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Huntington’s disease (HD) is a devastating neurodegenerative disorder caused by
an aberrant expansion of the CAG tract within the exon 1 of the HD gene, HTT.
HD progressively impairs motor and cognitive capabilities, leading to a total loss of
autonomy and ultimate death. Currently, no cure or effective treatment is available to halt
the disease. Although the HTT gene is ubiquitously expressed, the striatum appears to
be the most susceptible district to the HD mutation with Medium-sized Spiny Neurons
(MSNs) (D1R and D2R) representing 95% of the striatal neuronal population. Why are
striatal MSNs so vulnerable to the HD mutation? Particularly, why do D1R- and D2R-
MSNs display different susceptibility to HD? Here, we highlight significant differences
between D1R- and D2R-MSNs subpopulations, such as morphology, electrophysiology,
transcriptomic, functionality, and localization in the striatum. We discuss possible
reasons for their selective degeneration in the context of HD. Our review suggests that
a better understanding of cell type-specific gene expression dysregulation within the
striatum might reveal new paths to therapeutic intervention or prevention to ameliorate
HD patients’ life expectancy.

Keywords: Huntington’s disease, neurodegeneration, striatum, medium-sized spiny neurons, selective
vulnerability, D1R, D2R

HUNTINGTON’S DISEASE: GENETIC, CLINIC, AND
PATHOLOGIC CHARACTERISTICS

Huntington’s disease (HD) is a rare, progressive, neurodegenerative disorder characterized by
devastating motor, cognitive, and psychiatric symptoms. The monogenic, autosomal dominant
disease is caused by a CAG repeat expansion in exon 1 of the HD gene (HTT), encoding for the
huntingtin protein (MacDonald et al., 1993). The worldwide prevalence of HD is estimated to
be 2.71 per 100,000 individuals (Pringsheim et al., 2012) and the average age of onset is between
30 and 50 years (Roos, 2010). So far, no treatments are available to block or slow-down the HD
pathologic process, albeit mutant huntingtin lowering strategies are currently tested in clinical trials
as promising therapeutic (Hoffmann-La Roche, 2020; Wave Life Sciences Ltd, 2020).

Although mutant huntingtin protein is ubiquitously expressed in all human districts, the brain,
wherein the striatum, is the primary deteriorating region in HD (Saudou and Humbert, 2016;
Ghosh and Tabrizi, 2018). Most striatal functions are mediated by inhibitory Medium-sized
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Spiny Neurons (MSNs), which comprise 95% of neurons in
this area with the remaining being interneurons. There are
two subtypes of MSNs differentiable by the expression of
the D1 and D2 dopamine families’ receptors, constituting the
direct and indirect pathways, respectively (Lanciego et al.,
2012). The dorsal striatum (neostriatum) is the input module
to the cortico-basal ganglia-thalamo-cortical loop (CBGTC), a
neuronal circuit necessary for voluntary movement control. In
the direct pathway, glutamatergic cortical terminals activate
dopamine receptor 1 (D1R)-expressing MSNs, which exert their
inhibitory effect on the globus pallidus internal segment (GPi)
(Entopeduncular nucleus, in rodents). Inhibitory neurons in this
area, project to the ventral anterior/lateral motor thalamus. Thus,
the stimulation of D1R-MSNs has a net excitatory effect on the
motor thalamus, allowing the final switch of the motor cortex
and the stimulation of skeletal muscles. On the other hand, in
the indirect pathway, dopamine receptor 2 (D2R)-expressing,
inhibitory MSNs are also stimulated by glutamate release of
cortical terminals. D2R neurons connect to the GP through
an indirect loop, such that, they first project to and inhibit
the globus pallidus external segment (GPe). These neurons
firstly connect to the subthalamic nucleus exciting the area
through glutamate release. Finally, the excitation of inhibitory
GPi neurons produces motor thalamus repression (Alexander
et al., 1986; Bolam et al., 2000). Dysfunction and death of striatal
MSNs are the main causes for the motor disorders associated
with HD (Ghosh and Tabrizi, 2018). In this review, we provide
an overview of key pathological pathways leading to striatal
degeneration. Furthermore, we describe general characteristics
and physiological differences between D1R- and D2R-MSNs and
highlight distinct morphological and functional alterations of
MSNs during the disease. Our review emphasizes the importance
of understanding cell-type specific physiological differences
contributing to striatal vulnerability which may provide insights
toward new avenues of therapeutic intervention.

PATHOGENIC MECHANISMS OF THE HD
MUTATION IN STRIATAL DISTRICTS

Altered Cellular and Molecular Pathways
Because of unavailability of pre-symptomatic HD brain tissues,
the reasons behind selective striatal vulnerability in HD were
mostly investigated using animal models. In fact, the basal
ganglia and, particularly, the cortico-striatal motor circuitry,
appears to be conserved in mouse, minipig, and primates
(Vodicka et al., 2005; Stephenson-Jones et al., 2011; Balsters
et al., 2020). Thus, genetically engineered models, bearing normal
or pathological CAG repeat lengths, have revealed important
pathogenic mechanisms of the HD mutation (Menalled, 2005;
Lerner et al., 2012; Peng et al., 2016; Table 1 and Figures 1A,B).
Nevertheless, several salient features of human HD pathology–
such as overt striatal atrophy, cortical degeneration, and onset of
choreic movements–failed to fully replicate in animal models of
the disease (Rubinsztein, 2002).

Huntington’s disease post-mortem brains revealed that MSNs
exhibit altered morphology, with proliferative changes–recurving
and branching of dendrites and increased number and size of

spines–since early stages of the disease. Degenerative alterations–
truncation of the dendritic arborization and loss of spines–are
characteristics of severe grades (Ferrante et al., 1991; Figure 1A).
MSNs of 3 months old R6/2 N-terminal transgenic line–
which overexpress human mutant HTT exon 1 (Mangiarini
et al., 1996)- and of 20–26 months old HdhQ140 knock-
in mice–with the endogenous mouse Htt gene engineered
to express a longer polyglutamine tract (Menalled et al.,
2003)- do present similar decreased spine density and size of
dendritic arborization (Klapstein et al., 2001; Lerner et al., 2012;
Figure 1B).

Other studies in post-mortem brains also highlighted mutant
huntingtin aggregates within neuronal MSNs nuclei (DiFiglia
et al., 1997; Rüb et al., 2016; Figure 1A). Similarly, mutant
huntingtin diffuse nuclear localization could be visualized at
earlier ages (3 months) in MSNs of zQ175 knock-in mouse
models (Menalled et al., 2012), while clear nuclear inclusions can
be spotted only at later stages (8–12 months old) (Carty et al.,
2015; Figure 1B).

Most observations point toward toxic gain-of-function for
the pathogenic mechanisms. However, some data suggest that
a loss-of-function mechanism should not be completely ruled
out (Borrell-Pagès et al., 2006). Specifically, mutant huntingtin
impairs the brain-derived neurotrophic factor-tropomyosin-
related kinase receptor type B (BDNF-TrkB) signaling in striatal
neurons (Table 1). This deficiency plays a pivotal role in
dysfunction and death of MSNs and may represent a therapeutic
target for HD treatment. Accordingly, several studies examined
whether increasing levels of BDNF may be a viable strategy
(Baydyuk and Xu, 2014). R6/2 mice, perfused with BDNF
at 4 and 13 weeks of age showed less severe neurological
dysfunction (Giampà et al., 2013), and significantly reduced
motor coordination impairment (Giralt et al., 2011). However,
the administration of citalopram, an antidepressant believed to
increase BDNF levels, failed to improve motor and psychiatric
symptoms in HD patients (Beglinger et al., 2014).

Recently, a significant increase in reactive oxygen species
(ROS) production was described in the striatum of HD patients
(Kumar and Ratan, 2016). ROS, produced by excitotoxicity
or mitochondrial dysfunction, are important mediators of cell
death (Gu et al., 1996; Browne et al., 1997). Coherently, mutant
huntingtin seems to interfere with mitochondrial functioning
(Table 1). Lymphoblasts from HD patients present mitochondrial
fragmentation and cristae alterations (Costa et al., 2010),
while cortical specimens from grade 3–4 HD patients display
downregulation of complexes II, III, and IV of the oxidative
phosphorylation (OXPHOS) pathway (Tabrizi et al., 2000;
Shirendeb et al., 2011; Liot et al., 2017; Figure 1A). Energy
metabolism alterations were also detected in R6/2 transgenic
mice (Tabrizi et al., 2000), in HdhQ111 knock-in models with
decreased cAMP levels in the striatum at 10 weeks of age
(Gines et al., 2003; Mochel et al., 2012) and, finally, precursor
cells from striatal primordia of knock-in mice (Trettel et al.,
2000) show significantly reduced respiration and ATP production
(Figure 1B). Thus, considering that striatal neurons require
higher amounts of ATP to maintain their hyperpolarized resting
membrane potential (Hammond, 2015), it is conceivable that
they might result more sensitive to mitochondrial dysfunction.
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TABLE 1 | Pathogenic mechanisms correlated with striatal degeneration in Huntington’s Disease.

Altered Mechanism* Cellular and molecular phenotype* References

BDNF-TrkB1 signalinga Decreased BDNF synthesis and transport Zuccato et al., 2003; Gauthier et al.,
2004

Glutamate reuptakeb Glutamate excitotoxicity: decreased expression of, NMDA, AMPA, kainate, and
excitatory amino acid transporter 2

Cha, 2007; Rebec, 2018

ROS2 productionb Increased: reduced expression of dopamine receptor D2R, nitric oxide synthase,
and glutamate transporter GLT1

Cha, 2007; Kumar and Ratan, 2016

Mitochondrial functioning Dysfunction: altered calcium homeostasisc,d, reduced ATP synthesizee, impaired
mitochondrial traffickinge, mitochondrial fragmentation, and crestae alterationsd

Dysregulation of electron transport chain genesb,c and consequent alteration in
OXPHOS3 complexesb

Panov et al., 2002; Seong et al., 2005;
Costa et al., 2010; Li et al., 2010;
Shirendeb et al., 2011; Liot et al., 2017

Gene expressiona,b,d,e,f Downregulated genes: neurotransmitter receptors, neurotransmitters, intracellular
signaling molecules, and cytoskeletal/structural proteins Transcriptional changes
also observed in glial cells

Luthi-Carter et al., 2000; Hodges et al.,
2006; Cha, 2007; Tang et al., 2011;
Ament et al., 2017

miRNA4 biogenesis and
expressiond

miRNA and miRNA biogenesis-related molecules are upregulated at earlier stages
and downregulated at later stages of HD

Johnson et al., 2008; Packer et al.,
2008; Lee S.T. et al., 2011

Alternative splicing Aberrant: dysregulated TRANS-splicing factors (PTBP1, SRSF6)b. Mutant HTT
mRNA sequesters spliceosome components, dysregulating splicing, and causing
toxicityg

Sathasivam et al., 2013; Lin et al.,
2016; Schilling et al., 2019

Epigenetics Preferentially closed chromatin state and transcriptional repression: reduced histone
acetylation, increased histone methylatione,f, decreased AcH3 levels, decreased
number of genes bound by AcH3f, increased H3K27me3 and decreased
H3K4me3e

Ferrante et al., 2003; Stack et al., 2007;
Luthi-Carter et al., 2010; Seong et al.,
2010; McFarland et al., 2012; Biagioli
et al., 2015; Hervás-Corpión, 2018;
Pearl et al., 2020

Dopamine signalingb Altered dopamine signaling has been associated with behavioral alterations
observed in HD. Dopamine levels are increased at early stage and decreased at
later stage

Chen et al., 2013; Koch and Raymond,
2019

Somatic CAG instabilityb Increased in striatum and cerebral cortex Telenius et al., 1994; Swami et al., 2009

Electrophysiologyd Changes in the balance of excitatory and inhibitory inputs to the direct and indirect
pathway MSNs

Galvan et al., 2012

*Abbreviations are indicated with superscript numbers, models used in the studies with superscript letters.
1Brain-derived neurotrophic factor-tropomyosin-related kinase receptor type B.
2Reactive oxygen species.
3Oxidative phosphorylation.
4MicroRNA.
aKnock-in mouse cell line (endogenous mouse Htt gene engineered to express a longer polyglutamine tract).
bHD patients.
cHD patients’ lymphoblastoid.
dFull-length mouse model (overexpression of full-length mutant huntingtin).
eKnock-in mouse model.
fR6/2 N-terminal mouse model (overexpression of human mutant HTT exon 1).
gCell-line overexpressing mutant huntingtin.

Initial studies on HD mouse models and later on HD
post-mortem striatum revealed that mutant huntingtin causes
transcriptional dysregulation of signaling pathways, neuronal,
gliosis, and neuroinflammatory genes. Moreover, studies on
HdhQ111 knock-in models also demonstrated that transcriptional
alterations can already be detected at 9 weeks of age (Cha, 2000;
Luthi-Carter et al., 2000; Hodges et al., 2006; Ament et al.,
2017; Table 1). Interestingly, striatal transcriptional changes are
among the earliest detectable phenotypes in HD mouse models
(Langfelder et al., 2016; Ament et al., 2017, 2018), which conform
with HD patients (Seredenina and Luthi-Carter, 2012; Labadorf
et al., 2015; Figures 1A,B).

Transcriptional dysregulation of synaptic proteins, such as
complexin 2, dynamin, and PACSIN 1, correlates with neuronal
morphological changes and reduction in the number of axonal
fibers in early-stage HD patients (DiProspero et al., 2004;

Han et al., 2010; Figure 1A). Furthermore, altered microRNA
biogenesis and expression was reported in HD post-mortem
tissues and in YAC128 murine models of full-length mutant
huntingtin overexpression (Johnson et al., 2008; Packer et al.,
2008; Lee S.T. et al., 2011; Table 1). Notably, mutant huntingtin
can directly or indirectly compromise the epigenetic status of
brain cells (Table 1), at least in part explaining the observed
transcriptional dysregulation (Stack et al., 2007; Seong et al., 2010;
McFarland et al., 2012; Biagioli et al., 2015; Hervás-Corpión,
2018; Pearl et al., 2020).

Recent RNAseq analysis of HD patients’ motor cortex revealed
that mutant huntingtin interferes with RNA processing and
induces aberrant alternative splicing (Table 1), affecting the
expression levels of TRANS-splicing factors and/or trapping
specific RNA binding proteins (Sathasivam et al., 2013; Lin et al.,
2016; Schilling et al., 2019).
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FIGURE 1 | HD profoundly alters the striatum and MSNs in both patients and mouse models, upper panel. (A) Schematic representation of HD patient brain. At the
early stage of the disease (grade 1–2), patients already manifest mild brain atrophy and astrogliosis (Ross and Tabrizi, 2011; Rüb et al., 2016). MSNs undergo
proliferative expansion and show increased number and size of spines (Ferrante et al., 1991). At the molecular level, a reduction of synaptic proteins and alterations
in gene transcription are detected (DiProspero et al., 2004; Hodges et al., 2006). These changes continue during advanced stages (grade 3–4), when brain atrophy
becomes prominent (Rüb et al., 2016). MSNs undergo degenerative changes and spine loss, and mutant huntingtin aggregates can be detected within nuclei

(Continued)
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FIGURE 1 | Continued
(Ferrante et al., 1991; DiFiglia et al., 1997; Rüb et al., 2016). Altered energy metabolism and somatic instability of the CAG tract are detected (Gines et al., 2003;
Swami et al., 2009; Liot et al., 2017). (B) Knock-in HD mouse models (CAG > 80) faithfully recapitulate the human HD mutation and mimic several aspects of the
human condition. At early age (<4 months), mice show mild brain atrophy (Peng et al., 2016) and diffuse accumulation of mutant huntingtin within MSNs nuclei
(Carty et al., 2015). At the molecular level, energy metabolism and transcription are altered (Gines et al., 2003; Mochel et al., 2012; Ament et al., 2017). Somatic
instability is already detectable at this stage (Pinto et al., 2013). At later stages (>6 months), brain atrophy becomes more prominent and astrogliosis could be
detected (Menalled, 2005; Lerner et al., 2012; Peng et al., 2016). MSNs show reduced dendritic complexity and spine loss, and nuclear mutant huntingtin
aggregates inclusions (Lerner et al., 2012; Carty et al., 2015). The molecular alterations proceed and somatic instability becomes particularly evident (Lee J.M. et al.,
2011). Specific pathways and phenotypes developed by D1R- and D2R-MSNs upon expression of mutant huntingtin, lower panel. (C,C′) Striatopallidal neurons
(D2R-MSNs) are affected earlier than striatonigral ones (D1R-MSNs) by HD mutation (Sapp et al., 1995). (D,D′) Gene expression profiling on R6/2 mice revealed that
neurotrophin pathway is specifically upregulated in D2R-MSNs, while mismatch repair (MMR) and synaptic functioning pathways seem to be altered in both MSNs
subpopulations (Lee et al., 2020). (E) In both R6/2 and zQ175 mice, oxidative phosphorylation (OXPHOS) downregulation observed in D2R cells contribute to
mitochondrial dysfunction (Lee et al., 2020), while (E′) OXPHOS genes are upregulated in D1R cells, possibly suggesting a homeostatic response (Lee et al., 2020).
(F) In mice and rat striatal cell cultures overexpressing mutant huntingtin, D2R stimulation enhances mutant huntingtin aggregation and mitochondrial dysfunction
(Charvin et al., 2005; Benchoua et al., 2008). (F′) In HdhQ111 models, dopamine and glutamate synergistically enhance MSNs sensitivity to mutant huntingtin toxicity
through D1R activation (Paoletti et al., 2008). (G,G′) In 12 months old zQ175 KI mice, D1R neurons show proliferative expansion of the dendritic arborization and a
significant reduction in the density of thin spines, while D2R neurons do not show significant differences (Goodliffe et al., 2018). (H,H′) In the same model, only D1R
neurons exhibit reduced rheobase and action potential amplitude (arrows). Figure created with BioRender.com.

Dopaminergic Signaling
Dopaminergic inputs from the substantia nigra are crucial for
proper signaling of striatal MSNs in the basal ganglia circuit.
Indeed, substantia nigra pars compacta (SNc) modulates the
direct and indirect pathways by releasing dopamine, which has
an excitatory effect on D1R and an inhibitory one on D2R.
Consequently, dopamine excites the direct pathways and inhibits
the indirect pathway, producing an overall stimulation of the
motor activity (Leisman et al., 2013).

Studies on HD patients suggest that early stages of the
disease are characterized by an increase in dopamine levels,
contributing to choreiform symptoms. This might be due to
the inhibitory effect of MSNs projecting to the SNc, which,
in early stages, may produce hyperactivation of this pathway.
Conversely, as disease progresses, dopamine levels decrease–
possibly because of dopaminergic nigrostriatal terminals loss–
accounting for the late akinetic stage (Chen et al., 2013; Koch
and Raymond, 2019; Table 1). Accordingly, studies on both
patients and mouse models confirmed an increase in dopamine
release and tyrosine hydroxylase levels in early HD, followed by a
reduction of the same parameters in advanced disease conditions
(Koch and Raymond, 2019).

Within striatal MSNs, a modulatory mechanism between
dopamine and glutamate was observed. On one hand, dopamine
binding to D1R stimulates surface expression of NMDA and
AMPA receptors, resulting in an increased responsiveness of
D1R-MSNs to glutamate release. On the other hand, dopamine
binding to D2R decreases surface AMPA receptors, reducing
their glutamate excitability (Surmeier et al., 2007). Interestingly,
both in patients and murine models, glutamate signaling follows
the same pattern of dopamine alterations, being increased
during HD early stages and decreased at advanced stages (Chen
et al., 2013), thus suggesting a cross-talk between these two
neurotransmitters.

Somatic CAG Instability
The expanded CAG repeat in the mutant huntingtin gene is
unstable, undergoing progressive length increases over time
and resulting in somatic mosaicism in selective human body

districts (Table 1). Specifically, it is possible that high level of
somatic CAG instability in the striatum and cerebral cortex
(Telenius et al., 1994; Swami et al., 2009; Lee J.M. et al., 2011)
contributes to HD pathology (Figures 1A,B). Knock-out of
DNA mismatch repair (MMR) proteins in HdhQ111 knock-in
mice showed that Msh2/3/6, Mlh1, and Mlh3 are modifiers
of somatic CAG instability (Wheeler, 2003; Dragileva et al.,
2009; Pinto et al., 2013). Importantly, genome-wide association
analysis of a cohort of 9,000 HD patients confirmed MMR
genes and specifically MLH1 as crucial HD genetic modifiers
(Lee et al., 2015, 2019).

D1R- VERSUS D2R-MSNs: GENERAL
CHARACTERISTICS AND
PHYSIOLOGICAL DIFFERENCES

Medium-sized spiny neurons are characterized by a small to
medium cellular body size (10–15 µm in diameter) and a radially
oriented large dendritic tree covered by spines. Upon dopamine
binding, D1R activates adenylyl cyclase (AC) signaling, leading
to an excitatory effect, whereas D2R represses AC through Gi-
protein signaling, resulting in inhibition (Lanciego et al., 2012).
Striatopallidal (D2R) and striatonigral (D1R) neurons exhibit
a random distribution in the murine rostral, dorsal striatum.
However, a regionalization is observed in the caudal part,
near the GPe, which comprises almost exclusively D1R-MSNs
(Gangarossa et al., 2013). It is well accepted that D2R-MSNs are
affected earlier than D1R-MSNs (Sapp et al., 1995; Figures 1C,C′)
and, accordingly, GPe-targeting MSNs show substantial loss
in patients at early stages of the disease (Albin et al., 1992).
The lack of inhibition of the GPe by D2R-MSNs results in an
excessive activation of the pallidal neurons, leading to choreiform
movements observed in HD (Hedreen and Folstein, 1995).
Nevertheless, in the latest stages, GPi-targeting MSNs of the
direct pathway undergo marked decline, resulting in akinetic
movements and rigidity (Deng et al., 2004; Lanciego et al., 2012).

Morphologically, striatonigral neurons show more
primary dendrites and a more extended arborization than
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striatopallidal ones. Experimental simulation suggested that
different dendritic areas may contribute to the divergent
electrophysiological properties. Indeed, experiments performed
on brain slices from D1R and D2R-EGFP BAC transgenic
mice demonstrated that D1R neurons display a more
hyperpolarized resting membrane potential and a greater
rheobase (Gertler et al., 2008).

Accordingly, recent experiments using Drd1a-td Tomato
mice revealed an increased intrinsic excitability for D2R-MSNs
compared to D1R-MSNs. This might be due to the different
rheobase, which is decreased in D2R neurons (Willett et al.,
2019). Previous studies, however, pointed to a differential role
of M1 muscarinic receptors activation, which downregulates Kir
channel currents in striatopallidal MSNs, but not in striatonigral
ones (Shen et al., 2007).

Considering that increased release of glutamate might
contribute to MSNs degeneration (DiFiglia, 1990; Cepeda et al.,
2007), it is noteworthy that D2R-MSNs receive more cortical
inputs, mainly from pyramidal neurons (Francelle et al., 2014).
Moreover, cortical axons making synapses with D2R-MSNs are
larger in size, compared with the ones from D1R neurons (Lei,
2004). Altogether, these characteristics expose them to higher
excitotoxicity, possibly reflecting on their greater susceptibility
to cell death (Table 1). D2R-, but not D1R-, MSNs can form the
protein complex with β-arrestin2, Akt, and protein phosphatase
2A (PP2A), which, in turn, reduces the phosphorylation of
glycogen synthase kinase-3 (GSK3) (Harrison et al., 2013). GSK3
plays crucial roles in neuronal function, synapse formation,
and neurite outgrowth (Beaulieu et al., 2004, 2005). Since
both Rhes and Akt have been demonstrated to interact with
and modulate mutant huntingtin toxicity, the Akt/β-Arrestin
2PP2A/GSK3 pathway may represent an additional mediator
of D2R specific selective vulnerability (Colin et al., 2005;
Lee et al., 2014).

Furthermore, TrkB is unequally expressed in striatal MSNs,
with higher level in D2R-MSNs (Baydyuk and Xu, 2014). Thus,
the aberrant BDNF-TrkB signaling caused by mutant huntingtin
might have stronger effects in these cells (Table 1). Analysis
of mouse striatum using single cell RNA sequencing (scRNA-
seq) unveiled additional transcriptional differences between
D1R- and D2R-MSNs. Further complexity emerged following
the discovery of region-specific molecular markers for dorsal
D2R neurons (Puighermanal et al., 2020), the identification
of discrete subgroups of D1R and D2R neurons (Gokce
et al., 2016) and of a possible third subtype of MSNs,
which may have unique characteristics (Gokce et al., 2016).
The existence of a third subpopulation of MSNs was also
reported by Saunders et al. (2018), who observed a cluster
of neurons in the striatum of C57BL6/N, co-expressing Drd1
and Adora2a, named as “eccentric” MSNs. It is still premature
to point to a clear connection between these physiological
differences and the unequal cellular vulnerability to HD of
the two MSNs subpopulations. Nevertheless, evaluation and
integration of these single-cell analyses with other molecular
aspects, such as alternative splicing, somatic mosaicism, and
epigenetics differences between MSNs subtypes (Table 1), will
be instrumental to understand the molecular mechanisms

impinging on different vulnerability of D1R- and D2R-
MSNs.

DO D1R- AND D2R-MSNs
DIFFERENTIALLY RESPOND TO THE HD
MUTATION?

Recent studies on HD patients described rostro-caudal and
dorso-ventral degenerative gradients. Specifically, the caudal
striatum displayed greater neuronal death compared to
the rostral part, while the dorsal-medial area seemed to
degenerate faster compared to the ventral-lateral striatum
(Morigaki and Goto, 2017). Although the contribution of MSNs’
physiological regionalization to selective vulnerability in HD is
not fully dissected, some unequal distribution of the subclasses
(Gangarossa et al., 2013) and subgroups (Gokce et al., 2016;
Puighermanal et al., 2020) of MSNs might play a role.

To dissect why D1R- and D2R-MSNs are differentially
affected by HD, Lee et al. (2020) highlighted thousands
dysregulated protein-coding genes implicated in OXPHOS,
synaptic functioning and circadian entrainment by using
translating ribosome affinity purification and snRNA-seq of
D1R and D2R neurons of HD patients and mouse models
(R6/2 and zQ175DN, a knock-in zQ175 line without neomycin
cassette) (Franich et al., 2019). Strikingly, downregulation of
OXPHOS and upregulation of neurotrophin pathway genes
in D2R neurons indicated a cell-type specific response to the
disease (Figure 1D). Notably, Lee et al. (2020) demonstrated
that OXPHOS genes downregulation causes mitochondrial
dysfunction (Figure 1E) and mitochondrial RNA release in the
cytosol, which, in turn, activates protein kinase R and cellular
toxicity through the interferon pathways. Coherently, it was
shown previously that D2R contributes to mutant huntingtin
aggregation and mitochondrial impairment (Charvin et al.,
2005, 2008; Benchoua et al., 2008; Figure 1F). Moreover, the
upregulation of MMR genes, implicated in somatic instability of
the CAG tract (Table 1), in both D1R- and D2R-MSNs supported
a possible predisposing feature for selective degeneration
(Figures 1D,D′). However, additional studies will be needed
to correlate these findings with HD progression and MSNs
vulnerability (Lee et al., 2020).

On the other hand, analysis on YAC128 and BACHD mouse
models demonstrated that glutamate transmission was increased
in D1R neurons at early disease and decreased in both D1R
and D2R cells at advanced stages (André et al., 2011). Since
a modulatory mechanism between dopamine and glutamate
was observed within healthy striatal MSNs (Surmeier et al.,
2007), dopamine and glutamate might synergistically enhance
sensitivity to mutant huntingtin toxicity through D1R but not
D2R activation (Paoletti et al., 2008; Figure 1F′). Similarly, in
a different study using 12 months old zQ175 knock-in models,
striatonigral neurons showed more prominent morphological
and electrophysiological changes than striatopallidal ones
(Goodliffe et al., 2018; Figures 1G′,H′). While this view is in
contrast with the well-established hypothesis that D2R neurons
are selectively damaged in early stages of HD, nonetheless,
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these findings might highlight the presence of a compensatory
mechanism in D1R neurons. It is interesting to note that, in
the knock-in mouse model zQ175DN, Lee et al. (2020) reported
an increased expression for OXPHOS genes in D1R neurons
(Figure 1D′), which, indeed, may support the activation of a
transcriptional protective response in this subclass of MSNs.

CONCLUSION AND PERSPECTIVE

In conclusion, our review provides a general overview into
key pathological pathways leading to neuronal cell death of
striatal MSNs in HD. We specifically focus on differences
between D1R- and D2R-MSNs, underpinning sensitizing or
protective features that might determine diverse responses to
the same mutation. From initial studies, a combination of cell-
type specific and non-specific reactions seem to be activated
in HD, sensitizing D2R-MSNs to cell death. However, the
application of single cell techniques, such as, but not limited to,
scRNA-seq, is nowadays pioneering a new field of discussion,
addressing the contribution of each single cell type (neuronal
or glial) to HD striatal vulnerability. Specifically, other cell
clusters in the striatum, such as striatal interneurons and
astroglia, seem to respond to the HD mutation with some
altered genes and pathways as in D1R and D2R, while microglia,
oligodendrocytes, and oligodendrocytes precursors seem to be
less responsive (Lee et al., 2020). The role of astrocytes in
HD has been previously proposed, since mutant huntingtin
downregulates the expression of the glial glutamine transporter
GLT-1, exacerbating neuronal excitotoxicity. Similarly, specific
mutant huntingtin expression in astrocytes prompts motor
function deficits, weight loss, and age-dependent neurological
phenotypes in transgenic mouse models (Bradford et al., 2009,
2010). Previous studies have provided evidence that activated

microglia and reactive astrocytes might contribute to human
HD pathology, perpetuating inflammation (Palpagama et al.,
2019). However, still debatable is the attribution of beneficial
vs. detrimental effects to activated microglia and astrocytes.
Moreover, the highly heterogeneous class of striatal interneurons,
generally thought to be spared in HD (Cicchetti et al., 2000), still
displays selective degeneration in presence of the HD mutation,
with documented loss of only parvalbumin-positive interneurons
(Cicchetti et al., 2000; Reiner and Deng, 2018). Therefore, a
better understanding of the neuroinflammatory environment,
but also a detailed clarification of the interneurons population
in the HD brain is needed. Moreover, analysis of chromatin,
genome-architecture, and spatial distribution will assist in the
elucidation of single cell characteristics. This will offer a new
angle of interpretation to selective vulnerability to HD and will
possibly pave the way to new avenues of therapeutic intervention.
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