It is
ot fully understood what causes the characteristic cough of whooping
ough, but there is evidence that pertussis toxin contributes to this as
ell, including recent work that has shed light on this subject using a
ouse coughing model [ 171 , 183–185 ]. 

.2. Other pertussis family toxins: ArtAB and EcPlt 

Genes with significant sequence similarity to pertussis toxin subunits
an be found in the genomes of numerous other bacterial species, in-
luding certain strains of E. coli, S. enterica and assorted Yersinia species
 154 , 186 , 187 ]. They are generally encoded within mobile genetic ele-
ents such as prophages, and thus have an irregular phylogenetic dis-

ribution that includes only specific clades or strains of a given species.
ertussis family AB5 -type toxins that share many structural and func-
ional similarities with pertussis toxin have been identified and char-
cterized from E. coli (dubbed EcPlt) and Salmonella (dubbed ArtAB)
 186 , 188 , 189 ]. EcPlt and ArtAB exhibit functional differences compared
o pertussis toxin, but both toxins have been shown to be capable of ADP-
ibosylating G protein subunits [ 186 , 189 , 190 ]. These toxins have not yet
een thoroughly studied, however, and little is known about their func-
ions or their roles in disease. Despite their different names, EcPlt and
rtAB appear to be similar enough that they would be better thought
f as different types or subtypes of the same toxin. Indeed, within both
he E. coli and the Salmonella lineages there is substantial sequence di-
ersity amongst the ArtAB/EcPlt toxins they encode [ 154 , 186 ]. The as-
orted ArtAB type toxins in Salmonella differ primarily in their B sub-
nit sequences, with some of the most variable amino acids lying within
he glycan binding pockets, suggesting that different sequence variants
ikely have different glycan binding properties [154] . Salmonella ArtAB
oxins have been divided into two types; type 1 and type 2. Interest-
ngly, the A subunits of type 1 and type 2 ArtAB share substantial nu-
leotide and amino acid sequence similarity ( > 90% identity in some
ases), but their B subunits are highly divergent, exhibiting < 30% amino
cid sequence identity and no significant nucleotide sequence similarity
 Fig 2C ) [154] . Based on this finding, it has been proposed that type
 ArtAB toxins are the result of a horizontally-acquired B subunit sup-
lanting the original artB gene, yielding a new toxin with the same A
ubunit but a new B subunit (see Fig 1B , 2C ) [154] . In support of this hy-
othesis, type 2 ArtAB toxins have a reversed gene order ( artBA instead
f artAB ), and remnants of a transposase can be found upstream of the
7 
ype 2 artB gene. All pertussis toxin family B subunits studied to date
ind sialic acid terminated glycans, however there is remarkable diver-
ity amongst different members of this class of B subunit with respect to
heir genetic sequences and their glycan-binding specificities [ 191 , 192 ].
iverse pertussis family B subunits have been identified as the delivery
omponents of pertussis toxin, ArtAB/EcPlt-like toxins, subtilase toxin
nd typhoid toxin (described below), as well as appearing as “orphan ”
 subunits without a genetically-linked A subunit [ 191 , 193 , 194 ]. The
inding specificities of these different family members vary with respect
o both the nature of the sialic acid and the underlying sugar chemistry
hat they recognize [ 191 , 192 ]. In general, pertussis family B subunits ex-
ibit the capacity to recognize numerous assorted sialoglycans in vitro ,
nd can generally bind both glycoproteins and glycolipids. It is likely
hat the spatial arrangement of compatible sialoglycans is a major fac-
or that dictates receptor specificity in vivo , with receptors that permit
ultiple binding sites on the pentameric delivery platform to bind si-
ultaneously being strongly preferred. 

.3. The unique heteropentameric delivery platform of pertussis toxin 

Pertussis toxin is exceptional within the pertussis family of toxins,
nd indeed amongst all AB5 toxins, due to the more elaborate nature
f its delivery platform. Indeed, all other known AB5 toxins have a
omopentameric delivery platform, whereas the pertussis toxin B pen-
amer is composed of four different polypeptides. The pertussis toxin
ocus consists of five genes that encode toxin subunits (one active sub-
nit and four delivery subunit genes) as well as a nine-gene operon
hat encodes a type IV secretion system that appears to be dedicated
xclusively to pertussis toxin secretion [ 173 , 195 ]. The 14-gene pertus-
is toxin locus therefore stands in stark contrast to the two-gene loci that
ncode many AB5 toxins. It is likely that pertussis toxin is the culmina-
ion of a substantial evolutionary process that began with a genetically
impler toxin similar to the ArtAB/EcPlt toxins. Pertussis toxin’s unique
eteromeric delivery platform consists of one copy of the proteins S2,
3 and S5 and two copies of S4 [5] . The S2 and S3 subunits share ap-
roximately 70% amino acid sequence similarity, and are the closest
elatives of the B subunits from other pertussis-family toxins. The S4
nd S5 subunits exhibit little-to-no significant sequence similarity to one
nother or to S2/S3. However, despite their divergent sequences, S2-S5
ll share structural similarities and S4 and S5 have structural features
lso observed in S2/S3 that are absent from other AB5 toxin B subunits.
his suggests that all 4 pertussis toxin B subunits likely evolved from the
ame parental protein [5] . In the pertussis toxin structure, the S2 and S3
ubunits each associate with S4 to form two dimers (S2-S4 and S3-S4),
hich are linked together by the S5 subunit. This arrangement creates
 unique delivery platform architecture that lacks the five-fold symme-
ry present in other AB5 toxins. S2 and S3 share a conserved binding
ocket with other members of the pertussis family of toxins, including
onserved sequence features such as a serine residue that is ubiquitous
and essential for binding at this site) amongst divergent pertussis fam-
ly B subunits [ 188 , 196–198 ]. In addition to this binding site, S2 and
3 contain a discrete ∼100 amino acid N-terminal Aerolysin/Pertussis
oxin (APT) domain that structurally resembles domains found in eu-
aryotic lectins [ 5 , 196 ]. APT domains are not found in any other known
B5 toxins, including other pertussis-family B subunits. The S2 and S3
PT domains, which differ from one another, contain multiple puta-

ive glycan binding sites that have different glycan binding specificities
 175 , 199 ]. Neither S4 nor S5 have established glycan binding sites, and
hey are thought to serve a predominantly structural role [ 5 , 196 ]. The
ypothetical evolution of the unusual pertussis toxin B pentamer from
n ArtB-like ancestor would therefore have involved several steps in-
luding (i) acquiring an APT domain, (ii) multiple genome duplication
vents, (iii) sequence changes in S2/S3 to confer each with unique gly-
an binding properties, (iv) substantial sequence changes in the S4/S5
ubunits to alter their structure and primary function. From a broad
iewpoint, the major outcome of this evolutionary process is that per-
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ussis toxin has multiple glycan binding pockets that all differ from one
nother, and which have different receptor specificities; this contrasts
ith all other AB5 toxins, which have five identical copies of each glycan
inding site. 

.4. Subtilase toxin 

Amongst the many diverse pertussis toxin-like B subunits that
ave been identified, the vast majority form toxins with ADP-
ibosyltransferase active subunits. A remarkable exception to this is
ubtilase toxin (SubAB), an AB5 toxin that is encoded by certain STEC
erovars that have been associated with outbreaks of HUS [193] . The de-
ivery subunit of subtilase toxin (SubB) is noteworthy due to its strong
pecificity for N -glycolylneuraminic acid (Neu5Gc)-terminated sialo-
lycans over those terminating in N -acetylneuraminic acid (Neu5Ac)
ialic acids, which is unique amongst pertussis family B subunits char-
cterized to date [ 191 , 197 ]. SubB is, however, structurally-similar to
ther pertussis family B subunits and utilizes a similar sialoglycan bind-
ng pocket [197] . The A subunit of subtilase toxin (SubA), by con-
rast, is a serine protease that is structurally and functionally unrelated
o the ADP-ribosyltransferase A subunits of the pertussis toxin family
 20 , 193 , 200 , 201 ]. SubA targets and proteolytically cleaves Binding im-
unoglobulin Protein (BiP), an ER chaperone that is essential for main-

aining ER integrity though its roles in protein folding, as well as cell
ignaling via the unfolded protein response [ 193 , 202 ]. Subtilase toxin
an therefore be cytotoxic, and it has also been reported to have im-
unomodulatory effects [ 193 , 201 , 203–205 ]. Due to its unique enzy-
atic activity, subtilase toxin is categorized as a unique AB5 toxin fam-

ly [2] . It is not impossible that subtilase toxin evolved before pertussis
amily toxins, and served as the evolutionary precursor to this family.
owever, the diversity and broad distribution of pertussis family tox-

ns suggests that it likely evolved first, and that subtilase toxin might
ave emerged as a result of a SubA-like serine protease acquiring the
apacity to interact with the delivery subunit of a pertussis family toxin,
upplanting its ADP-ribosyltransferase subunit, resulting in a novel AB5 
oxin family with a discrete enzymatic activity (see Fig. 1A , “A subunit
eplacement ”). 

. The typhoid toxin family 

.1. Overview 

Typhoid toxin is a prominent virulence factor for the human-
dapted pathogen Salmonella enterica serovar Typhi, the bacterium that
auses typhoid fever. According to Global Burden of Disease estimates,
here are ∼6–14 million cases of typhoid fever each year, resulting in
50,000–200,000 deaths [206] . The precise role that typhoid toxin
lays in S . Typhi pathogenesis and the development of typhoid fever
s not yet clear. Human volunteer infection studies suggest that typhoid
oxin does not have a substantial impact in the early stages of S . Ty-
hi infection [207] . However, S . Typhi causes a prolonged systemic
nfection that elicits a diverse range of complications, and animal in-
oxication studies suggest that typhoid toxin elicits certain symptoms
hat are associated with severe typhoid fever [ 194 , 208–210 ]. Animal
nfection studies, which are complicated by the fact that S . Typhi is a
uman-adapted pathogen that does not infect laboratory animals, have
rovided evidence that typhoid toxin plays a role at the systemic stage
f infection [211–213] . A small but significant proportion of S . Typhi
nfections result in a long-term persistent infection, and these “carri-
rs ” are thought to be important for S . Typhi transmission [214–216] . It
as been proposed that typhoid toxin is important for S . Typhi to reach
nd/or persist at sites of long-term carriage (typically the gallbladder)
217] . Typhoid toxin is a very unusual AB5 toxin that is unique in sev-
ral ways. For example, all other AB5 toxins are thought to be produced
nd secreted by extracellular bacteria, whereas typhoid toxin is only
8 
roduced by S . Typhi that reside within host cells [ 194 , 218 ]. Salmonel-
ae are facultative intracellular bacteria that actively invade host cells,
culpting and living within a vacuolar niche dubbed a Salmonella Con-
aining Vacuole (SCV). S . Typhi expresses typhoid toxin genes in re-
ponse to cues present within the SCV, and the toxin is subsequently
ecreted from the bacterium using a unique secretion mechanism that
ppears to require environmental conditions present within the SCV
 9 , 218–220 ]. The B subunit of secreted toxin then engages with a host
ell receptor within the SCV, which was recently identified to be the
ation-independent mannose-6-phosphate receptor (M6PR), triggering
 toxin trafficking pathway that culminates in typhoid toxin being exo-
ytosed from the cell into the extracellular space [221–223] . From this
ocation, typhoid toxin adopts the canonical AB5 toxin biological pro-
ram, and binds specific glycosylated receptors on the surface of tar-
et host cells, which leads to toxin uptake, trafficking, and ultimately
ellular intoxication [ 9 , 209 , 223 ]. This is a remarkably complex biolog-
cal program for a toxin, and it creates a scenario where intracellular
acteria can potentially intoxicate nearby cells without damaging the
ost cell in which they reside. Although it is not clear how this plays
ut in vivo , having the ability to manipulate the biology of surround-
ng cells (such as immune cells) from a safe haven could confer S . Ty-
hi with obvious advantages in the context of establishing a long-term
nfection. 

.2. Typhoid toxin’s unique A2 B5 architecture 

In addition to its unique biological program, the composition of ty-
hoid toxin is also distinct amongst AB5 toxins. In fact, typhoid toxin is
ot an AB5 toxin, it is an A2 B5 toxin. However, it has all of the struc-
ural and functional hallmarks common to A(1) B5 toxins, and is thus
rouped in this toxin family. Typhoid toxin can be thought of as having
 pertussis toxin-like AB5 toxin core that is structurally similar to ArtAB
 188 , 209 , 224 ]. The A subunit of this AB5 core, PltA, forms a disulfide
ond with a second active subunit, CdtB, creating the final A2 B5 holo-
oxin (see Fig. 1A , “toxin with two A subunits ”) [209] . CdtB does not
irectly interact with the delivery platform and its incorporation into the
oxin strictly relies on its covalent association with PltA. It is not known
hether S . Typhi secrete toxin complexes that lack CdtB, but cdtB is ex-
ressed from a distinct promoter and its expression is regulated in a sub-
ly different manner compared to the other typhoid toxin genes, suggest-
ng this could be the case [218] . The two active subunits of typhoid toxin
ave seemingly unrelated activities. Like other members of the pertus-
is toxin family, PltA is an ADP-ribosyltransferase. It is catalytically ac-
ive, however, the biologically relevant target(s) of PltA have not yet
een identified, and no definitive PltA-dependent intoxication pheno-
ypes have been identified [209] . S . Typhi CdtB exhibits clear homology
o the enzyme of the same name which serves as the active subunit of the
B2 -type toxin cytolethal distending toxin (CDT) [ 209 , 225 , 226 ]. CdtB is
 DNase that introduces single-stranded and/or double-stranded breaks
nto host cell genomic DNA, leading the G2 M cell cycle arrest and/or cell
eath depending on dose and cell type [ 209 , 227 , 228 ]. Strains or puri-
ed toxins featuring a mutation to an essential catalytic residue of CdtB
o not exhibit any detectable intoxication phenotypes in cell culture
nd animal infection/intoxication models [ 209 , 210 , 229 ]. This indicates
hat CdtB is responsible for all typhoid toxin activities that have been
dentified to date. Both CDT and ArtAB toxin can be found in assorted
rare) Salmonella genomes, and it has been proposed that typhoid toxin
volved within the Salmonella genus through the amalgamation of these
wo toxins [188] . The critical step in this evolutionary process would
ave been the accumulation of mutations that generated appropriately
ositioned cysteine residues for PltA-CdtB disulfide bond formation. Ty-
hoid toxin’s unusual A2 B5 architecture represents a simple yet elegant
echanism to expand the functionality of a toxin, enabling a single de-

ivery platform to simultaneously deliver two different activities to tar-
et cells. 
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.3. The two versions of typhoid toxin: diversification by delivery 

A third unique aspect of typhoid toxin biology is that S . Typhi pro-
uces two different versions of typhoid toxin in which the same active
ubunits (PltA and CdtB) form toxins with either PltB or PltC homopen-
amers (see Fig. 1B , “two distinct toxins ”) [194] . PltB and PltC are both
ertussis toxin family B subunits, but they are distantly related and share
 30% amino acid sequence identity. pltB is encoded at the typhoid toxin

ocus alongside pltA and cdtB and presumably represents the original
orm of the toxin that evolved. pltC , which is genetically similar to the
rtB gene from S . Typhimurium serovar DT104, is encoded at a dis-
ant S . Typhi genomic locus downstream of a degraded artA pseudogene
 154 , 194 ]. The genetic evidence therefore strongly suggests that PltC is
erived from an artB gene that was co-opted to serve as a alternate ty-
hoid toxin delivery subunit. Several lines of evidence indicate that S .
yphi produces two distinct toxins, and not heteropentameric PltB/PltC
oxin complexes, including (i) PltB and PltC both efficiently assemble
yphoid toxins in the absence of the other, (ii) the structures of both the
ltB and the PltC typhoid toxin have been solved, and based on these
tructures it is predicted that electrostatic repulsion between PltC and
ltB would deter the formation of heteromeric pentamers, and (iii) in-
eraction studies using both heterologous over-expression systems and
mmunoprecipitation from typhoid toxin-expressing S . Typhi indicate
hat PltB and PltC strongly interact with PltA/CdtB, but not with each
ther [ 194 , 209 , 224 ]. S . Typhi produces both versions of typhoid toxin in
ell culture infection models, as well as when grown in vitro in medium
esigned to promote typhoid toxin expression [194] . Interestingly, in
he conditions tested to date, S . Typhi appears to produce higher levels
f the PltC version of typhoid toxin, which is consistent with in vitro

nteraction studies and structural data that indicate that PltC is able to
ut-compete PltB for binding to PltA [ 194 , 224 ]. Importantly, however,
ltB and pltC are expressed from different promoters that are regulated
y different two-component regulatory systems, and their expression is
lso known to be affected differently by certainly metabolic cues [194] .
his indicates that S . Typhi is able to adjust the relative expression lev-
ls of the two typhoid toxin B subunits in response to its environment,
hereby adjusting the proportion of PltB and PltC typhoid toxins pro-
uced. 

PltB and PltC typhoid toxins exhibit different properties in both cell
ulture and animal model systems [194] . Notably, the PltB toxin elic-
ts greater morbidity and mortality in a mouse intoxication model, but
dministration of the PltC toxin results in a greater loss in circulating
hite blood cells, suggesting that the different toxins preferentially tar-
et different cell/tissue types in vivo . Furthermore, unlike the PltB toxin,
he PltC typhoid toxin remains associated with the SCV in cell culture
odels of infection and is not exocytosed from the cell [194] . In light

f recent findings, this suggests that PltC may be unable to productively
nteract with M6PR to trigger the formation of exocytic vesicles [221] .
he significance of this difference in trafficking is not yet clear, but it

s possible that the PltC toxin is exocytosed by other cell types. Alter-
atively, PltC toxin could be maintained within the SCV, which might
e beneficial to S . Typhi. For example, this pool of toxin could pro-
ect S . Typhi from immune detection in the event that the host cell in
hich they reside lyses. In vitro , PltB binds diverse sialic acid termi-
ated glycans, generally preferring those in which the terminal sialic
cid is linked to a Gal-GlcNac disaccharide via an 𝛼2–3 or 𝛼2–6 linkage
 191 , 198 , 209 ]. It exhibits exquisite specificity for glycans terminated in
he sialic acid Neu5Ac over analogous Neu5Gc-terminated sialoglycans
 198 , 209 ], which is noteworthy given that S . Typhi is a human-adapted
athogen and unlike most other mammals, humans are unable to pro-
uce Neu5Gc. PltB has also been reported to preferentially recognize
hemically modified sialic acids, and to exhibit enhanced affinity for
ultiantennal sialoglycans that enable multiple PltB binding sites within

he homopentamer to engage the same glycan [ 210 , 230 ]. Less is known
bout the binding specificity of PltC, however it also recognizes diverse
ialic acid-terminated glycans. Its glycan-binding preferences have been
9 
hown to be different from those of PltB, most notably in that PltC is
ble to efficiently bind both Neu5Ac and Neu5Gc-terminated sialogly-
ans [224] . The nature of the biologically-relevant receptors for typhoid
oxin and how this varies between the two version of the toxin will be
n interesting avenue of future research. 

.4. Typhoid toxin diversity 

The S. enterica species is composed of thousands serovars that have
iverse ecologies and virulence properties. Outside of the Typhi serovar,
yphoid toxin is also encoded by other lineages of the Salmonella genus
ith a sporadic phylogenetic distribution [ 154 , 194 , 231 , 232 ]. The Ja-
iana serovar has served as an important model system to study typhoid
oxin biology in nontyphoidal Salmonella [ 212 , 231 , 233–236 ]. Like the
 . Typhi version of typhoid toxin, the S . Javiana typhoid toxin elicits
NA damage and cell cycle arrest in cell culture models of infection
 212 , 233 , 234 ]. Furthermore, murine infection studies comparing wild-
ype S . Javiana to a typhoid toxin mutant indicate that strains encod-
ng typhoid toxin accumulate at greater numbers at certain systemic
ites [212] . Like S . Typhi, the Javiana serovar also encodes pltC, and
ell culture infection experiments indicate that both the PltB and the
ltC toxin can elicit CdtB-mediated DNA damage arrest during infection
 212 , 231 ]. Although the sequence of the typhoid toxin genes is very sim-
lar in S . Typhi and S . Javiana, mouse intoxication experiments demon-
trated that the Javiana version of the (PltB) typhoid toxin is markedly
ess potent than its Typhi counterpart [235] . The differences were found
o stem from three amino acid differences in the PltB sequences, which
educe Javiana PltB’s affinity for glycans carrying 𝛼2–3-linked terminal
ialic acid compared to S . Typhi PltB ( Fig 2D ). More broadly, analysis of
yphoid toxin genetic sequences suggests that there is substantial diver-
ity amongst different typhoid toxins produced by various salmonellae,
hich likely reflects the evolutionary adaptation of these toxins to target

he diverse hosts Salmonella infections or colonizes ( [154] and unpub-
ished results). Interestingly, phylogenetically diverse S. enterica strains
ncode both the core typhoid toxin locus and PltC, which is surpris-
ng given that both loci are genetically mobile and they are usually not
enetically linked. This suggests that encoding two versions of typhoid
oxin is a widespread feature of typhoid toxin biology that serves an
volutionarily beneficial function [ 154 , 231 ]. 

. Concluding thoughts 

Table 1 summarizes the major evolutionary diversification that has
ccurred amongst the AB5 toxins that have been characterized to date.
hese toxins and toxin families presumably represent only a fraction of
hose that exist in nature. Indeed, despite the fact that S . Typhi is a major
uman pathogen and that salmonellae are amongst the most highly stud-
ed bacteria, typhoid toxin was not discovered until 2008. Many unchar-
cterized genes with sequence similarity to AB5 subunits can be found
y searching DNA sequence databases, and such searches only unveil
utative toxins that share detectable sequence similarity with known
oxins. The large and heterogeneous collection of AB5 toxins that exists
oday is a testament to both the efficacy of the AB5 paradigm, and to
he power of bacterial evolution. Although mutation and homologous re-
ombination are clearly major factors in generating AB5 toxin diversity,
t is becoming increasingly clear this is not the only way that diversity
s generated. The AB5 scaffold is surprisingly amenable to incorporating
ovel subunits into existing toxins. In the case of B subunits, it is note-
orthy that homologous proteins that share an ancient ancestor appear

o represent an environmental reservoir for evolutionary diversification.
or example, type 2 ArtAB toxins and the PltC typhoid toxin both appear
o have evolved as a result of an A subunit forming a toxin with a B sub-
nit that is distantly-related to its original B subunit. This suggests that,
lthough the functional properties of A and B subunits appear to evolve
uickly, the A/B interface is relatively well conserved over evolution-
ry time. Indeed, it has been noted that there are conserved aspects of
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he A–B interaction in divergent AB5 toxins, such as the nature of the B
entamer pore, which is generally lined with hydrophobic amino acids
or the apical portion, and with charged and/or polar residues for the
asal half [147] . Multiple distinct enzymes appear to have evolved the
apacity to engage with AB5 toxin B subunits, yielding novel AB5 toxins
amilies. That this has apparently occurred on numerous independent
nstances suggests that the A/B interface of AB5 toxins is quite flexible.
ollectively, this conserved ‑but-flexible A-B interface creates ideal con-
itions for the emergence of novel AB5 toxins with unique activities and
ell targeting properties. 

As highlighted above, the evolutionary diversification of AB5 toxins
as important consequences for human health by impacting the viru-
ence properties of prominent bacterial pathogens. Conversely, AB5 tox-
ns have been useful tools to study eukaryotic cell biology, they have
iagnostic utility, and they have a great deal of potential as compo-
ents of novel measures to combat human disease [ 2 , 14–17 , 237–239 ].
his includes approaches that target AB5 toxins in order to prevent or
reat the diseases caused by the bacteria that produce them, a strategy
hat has been explored with significant promise for many of the tox-
ns described above. The most noteworthy example of this is pertussis
oxin, which is a principal component of the widely used acellular Per-
ussis vaccines (such as TDaP/DTaP) administered to prevent whooping
ough [ 16 , 240–243 ]. Additionally, AB5 toxins and their constituent sub-
nits have been widely investigated as therapeutic agents to treat other
unrelated) diseases. For example, cholera toxin family B subunits are
ighly immunogenic and have a great deal of promise as mucosal adju-
ants [244] . Another example of this is the application of Shiga toxins or
heir B subunits in anti-cancer agents, a promising strategy because Gb3
s present at significantly higher levels in many cancer cell types rela-
ive to normal tissue [238] . In light of the many potential applications
f AB5 toxins, there is a great deal that can be learned from analyzing
he wide range of biological properties found within the natural reser-
oir and AB5 toxins. Furthermore, nature is the greatest engineer, and
fforts to design customized AB5 toxins will benefit from understanding
he mechanisms by which AB5 toxins have evolved naturally. 
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