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Multiple myeloma (MM) is an acquired malignant plasma cell disorder that develops late in life. Although progression free and
overall survival has improved across all age, race, and ethnic groups, a subset of patients have suboptimal outcomes and are
labeled as having high risk disease. A uniform approach to risk in NDMM remains elusive despite several validated risk stratification
systems in clinical use. While we attempt to capture risk at diagnosis, the reality is that many important prognostic characteristics
remain ill-defined as some patients relapse early who were defined as low risk based on their genomic profile at diagnosis. It is
critical to establish a definition of high risk disease in order to move towards risk-adapted treatment approaches. Defining risk at
diagnosis is important to both effectively design future clinical trials and guide which clinical data is needed in routine practice. The
goal of this review paper is to summarize and compare the various established risk stratification systems, go beyond the R-ISS and
international myeloma working group risk stratifications to evaluate specific molecular and cytogenetic abnormalities and how they
impact prognosis independently. In addition, we explore the wealth of new genomic information from recent whole genome/
exome sequencing as well as gene expression data and review known clinical factors affecting outcome such as disease burden
and early relapse as well as patient related factors such as race. Finally, we provide an outlook on developing a new high risk model
system and how we might make sense of co-occurrences, oncogenic dependencies, and mutually exclusive mutations.
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INTRODUCTION

With the advent of new therapeutics and the increasing utilization of
high-dose melphalan and autologous stem cell transplantation (ASCT)
over the last 20 years, 5- and 10-year overall survival (OS) have
improved across all age, race, and ethnic groups in multiple myeloma
(MM) [1]. These benefits are more tempered in those with high-risk
disease with revised international staging system (R-ISS) stage Il
patients achieving only a 24% 5-year progression-free survival (PFS)
and 40% 5-year OS [2]. It is critical to identify high-risk patients at
diagnosis in order to move away from treatment adapted to patient's
physiological/chronological age and comorbidities and rather toward
the establishment of risk-adapted treatment approaches.

A uniform approach to risk in NDMM remains elusive despite
several validated risk-stratification systems in routine clinical use.
This is a direct consequence of our rapidly expanding ability to
evaluate genomic level data as well as an ever-expanding amount of
patient-level clinical data. The accurate assessment of risk at
diagnosis is important for many reasons including but not limited to:

1. The longest remission period is achieved by initial therapy
and thus the duration of the first remission is one of the
most important factors impacting patient prognosis

2. Accurate definition of risk for clinical trial enroliment

3. Establishing which clinical data should be obtained routinely
in practice to define risk.

There is significant heterogeneity in the various risk-
stratification systems currently utilized as outlined in Table 1.
While we attempt to capture risk at diagnosis, the reality is that
many important prognostic characteristics remain ill-defined as
some patients relapse early who were defined as low risk based on
their genomic profile at diagnosis. The goal of this review paper is
to summarize and compare the various established risk-
stratification systems and go beyond the R-ISS and international
myeloma working group (IMWG) risk stratifications to evaluate
specific molecular and cytogenetic abnormalities and how they
impact prognosis independently. We explore the wealth of new
genomic information from recent whole-genome/-exome sequen-
cing as well as gene-expression profile data and review known
clinical factors impacting outcome such as disease burden and
early relapse as well as patient-related factors. Finally, we provide
an outlook on developing a new high-risk model system and how
we might make sense of co-occurrences, oncogenic dependen-
cies, and mutually exclusive mutations.

GENERAL RISK-STRATIFICATION SYSTEMS

The international staging system (ISS) is one of the earliest validated
risk stratification for NDMM patients [3]. The ISS is a biological staging
system predicting risk based on rising serum (3,-microglobulin (32M)
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and falling serum albumin. Subsequent to the ISS development,
chromosomal abnormalities (CA) detected by interphase fluorescent
in situ hybridization (iFISH) have become a standard of care in risk
stratifying MM patients. Certain high-risk changes including del(17p),
translocation t(4;14), and translocation t(14;16) have been established
[4]. In 2014, the IMWG published an updated risk stratification
focusing on differentiating high from standard-risk patients combin-
ing the ISS with certain high-risk iFISH changes including t(4;14),
del17p13, and +1qg21 [5].

The R-ISS combines iFISH changes, serum lactate dehydrogen-
ase (LDH), and ISS features and is the most widely recognized risk-
stratification tool for NDMM patients [2]. The R-ISS is a simple but
clinically useful system predictive of both OS and PFS in NDMM.
Although it incorporates important genomic markers including t
(4;14), t(14;16), and del17p, it does not include 1q gain/
amplification, an increasingly important prognostic marker [6], or
mutational data from TP53. Importantly, in order to be R-ISS stage
lll, patients must also be ISS Il with the biological marker f2M
elevated to>5.5mg/L. A significant portion of patients will be
R-ISS stage | or Il despite having high-risk iFISH changes. In a
recent report by Corre et al. [7] evaluating del(17p) and TP53
mutations in NDMM patients, 73% of the patients with del(17p)
alone and 52% of those with TP53 biallelic inactivation were not
International Staging System (ISS)—3 and thus not classified in the
R-ISS 3 subgroup. Further, 2M may indeed be a biological maker
of high-risk disease but likely the inherent high-risk genomic
features drive this as Bolli et al. found that 1q amplification
correlated with higher 32M [8]. Finally, neither the R-ISS nor the
IMWG weight cytogenetic findings. A recent report by the
Intergrouped francophone Du Myelome (IFM) has shown that a
weighted cytogenetic risk stratification based on certain high-risk
lesions such as a del(17p), del(1p32), gain 1q, t(4;14), and trisomy
21 may have the ability to more accurately risk-stratify patients [9].
Unfortunately, the vast majority of patients included in this study
were not treated with modern induction regimens. This brings up
a frequent challenge when evaluating prognostic scores in NDMM
given the quickly evolving treatment landscape and lack of
treatment adjustment into currently utilized risk-stratification
systems.

BEYOND THE R-ISS: MOLECULAR SUBGROUPS AND
CYTOGENETIC ABNORMALITIES

In addition to traditional staging systems, there are well-
established high-risk features in MM that portend to poor
outcomes. These features include other molecular subgroups
(primarily translocations into the immunoglobulin heavy-chain
locus and copy number abnormalities (CNAs)) as well as new and
emerging structural, mutational, and copy number drivers based
on next generational sequencing. MM may have chromosomal
aberrations carried by only a subset of tumor cells, and the
cytogenetic heterogeneity of individual cases reflects the coex-
istence of cytogenetically defined aberrant plasma cell clones. A
surrogate marker of clone size may include the percentage of cells
harboring specific cytogenetic abnormalities detected by FISH.
Although the European Myeloma Network (EMN) has recom-
mended relatively conservative cutoff values of 10% for fusion or
break apart probes and 20% for numerical abnormalities (similar
cutoffs were utilized for the R-ISS staging system), so far no
uniform cutoffs have been applied, and the cutoffs used in
different centers are inconsistent.

WELL-ESTABLISHED MOLECULAR SUBGROUPS:
TRANSLOCATIONS INTO THE IMMUNOGLOBULIN HEAVY-
CHAIN LOCUS

Most translocations into the immunoglobulin heavy-chain locus
located at 14932 are seen in greater than 40% of NDMM patients

SPRINGER NATURE

[4, 6]. The IgH locus at 14g32 is transcriptionally active in B cells,
and the translocation of putative oncogenes to this region and
their subsequent dysregulated expression is considered a seminal
event in the pathogenesis of most B-cell malignancies, including
MM [10]. There are several known translocations of 1432 with
nonrandom partners, including the more commonly observed t
(4;14) and t(11;14) translocations (30% of patients with MM) and
the less common (<5% of patients) t(14;16), t(6;14), t(8;14), and t
(14;20) translocations [10]. Each translocation subgroup is
associated with deregulation of a D group cyclin either directly,
such as occurs with the t(11;14) (cyclin D1) and t(6;14) (cyclin D3),
or indirectly such as occurs with the t(4;,14) or in the MAF
translocation group which includes t(14;20) and t(14;,16) [11].
These translocations ultimately lead to upregulation of oncogenes
—including D-type cyclins (cyclin D1, D2 and D3), MAF family
members (MafA, MafB, and c-Maf), c-MYC, the myeloma SET
domain protein (MMSET), and the fibroblast growth factor
receptor 3 (FGFR3)—and have been shown to influence patient
prognosis.

Adverse

The MAF translocation group includes the t(14;16) and t(14;20),
both of which are rare in MM, but are thought to be associated
with poor prognosis. The mechanism of this poor outcome is
thought to involve the consequences of MAF upregulation, which
include upregulation of cyclin D2, and its effects on cell interaction
and upregulation of apoptosis resistance [11]. t(4;14) translocation
leads to mutation of the MMSET gene that is known to have
histone methyltransferase activity and is deregulated early on in
the genesis of developing MM [12]. t(8;14) and MYC aberrations/
translocations lead to upregulation of the MYC oncogene. The
prevalence, pathogenesis, and supporting literature for both
14932 translocations and CNAs dictating risk varies and is outlined
in Table 2.

WELL-ESTABLISHED MOLECULAR SUBGROUPS: COPY NUMBER
ABNORMALITIES

Additional copy number gains and losses occur frequently with
the most frequent being del 13q (59%), +1q (40%), del14q (39%),
del6q (33%), del1p (30%), and del17p (8%). Table 2 outlines key
features of CNAs with special attention below to 1q gain/
amplification and del(17p) as these likely represent the most
deleterious genomic changes in NDMM.

1q amplification (v gain)

The gain/amplification of CKS1B gene at chromosome region
1921 (1g+) is one of the most common secondary genetic
abnormalities in MM and is seen in about one-third of NDMM
patients [7]. CKS1B is an essential protein for cell growth and
division and is a member of the cyclin kinase subunit 1 protein
family. It is expressed universally in the bone marrow and
associates with p27kip1-Cdk/cyclin complex and acts as a cofactor
for Skp2-dependent ubiquitination of p27 [13]. An amplified
CKS1B results in greater degradation of p27, activation of the Cdk/
cyclin complex, and cell cycle upregulation by promoting the G1/S
transition and plays a critical role in cell cycle progression and MM
cell survival.

Various 1q states are seen in NDMM patients including diploid,
gain of 1q (three copies of 1q), and amplification of 1q (=4 copies
of 1q). The differential impact on prognosis between gain and
amplification remains to be completely elucidated but any
additional copies of 1q has been shown to lead to inferior
outcomes. The impact of copy number on long-term outcomes is
variable but =4 copies or amplification typically drives the most
dismal PFS and OS [6]. While many postulate that del(17p)/TP53
mutation is the most impactful driver of prognosis, the recently
updated data on 1q amplification from the FORTE trial calls this

Blood Cancer Journal (2022)12:83
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into question where an intensified treatment approach improved
outcomes in all groups save those with 1q amplification [14].

del(17p)

Cytogenetic analysis of chromosome 17p deletions which spans
the TP53 gene is typically performed by iFISH probes against 17p
and does not probe TP53 in isolation. Although the clinical
relevance of del17p is well established in MM, the exact
mechanism by which del17p promotes aggressive disease biology
remains unclear. As in other tumor types, TP53 mutations in MM
are spread across the entire gene, with many mutations occurring
within the DNA-binding domain [15]. The length of the deleted
region can vary from a few megabases (MBs) to deletion of the
entire short arm of chromosome 17. The TP53 gene is located in
the minimally deleted region (0.25 MB) suggesting that it is a
critical gene in the 17p13 region. However, a deletion event
usually involves several genes and co-deletion of TP53 along with
Eif5a and Alox15b has resulted in more aggressive disease [15]. It
remains unclear how genes other than TP53 contribute to
tumorigenesis. Missense mutations of TP53 might associate with
even worse outcome in some cases as they produce mutant TP53
proteins that not only result in loss of normal TP53 function but
also gain of oncogenic functions [16]. From the myeloma genome
project (MGP), Walker et al. demonstrated that TP53 deletion is the
most common abnormality at 8%, followed by mutation (~6%)
and biallelic inactivation (~4%). Of note, TP53 mutation has been
identified as a driver mutation in MM and is one of the few driver
mutations with prognostic power [17].

Early studies suggested an association between deletion on one
allele and mutation on the second allele putatively resulting in
complete inactivation of P53 function [18]. The relationship
between mono and biallelic del(17p) and TP53 mutational status
remains to be clarified and Table 3 summarizes the known
prognosis of biallelic vs. haploinsufficiency. Further, what defines a
positive test for del(17p) remains controversial with cancer clone
fraction (CCF) positivity rates vary based on cutoffs. The known
impact of CCF is also summarized in Table 3.

The use of different thresholds/CCFs, different size datasets, as
well as different treatment regimens have resulted in discordance
in the reported prognosis of del17p. Regardless, when detected
del(17p) is ubiquitously adverse. The R-ISS, IMWG, and mSMART
staging systems as well as whole-genome/-exome sequencing
data from both the myeloma genome project [6] as well as the
IMWG CoMMpass study [19] have all clearly shown dismal
outcomes in del(17p) patients. When incorporating RNA altera-
tions and gene-expression profiling it remains predictive of both
PFS and OS as well.

Hyperdiploid, tetraploid, and trisomies

Hypodiploid karyotypes or hyperhaploid karyotypes are asso-
ciated with an adverse prognosis in NDMM. Tetraploidy is an
independent marker associated with significantly shorter OS [20].
It is well described that several high-risk lesions frequently co-
occur with standard-risk patients and that hyperdiploid myeloma
(HD-MM), although generally agreed upon to be protective [21], is
biological heterogeneous as exemplified by the fact that 78% of
IgL-MYC translocations co-occur with HD-MM [22]. Further, among
HD-MM, patients with trisomy 21 have poor outcomes [23]
although this is controversial and being increasingly challenged.

The challenge and applicability of traditional iFISH risk
stratification

The IMWG consensus statement describes clinical iFISH as the
standard approach for detecting CAs and the R-ISS staging system
followed the same methodology. However, within the R-ISS
inconsistencies existed in defining positive cytogenetic abnormal-
ities and the cutoff levels were not identical ranging from 8 to 20%
for numerical aberrations and from 10 to 15% for immunoglobulin
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heavy-chain translocations. Further, in routine clinical practice,
more heterogeneity exists with some labs not performing the
required purification or dual staining and as with the R-ISS data the
detection limits and positivity thresholds vary between institutions.
This heterogeneity may limit the utility of the R-ISS and IMWG
staging systems particularly when applied after collaborating data
from multiple institutions. More recently, extensive collections of
MM genomic data are being utilized to further elucidate risk in
NDMM patients but they too have not escaped this challenge. For
example, the CoMMpass study (NCT01454297) has provided an
unprecedented platform for genomics and outcomes research in
MM but one of the few critiques stems from the heterogeneity in
cytogenetic analysis. In an audit of the top ten recruiting sites,
significant discordance was found between the local data
extraction and their central audit with variability in the FISH
probes utilized, number of cells counted, and sorting techniques
[24]. Of note, traditional FISH studies are quite expensive further
motivating the field to move beyond traditional FISH studies
toward next-generation sequencing tools.

Seq-FISH with next-generation sequencing tests can be
designed to simultaneously detect the copy number abnormalities
and translocations detected by clinical FISH along with gene
mutations that cannot. From the CoMMpass study, Goldsmith et al
identified 672 patients with sufficient data to calculate R-ISS via
Seqg-FISH technique using calls on whole-genome sequencing
(WGS) long-insert data with the threshold for a positive detection
of a CNA by Seqg-FISH being 20%. The R-ISS-NGS resulted in
significant redistribution of patients from stage | into stage II. R-
ISS-NGS stages Il and Ill were associated with worse PFS and OS
more so than the staging schema of the R-ISS [24]. Further, Miller
et al. evaluated 339 patients also from the CoMMpass study and
found Seq-FISH identified nearly all translocations as well as 30
translocations missed by clinical FISH [25]. Thus Seg-FISH has
validated the prognostic power of the R-ISS and increased the
sensitivity and reproducibility of identifying CAs. However, like
gene-expression profiling described in detail below, the clinical
application remains challenging given the laboratory experience
and capabilities required as well as turnaround time in routine
clinical practice.

Making sense of co-occurrences, oncogenic dependencies,
and mutually exclusive mutations

As more samples are sequenced in MM, co-occurrences or
oncogenic dependencies between genomic markers are being
increasingly described [6, 26]. This makes an exact assessment of
the impact of specific cytogenetic abnormalities difficult especially
when these abnormalities are considered in isolation and or when
they are rare events such as t(8;14) or t(14;16). Prior to our ability
to readily perform whole-genome sequencing, the number of
known oncogenic dependencies were limited. However, large
datasets such as the Myeloma Genome Project and the CoMMpass
project have increased our awareness of co-occurring events. The
co-segregation of these adverse prognostic factors emphasizes
the need to adjust for potential confounding and should lead to
improved risk stratification in NDMM patients. Further, under-
standing the biology of the tumors and how particular co-
dependencies function and their potential reliance on similar
pathways may lead to identifying new therapeutic targets.

WHOLE-GENOME/-EXOME SEQUENCING

Next-generation sequencing (NGS) technologies have allowed the
identification of RNA transcript expression, genomic structural
variants (translocations, deletions, insertions, inversions), single
nucleotide variants, loss of heterozygosity, and copy number
abnormalities affecting whole chromosomes, segments of chro-
mosomes, and individual genes. Dozens of myeloma driver genes
have been identified with the most common occurring in the RAS
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and NF-kB families [27]. Chromothripsis, a genomc event that
leads to massive, clustered genomic rearrangements, is an
emerging high-risk signature that is just recently being described.
With newer technologies making whole-exome and whole-
genome sequencing more readily available and less expensive,
the ability to complete more comprehensive genomic profiling of
MM patients is increasingly becoming a reality. This has renewed
the importance of identifying and prognosticating driver muta-
tions and additional genetic variants that might lead to improved
patient expectations and ultimately therapeutic advancements.

The MGP, CoMMpass study, as well as work done by a
collaboration of US and European centers published by Bolli
et al. [8] has expanded our knowledge of the genomic
environment in which MM develops and importantly identified
novel risk factors leading to poor outcomes. Several conclusions
can be safely made after reviewing this data including:

0.014) and 50%
corresponding to a CCF of

(P=0.027) CCF predicted PFS

Median CCF of the entire cohort: 69.5%
+ OS: cutoff values from 20 to 60% did

not predict OS

NA
CCF cancer clone fraction, CN copy number, HR hazard ratio, iFISH interphase fluorescent in situ hybridization, MGP myeloma genome project, MV multivariate analyses, NA not applicable/not available, NDMM

newly diagnosed multiple myeloma, OS overall survival, OR odds ratio, PD progressive disease, PFS progression-free survival.

“Double hit: displaying del(17p) and an additional TP53 mutation.

CCF impact on outcomes

- PFS: 40% (P

® del(17p)/TP53 mutations a well as +1qg amplification are
powerful drivers of poor prognosis

® Many novel driver and oncogenic genes remain to be
explored

® Loss of heterozygosity [6, 17] (LOH) and an APOEBEC [6, 17]
signature impact prognosis

® Burden of driver gene and overall somatic missense mutation
drive poor outcomes

® Genomic clusters exist and dictate prognosis

® (Certain genomic pairings leading to "double hit" genotypes
dictate dismal outcomes.

0.004).

Impact of biallelic/double hit® vs.

monoallelic inactivation®

NA

Table 4 summarizes key findings in the most recently reported
large patient datasets with whole-genome/-exome sequencing
available.

hit* among

% double
del(17p)

RNA AND GENE-EXPRESSION PROFILING

Given DNA-based assays such as whole genomic sequencing are
able to identify individual lesions and markers of global genomic
instability and ultimately prognosis, it is not surprising that the
development and now validation of several GEP scoring systems
have shown strong prognostic value. Most studies have identified
GEP signatures as an independent prognostic factor although
overlap with clinical and iFISH/cytogenetic risk factors do exist
[28-30]. The HOVON-65/GMMG-HD4 clinical trial researchers and
University of Arkansas for Medical Sciences (UAMS) researchers
have reported a 92 [30] and 70-gene signature [28], respectively,
able to identify poor outcome in independent cohorts. Although a
variety of other GEP have been developed [31], only two have
matured into validated clinical tests: MMprofiler (EMC92/SYK92)
and MyPRS (UAMS GEP70).

CCF cutoff for
del(17p)
detection

7%

Incidence del
(17p)/TP53
mutation

NA

EMC92/SKY92/MMprofiler

This GEP was originally developed from newly diagnosed MM
patients included in the HOVON-65/GMMG-HD4 trial (n =290)
[30]. A prognostic signature of 92 genes (EMC92-gene signature)
was generated with high-risk defined as OS of less than 2 years
(63 out of 290 patients—21.7%) generating a two-tier system of
high and standard-risk populations. The EMC92 was then
validated in several up-front MM patient cohorts including total
therapy (TT)2 (19.4% at high risk), TT3 (16.2% at high risk) and
MRC-IX (20.2% at high risk). Multivariate analysis was performed
in the training set and in the MRC-IX validation sets which
showed that in addition to the EMC92 signature, del(17p) and
B2M were also independent predictors in HOVON-65/GMMG-
HDA4. The SYK92 MMprofiler would go on to be validated in other
in NDMM settings including patients receiving up-front KRD
induction with and without ASCT consolidation [32]; 329 patients
from the NRCI Myeloma XI trial [29]; and specifically in elderly
non-transplant eligible patients [33].

patients with
del(17p)

Number of
310

continued
€In the full dataset, TP53 deletion was seen in 9.0% (97/1074) and mutations in 5.5% (70/1273) of patients. Any event at TP53 was found in 11.3% and biallelic events in 3.7% of patients. Importantly, when

mutations of TP53 are taken into account, del(17p) was not prognostically important.

fEarly progressive disease was defined as time to progression of less than 18 months.
10-20%); intermediate clonal tumors (n = 64; MLPA 0.55-0.7—corresponding to a CCF of greater than 50%); clonally TP53-deleted tumors (n = 61; MLPA <0.55—corresponding to a CCF of ~95-100%).

9IMV analyses: del17p always entered the final model whether the cut-point used was 20%, 40%, 60%, or 80%, suggesting that del17p is indeed an independent prognostic factor.

f’Homozygous TP53 deletion was associated with a very short median OS of 22.4 months and an HR for OS of 3.7 (95% Cl, 1.5-8.9; P
'TP53-deleted tumors were divided into three equal-sized subgroups based on MLPA (multiplex ligation-dependent probe amplification) values: deleted tumors (n = 67; MLPA 0.7-0.8

PHalploinsufficiency: either del17p alone or TP53 mutation alone.
“Haploinsufficiency still leads to poor outcomes.
4TP53 mutation based on whole-exome/genome sequencing as opposed to iFISH.

Reference and setting
Lakshman et al.; single
institution [84]

Table 3.
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0.0023) and predicted expressed

neoantigen load (N

PFS, P

CA cytogenetic abnormalities, CCF cancer clone fraction, IMID immunomodulatory drug, LOH loss of heterozygosity, MGP myeloma genome project, MM multiple myeloma, MMRF Multiple Myeloma Research

Foundation, OS overall survival, PD progressive disease, PFS progression-free survival, WES whole-exome sequencing.

®Mutations in CRBN and IKZF1 have been associated with IMID resistance.

PFS, P

214, 55.5 vs. 72.9% 2-year

0.0028)

PMutations in tumor suppressor genes co-occurred with deletion in the wild-type allele.
Early progressive disease was defined as time to progression of less than 18 months.

P. Hagen et al.

The UAMS GEP70 or MyPRS

In one of the earliest GEP studies, Shaughnessy et al reported on a
70-gene scoring system in 532 NDMM patients [28]. Both the
training and validation groups were treated on National Institutes
of Health (NIH)-sponsored clinical trials UARK 98-026 and UARK
03-033, respectively. Both protocols used chemotherapy-based
induction regimens followed by melphalan-based tandem auto-
transplantation, consolidation chemotherapy, and maintenance
treatment. They identified a high-risk group that comprised 13.4%
of patients and exhibited significantly inferior event-free survival
(EFS)(P=0.001; HR of 4.51) and OS (P=0.001; HR of 5.16). On
multivariable analyses for OS and EFS controlling for ISS risk and
high-risk translocations, the high-risk UAMS GEP70 score retained
its significance (HR=4.1; P=0.001). As with the SYK92, this has
now been validated in several cohorts including the same 329
NDMM patients treated on the NCRI Myeloma XI trial as well as
456 patients treated on the GMMG-MM5 trial [34].

Is GEP ready for prime time?

Despite growing evidence of its prognostic value, the application
to routine clinical care remains challenging. There is no consensus
on a universal adaptation and none are validated by the FDA.
Chng et al. attempted to evaluate the optimal GEP for MM by
examining patients from three publically available GEP datasets
[35]. They evaluated nine GEP profiles looking at all non-
redundant combinations and constructed all possible combina-
tions of multiple signatures up to nine full signatures and
performed survival analysis for each combination. They demon-
strated reproducibility across the nine systems, thus GEP can
capture core biology that is not a result of random methodological
artifact. They showed that the EMC92+HZDCD combination
provides highly improved performance compared with other
signatures or combinations. Others have shown that the SYK92
[36] or a combination of the EMC92 and the ISS (referred to as the
EMC92-ISS) may be the optimal system [37]. With a rapidly
changing therapeutic landscape, re-validation will be necessary.
Capturing clonal content and evolution remains a challenge and
newer high-throughput technologies are needed along with
newer bioinformatics methodologies to identify meaning from
the large amount of data being generated. Many unanswered
questions still exist such as different GEP mutual relationships, the
utilization of multiple systems, and the possibility of outperform-
ing combinations. Nevertheless, targeted NGS approaches allow
the assessment of all copy number variations, IGH translocations,
and recurrent mutations in one technique. Thus, likely this
technology has significant advantages in the long term [35-37].

BEYOND THE R-ISS: HIGH-RISK CLINICAL FEATURES

Clinical and biological features have prognostic value beyond
genomics in NDMM patients. Tumor burden dictates risk and was
included in the original ISS staging system [3]. Subsequently,
malignant plasma cells in the bone marrow and peripheral blood
have also been shown to be prognostic. The plasma cell
proliferation index (PCPI), a measure of plasma cell proliferative
activity, has shown an association between metaphase cytoge-
netic abnormalities and rapid myeloma cell proliferation and
ultimately clinical outcomes [38]. Focal myeloma lesions and
extramedullary disease have also been shown to predict clinical
outcomes. However, questions remain regarding the potential
confounding of genomics on these high-risk biological and
disease burden-related risk factors. Disease burden and patient-
related factors depicting risk are outlined in Fig. 1.

Patient-related factors

In addition to risk-stratification systems, genomic features, and
disease burden, additional non-modifiable patient-related factors
affect outcomes in MM. Clinical frailty and geriatric assessments

SPRINGER NATURE
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Focal Myeloma Lesions: Discrete areas of plasma cell (PC) accumulations on both PET-TCT
and MRI that can predict PFS and OS

Usmani BLOOD 2013%: 302 patientstreated on the Total Therapy 3 trialsfor NDMM, on
mv analyses >3 focal lesions on PET-CT imparted inferior OS and PFS

Mai Haematologica 2015%7: 161 transplant eligible patients, > 25 focal lesionson whole
body MRI or > 7 on axial MR associated with worse PFS and OS on mv analyses

Rasche Nat Com 2017°%; Rasche BLOOD 2018%%": 404 patients on TT trials between 2009 )
and 2015. 3 large FLs with a product of the perpendicular diameters >5 cm? were
associated with poor PFS and OS on mv analyses; median 2.3 v 3.6 years respectively.

Extramedullary Myeloma (EMM): well-established poor
prognostic feature; includes both EME and EMB

Poor prognosis with a median OS of <1 year for patients who
are refractory to standard therapies or relapse after ASCT. In
general, the prognosis for EM-E is worse compared with
EM-BC.

Usmani Haem 2012%*: 1965 patients treated with ASCT on TT
and non-TT protocols. EME had significantly inferiorOS (31%
vs.59%, p 0.001)

Weinstock BJH 2015%2: Median OS in EME just 1.3 years.
Moreau JCO 2017%3: IFM-2009 trial, EMM at diagnosiswas an
independent prognostic factor for OS (HR 3.9; 95% CI 1.5-9.9),
whereas PET-CT normalization before maintenance was an
independent prognostic factor for PFS (HR 0.42; 95% C10.28-
0.62)

Gagelmann Haem 2018%4: EBMT evaluating 3744 NDMM
patients undergoing up front ASCT, on mv analysesboth
patients with one EM-E site and those with 2 2 EM-E sites had
inferior OS (HRs of 2.30; 95% CI 1.43-3.70 and 3.64; 95%CI 1.48-
8.94)"

Circulating malignant plasma cells (CPCs) in the peripheral blood:
Vagoni BJH 2015%: Cohort of 566 patients, elevated CPCs adversely
affected PFS in patients with standard but not high risk cytogenetics

Gonsalves ASCO 2019%: Addition of CPCs to R-ISS staging identified a
high risk cohort of stage I and Il patients.

Chakraborty BC) 2016%7: 840 patients who had an assessment of CPCs
priorto ASCT. Presence of CPCs predicted poorer PFS (median 15.1 v
29.6 months; p<0.001) and OS (median 41.0 v NR months; p<0.001)

Malignant plasma cells in the BM:

Al Saleh CLML 2020°%: 1426 NDMM patients treated with primarily
novel agents. Controllingfor FISH and 1SS/R-ISS, plasma cells >60%
inthe BM lead to worse PFS (HR, 1.23; P=0.015) and OS (HR, 1.24;
P=0.02).

Plasma cell proliferation index (PCPI):

Hose Haem 2011 : High PCPI associated with inferior survivalin
NDMM

High PCPI: incorporated into some risk stratification systems for
NDMM®*

Mellors BLD ADV 2020':In mv analyses controlling for CAs, age, R-
1SS metaphase cytogenetics, and standard FISH, PCLI was predictive
of both PFS and 0S. The addition of PCLI to the R-ISS did not
improve risk discrimination of Kaplan-Meier estimates for PFS and
0S. Thus, similar to previous studies, PCLI has independent
predictive value for PFS and OS but does not appear to improve the
risk stratification of the newer R-1SS risk modeling.

Fig. 1 High-risk clinical features. “Large FLs (diameter >2.5 cm) associated with site-specific enrichment of HiR driver mutations consistent

with them being key mediators of drug resistance and treatment failure [86-100].

Certain EME sites seemed to carry worse prognosis with

3-year PFS differing according to involved organs: kidney (59.5%), skin (20.1%), lymph nodes (37.6%), CNS (47.9%), lung/respiratory tract
(44.4%), Gl/liver (22.5%), and spleen, ovaries, and testes (60.0%). BM bone marrow, CA cytogenetic abnormalities, CPCs circulating plasma cells,
EBMT European Society for Blood and Marrow Transplantation, EME extramedullary myeloma that is extra-osseous (results from
hematogenous spread and involving only soft tissues, the incidence in NDMM 1.7-3.5%°°), EMB extamedullary myeloma that is paraskeletal or
paraosseous plasmacytomas (consists of tumor masses adjacent to bones and arising from focal skeletal lesions, incidence in NDMM
6-34.4%°°), EMM extramedullary myeloma, FL focal lesion, HR hazard ratio, ISS international staging system, MRI magnetic resonance imaging,
MV multivariate, NDMM newly diagnoses multiple myeloma, NR not reached, OS overall survival, PC plasma cells, PCPI plasma cell
proliferation index, PET-CT 18-fluoro-deoxyglucose emission tomography, PFS progression-free survival, R-ISS revised international staging

system, TT total therapy.

have been shown to impact outcomes in MM but their routine use
has been largely limited due to clinical time restraints. In a recent
systemic review and meta-analysis, a significantly increased HR for
death was shown for patients with activity of daily living score <4
(pooled HR=1.576; 95% Cl, 1.051-2.102) [39]. Further, patients
classified as frail showed higher risk of death than fit patients did
(pooled HR = 2.169; 95% Cl, 1.002-2.336). It is of note though that
genomic risk may be intimately related with patient-related factors.
In 1777 NDMM patients treated on the Myeloma XI trial, patients
with TP53 deletion showed features of advanced disease and
associated morbidity, specifically poorer performance status (World
Health Organization [WHO] performance status =2; P=0.0012).
Although WHO performance status was independently associated
with shorter survival, the association with TP53 deletion suggests
an interrelationship with genetic and clinical features [40].

There is increasing evidence that socioeconomics and access to
care directly impact patient outcomes. Several studies have
demonstrated that patients of minority ethnic or racial background
are less likely than non-Hispanic Whites (nHws) to receive ASCT as
treatment for MM and that referral for transplantation may be
delayed. However, similar outcomes for minorities compared with
nHws undergoing ASCT has been shown when access is equal [41].
MM patients of racial and ethnic minority are frequently under-
represented in clinical trials. Pulte et al. performed a meta-analysis
evaluating patients on five recent clinical trials that utilized novel
agents and did not find a difference in outcome based on race.
Because Hispanic and African American patients have the least
apparent benefit from newer agents at the population level. These
results suggest that minority patients are less likely to be
appropriately treated [42]. To further validate this point, a recent

SPRINGER NATURE

VA experience showed that with equal access, AA patients may
have superior outcomes with median OS of AA patients 5.07 years
(95% Cl, 4.70-5.44 years) as opposed to 4.52 years (95% Cl,
4.38-4.65 years) for white veterans (log-rank P < 0.001) [43].

Biology of disease trumps everything
Response to initial therapy and achieving a prolonged initial
remission duration may ultimately be the most important
prognostic factor in NDMM patients. There is clear data that
shows achieving deep remissions that are minimal residual
disease (MRD) negative can trump high-risk biological features
and that standard-risk patients who fail to achieve deep
remissions fair worse and may indeed be high risk after all [44].
Below, we will briefly review the data on primary refractory and
early relapsing myeloma but will forgo an in-depth review of MRD
and its impact on outcomes as this topic has been covered
extensively in several recent reviews and meta-analyses.
Response rates to standard triplet induction therapy for both
transplant eligible and ineligible patients are in the 85-90% range
[45] thus primary refractory myeloma is uncommon. Unfortu-
nately, despite improved 2nd line therapy, outcomes for these
patients remain poor even if treated with novel induction. For
patients undergoing up-front ASCT after induction failure, as far
back as 2010 Gertz et al. showed that failure to achieve at least a
partial response (PR) to IMID based induction prior to ASCT leads
to shorter OS (73.5 vs. 30.4 months) and PFS (22.1 vs. 13.1 months;
P <0.001) from time of transplant [46]. Lee et al. demonstrated
even worse outcomes in patients refractory to novel based
regimens (majority were bortezomib based) showing a median
PFS of 4.7 months and median OS of 11.6 months following ASCT

Blood Cancer Journal (2022)12:83
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Table 5. High-risk features for newly diagnosed multiple myeloma.

Currently Utilized Staging systems:

High-risk cytogenetic changes?

GEP-results

Mutations obtained by whole-genome/
exome sequencing

High risk

R-ISS stage 3
IMWG high-risk
mSMART high risk

* 1(14;16)

. t(4;14)

* IgL-MYC translocation

* +1qg amplification (>4 copies): 20% CCF
+ 1p-

+ del(17p): 55-60% CCF

EMC92/SYK92 (MMprofiler): high-risk
UAMS GEP70 (MyPRS): high risk

» TP53 deletion
* LOH and APOEBEC signature

Potentially high risk (more data needed)

* 1(14;20)

* t(8;14) and other MYC translocations
* +1q gain (3 copies)

- del 13g/-13

» TRAF3
* TGDS

» CKS1B amplification

« "High Risk Genomic Clusters"

Clinical Features and disease burden:

+ High Plasma Cell Labeling Index
+ Extramedullary Myeloma

* PRDM1

* DNAH11

* FAT1

* NRAS

+ SP140

* IGLL5

» Driver gene mutational burden

Socioeconomic status

* Focal Lesions (FL): 3 large FLs with a product of the
perpendicular diameters >5 cm?
« Clinical frailty by objective geriatric assessment

GEP gene-expression profiling, IMWG international myeloma working group, LOS loss of heterozygosity, MM multiple myeloma, R-ISS revised international

staging system.

*Translocations and copy number abnormalities (independent of other features) with cancer clone fraction cutoffs where enough data supports a conclusion.

bSee Table 4.

[47]. Although there is limited data in transplant ineligible or
deferred patients, the same pattern holds. For example, in an
updated analysis from the mayo clinic amongst patients treated
with novel induction regimens, primary refractory patients had a
far inferior median OS of just 3.6 vs. 7.9 years (P < 0.001) [48].

Early relapse is likely a reflection of the underlying high-risk
disease biology that was not captured in the initial risk assessment
and leads to inferior outcomes regardless of cytogenetic risk. Durie
et al. were the first to show that the underlying dominant predictor
for survival is time to progression [49] and the Mayo Clinic was the
first to describe the adverse prognostic impact of an early relapse
after intensive strategy [50]. In a Center for International Blood and
Marrow Transplant Research (CIBMTR) analyses of 3256 NDMM
patients from 2001 to 2013 who received up-front ASCT, the
proportion of patients relapsing within 24 months following ASCT
was stable over time at 35-38%. The OS from the time of relapse
was significantly inferior for the early relapse group with a 4-year
OS of 30% vs. 41% (P<0.001) [51]. Relapse within 1 year of ASCT
leads to even worse outcome with Kastritis et al. showing that
among 297 consecutive NDMM patients receiving first-line ASCT,
43(14.5%) relapsed within 12 months and had dismal outcomes
with median post-ASCT survival of 18 months vs. >6 years
(P<0.001) in late relapsing patients [51]. These outcomes unfortu-
nately have not improved much with an older cohort from the
Mayo clinic showing just a 23.9-month median OS [52].

Patients not eligible for up-front ASCT who relapse early also
do poorly. In a cohort of 511 NDMM patients, Majithia et al.
showed that in 82 patients (16%) who relapsed within one year
of therapy, the median OS was 21.0 months vs. NR (P<0.001). The
survival disadvantage persisted even when considering only
patients who received subsequent therapies with a median OS of
26.7 months vs. NR (P<0.001) [53]. Finally, a recent IFM report
showed that early relapse after first-line therapy still negatively
impacts survival even when controlled for genomic factors [7].

Blood Cancer Journal (2022)12:83

Interestingly, approximately two-thirds of early relapsing patients
in this IFM cohort were not initially considered high risk and thus
early relapse trumps genomic risk.

CONCLUSION: DEVELOPING A NEW HIGH-RISK MODEL AND
FUTURE DIRECTIONS
The myeloma research community has amassed a vast expanse of
genomic data from NDMM patients over the last decade. This has led
to significant advances in our understanding of the genomic changes
that portend to poor outcomes in NDMM patients. Unfortunately, our
success in elucidating high-risk genomic features in NDMM patients
has not translated into tailored therapeutics and improved outcomes
in these patients. An up-to-date uniform consensus on high-risk
features is overdue and expected soon from the IMWG. Table 5
outlines our current stance on high-risk features in NDMM patients.
Certain features, such as GEP, whole-genome sequencing, and PCLI
may not be applicable in routine clinical practice but nonetheless
have been consistently shown to drive poor outcomes. More
comprehensive and routinely obtained genomic profiling beyond
traditional FISH is needed to advance risk stratification in NDMM. We
would consider any NDMM patient that meets any of the criteria
listed in the high-risk column as being a high-risk patient and strongly
encourage enrollment onto clinical trials for these patients.

In order to properly risk-stratify patients in routine clinical care,
we recommend obtaining the following at diagnosis prior to
initiating therapy:

® Serum studies: LDH, B,-microglobulin, albumin

® Imaging: skeletal survey, advanced bone imaging ideally PET-
CT (alternatively whole-body CT, MRI spine and pelvis)

® Bone marrow biopsy: standard cytogenetics, iFISH myeloma
panel, clonoseq MRD ID specimen, GEP, and PCPI as able

® Frailty/performance status and socioeconomic barriers to care.
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MM is a genomically complex disease with diverse clinical
outcomes based on the genomic footprint of each individual
patient. The international collaboration of MM practitioners has
advanced both our biological understanding of risk in myeloma and
has led to improved treatment outcomes overall. Moving forward,
several challenges remain and ongoing large-scale collaboration will
be needed to overcome them. We must begin a more concerted
effort to translate our knowledge of high-risk genomic features into
improved clinical outcomes by tailoring therapeutics to risk. The
standardization of iFISH methodology and importantly the definition
of positive results is needed. We must move to incorporate GEP and
possibly PCLI into routine clinical care not just at large academic
centers and as part of clinical trials. We must better incorporate
objective measurements of patient-related factors into our risk
assessment and treatment approach. Finally, we must address
access to myeloma care to overcome socioeconomic barriers to care
that have led to inferior outcomes in ethnic minorities diagnosed
with  MM. These challenges are immense but with ongoing
collaboration, they can be achieved in time.
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