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ABSTRACT Crop establishment in carrot (Daucus carota L.) is limited by slow seedling growth and delayed
canopy closure, resulting in high management costs for weed control. Varieties with improved growth habit
(i.e., larger canopy and increased shoot biomass) may help mitigate weed control, but the underlying
genetics of these traits in carrot is unknown. This project used a diallel mating design coupled with recent
Bayesian analytical methods to determine the genetic basis of carrot shoot growth. Six diverse carrot inbred
lines with variable shoot size were crossed in WI in 2014. F1 hybrids, reciprocal crosses, and parental selfs
were grown in a randomized complete block design with two blocks in WI (2015) and CA (2015, 2016).
Measurements included canopy height, canopy width, shoot biomass, and root biomass. General and
specific combining abilities were estimated using Griffing’s Model I, which is a common analysis for plant
breeding experiments. In parallel, additive, inbred, cross-specific, and maternal effects were estimated from
a Bayesian mixed model, which is robust to dealing with data imbalance and outliers. Both additive and
nonadditive effects significantly influenced shoot traits, with nonadditive effects playing a larger role early in
the growing season, when weed control is most critical. Results suggest the presence of heritable variation
and thus potential for improvement of these phenotypes in carrot. In addition, results present evidence of
heterosis for root biomass, which is a major component of carrot yield.
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Carrots are the seventh most consumed fresh vegetable in the
United States, with an annual per capita consumption of 3.9 kg
[USDA Economic Research Service (ERS) 2016] and a produc-
tion value of $762 million USD in 2015 (USDA National Agricul-
tural Statistics Service (NASS) 2016). In the US, the high a- and
b-carotene content in carrots is a leading source of dietary pro-
vitamin A (Block 1994; Simon et al. 2009), which is essential for
healthy immune function, vision, reproduction, and cellular com-
munication (Institute of Medicine, Food and Nutrition Board
2001; Johnson and Russel 2004; Solomons 2012). Despite the eco-
nomic and dietary importance of carrots, crop establishment and
productivity remain limited by erratic germination, slow seedling
growth, and delayed canopy closure (Rubatzky et al. 1999). This
growth habit, coupled with thin, highly segmented leaf laminae,
competes ineffectively with weeds for nutrients, water, and light,
resulting in yield losses caused by reductions in root size and
marketability (Bellinder et al. 1997; Bell et al. 2000). Furthermore,

in a survey of weed competitiveness in 25 crops, carrot had the
largest reduction in yield under weed pressure (van Heemst 1985).

To limit yield loss, carrots have an extended critical weed-free period
ranging from 3 to 6 wk, during which chemical and hand weeding are
necessary (Swanton et al. 2010). Hand weeding, while effective, is dis-
ruptive to plant growth and requires intensive labor, with estimated
costs exceeding 4000 USD/ha (Bell et al. 2000). For organic systems,
which constitute 14.4% of carrot acreage in the US [USDA National
Agricultural Statistics Service (NASS) 2016], hand weeding is typically
the primary method of weed management. Even in conventional sys-
tems, few herbicides are labeled for carrots and can only be applied
when plants reach a threshold height (e.g., linuron) or have five to six
true leaves (e.g., metribuzin), by which point weeds have exceeded
control stages (Bellinder et al. 1997).

Cultivars with increased weed competitiveness offer a low cost,
nonchemical, and sustainable addition to an integrated weed manage-
ment program (Pérez de Vida et al. 2006; McDonald and Gill 2009).
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Improved competitive ability has been linked to traits that increase
resource allocation, such as height and biomass accumulation, in other
densely planted crops such as maize (Mohammadi 2007; Zystro et al.
2012), rice (Ni et al. 2000; Fischer et al. 2001; Pérez de Vida et al. 2006),
wheat (Lemerle et al. 1996; Murphy et al. 2008), and soybean (Bennett
and Shaw 2000; Jannink et al. 2000).While improvement of these traits
offers a potential solution for weed management, it is unknown how
these traits are inherited in carrot or how they influence marketability
(e.g., root biomass accumulation).

Many carrot breeding programs employ the inbred-hybrid method,
which is enabled by the widespread availability of cytoplasmic male
sterility (CMS) in carrot germplasm (Peterson and Simon 1986; Simon
2000). Accordingly, heterosis is considered a promising mechanism to
increase yield in carrot (Rubatzky et al. 1999), and hybrid vigor has
been documented for important traits such as carrot root yield (Duan
et al. 1996; Suh et al. 1999; Simon and Strandberg 1998; Jagosz 2011,
2012; Simon et al. 1982), carotenoid content (Santos and Simon 2006),
and resistance to Alternaria leaf blight (Simon and Strandberg 1998).
However, the development and adoption of heterotic groups in carrot
remains limited, and has not been described in detail. Thus, carrot
breeding efforts for unimproved traits with economic importance, such
as weed competitive ability, will benefit from an understanding of
combining ability and reciprocal cross effects in diverse genetic
backgrounds.

The diallel mating design, which consists of pairwise combinations
among a group of inbred parents, is a natural first step to identify
informative testers, to develop heterotic groups, and to determine the
primary genetic control for complex traits (Hayman 1954a,b; Gardner
and Eberhart 1966). The diallel was first introduced to plant breeding in
1942 by Sprague and Tatum, who defined general combining ability
(GCA) and specific combining ability (SCA) as the relative proportions
of additive and nonadditive (i.e., dominance and epistatic) genetic
variation for a trait, respectively (Sprague and Tatum 1942; Hayman
1954a,b; Griffing 1956a,b). Although it is a valuable tool in plant
breeding, application of the diallel mating design in practice re-
mains challenging due to resource constraints and the difficulty of
traditional, usually frequentist, analyses. Choice among these meth-
ods depends on many factors, such as the goals of the researcher, the
type of diallel mating design (e.g., full, half, or sparse), and the
selection of parental lines from either fixed or random mating pop-
ulations. The challenges of applying these traditional approaches
can be attributed to the complexity of the models, controversy over
the proper interpretation of results, and to the task of choosing
among the numerous methods described in the literature, which
include ANOVA-based approaches (Hayman 1954a,b; Griffing
1956a; Gardner and Eberhart 1966; Wu andMatheson 2000), mixed
effects modeling (Xiang and Li 2001), the use of minimum norm
quadratic unbiased estimators (Zhu and Weir 1996), and REML
(Möhring et al. 2011).

Of the availablemethods for diallel analysis, the general linearmodel
approach proposed by Griffing (1956b) remains among the most prev-
alent in plant breeding for its relative simplicity and relevance to crop
improvement (Hallauer and Miranda Filho 1981; Christie and Shattuck
1992; Zhu andWeir 1996; Viana 2000; Wu and Matheson 2000). When
applied appropriately, Griffing’s analysis provides reliable estimates of
GCA, SCA, and reciprocal cross effects (Christie and Shattuck 1992). The
base model can also be modified to include interactions of these main
effects across environments, which is important for assessing the stability
of hybrid performance (Singh 1973; Lin et al. 1977; Zhang and Kang
1997). However, when parental lines are fixed, Griffing’s method is not
robust in addressing common issues encountered in field experiments,
such as missing data, imbalance, and outliers (Wu and Matheson 2000;
Xiang and Li 2001). For fixed effects models, imbalance is typically
addressed by either list- or pair-wise deletion, or by implementing a
design matrix to specify the missing crosses (e.g., Wu and Matheson
2000), both of which may reduce the number of observations and power
of the analysis. Alternatively, mixed effects models, being more robust to
imbalance and outliers, can provide reliable estimates for the parameters
of interest (e.g., Robinson 1991), but many of these implementations for
diallel analysis have been attached to restrictive assumptions, and may
require that parents are selected from a randommating population (e.g.,
Zhu and Weir 1996; Xiang and Li 2001; Möhring et al. 2011).

In this context, a number of conceptual and practical limitations are
overcome by the use of computationally intensive Bayesian methods
(Greenberg et al. 2010; Lenarcic et al. 2012). Although the modeling is
more complex, these approaches offer numerous advantages. Practically,
the use of Markov Chain Monte Carlo (MCMC) sampling can provide
great flexibility regarding model complexity (Greenberg et al. 2010;
Lenarcic et al. 2012). Conceptually, the Bayesian approach provides a
natural justification for the random effects formulation, as a hierarchical
prior on the effects distribution, that may be independent of how units
were actually sampled (Lenarcic et al. 2012; and, e.g., Gelman and Hill
2007). The application of a Bayesian approach for diallel analysis also
improves the biological interpretability of results, and expands the types
of questions that can be addressed by researchers.

In this study, we used two complementary approaches to elucidate
the relative importance of genetic parameters for shoot growth in carrot:
the frequentist, fixed effects methodology developed by Griffing
(1956b), which is a standard method of analysis for plant breeders,
and, as such, serves as a familiar reference point; and the more recent
Bayesian mixed model (BayesDiallel) developed by Lenarcic et al.
(2012), which is not currently used in plant breeding. As part of Griffing’s
analysis, we also describe the use of multiple imputation to fill in
missing values. Multiple imputation allows the use of a fixed model
by providing plausible, unbiased estimates that are informed by all
available data, avoiding unnecessary reductions in sample size and
statistical power. Imputation and interpretation of imputed data are
straightforward, and, thus, provide an updated means for breeders
to use Griffing’s or other models sensitive to imbalance. Alternatively,
the BayesDiallel model provides a more robust and detailed analysis of
diallel data, with a more direct interpretation of genetic effects, but the
complexity of the model may inhibit its adoption by plant breeders. By
presenting the results from BayesDiallel alongside the results from the
more traditional Griffing’s analysis, we aim to facilitate the adoption of
the BayesDiallel approach by the plant breeding community. Thus, the
primary goals of this work were (1) to estimate the inheritance of shoot
growth in carrots as a resource to inform selection strategies, identify
useful testers, and assess hybrid performance; and (2) to present an
applied framework for diallel analysis of multiple environment data
using Bayesian modeling.
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MATERIALS AND METHODS

Plant material and measurements
Six inbred lines, with canopy heights ranging from short (29.9 cm) to
tall (52.8 cm), were selected from the USDA-VCRU carrot breeding
program and included both male sterile (A-line) and male fertile
(B-line) breeding stocks for inbred lines L6038, L7550, P0159,
Nbh2189, P6139, and B7262 (Figure 1, Supplemental Material, Fig-
ures S1 and S2 in File S1, and Table 1). Male sterile A-lines expressed
the petaloid CMS system, which is widely used in North American
breeding programs due to its environmental stability (Simon et al.
2008). Inbred parents were combined in all pairwise combinations
for a total of 36 combinations at the West Madison Agricultural
Research Station (Madison, WI) in 2014. The resulting F1 proge-
nies, reciprocals, and parental selfs were grown in a randomized
complete block design (RCBD) with two blocks. Field sites included
the Hancock Agricultural Research Station (Hancock, WI; 2015)
and the University of California Desert Research and Extension

Center (Holtville, CA; 2015 and 2016). Carrots were grown on
1.5-m plots with 1 m between-row spacing.

Measurements of each trait were recorded for three subsamples per
block, which were averaged prior to analysis, and are summarized in
Table 1. Canopy height and width were measured at midseason, 80 d
after planting (DAP), and at harvest, 130 DAP. At harvest, fresh and
dry biomass were recorded separately for both shoot and root tissue.
For dry biomass, samples were dried at 60� in a forced-draft oven until
reaching a constant weight. A natural log transformation, ln(x), was
applied to biomass measurements to make the data distribution sym-
metric and stabilize the variance. Planting density was recorded on a
discrete 0–3 scale, with 0 indicating no plants, 1 = ,25 plants m21,
2 = between 25 and 50 plants m21, and 3 = .50 plants m21.

Statistical analyses
Diallel data for each phenotype was analyzed using two complementary
approaches: a traditional fixed effects frequentist analysis after Griffing
(1956b), which, owing to its requirement that data are complete and
balanced, was combined here with a multiple imputation procedure;
and the recent Bayesian mixed model decomposition of Lenarcic et al.
(2012), performed on the raw (unimputed) data. These are described in
detail below. All analyses were performed in R. 3.3.2 (R Core Team
2016).

Multiple imputation of missing data for Griffing’s analysis: To
compensate for imbalance, missing data (Figure S3 in File S1 and Table
1) was imputed using the Multivariate Imputation by Chained Equa-
tions package (R package mice; R/mice) (van Buuren and Groothuis-
Oudshoorn 2011), and specifically using that package’s predictivemean
matching method (PMM), which is a general purpose, stochastic re-
gression technique that is suitable for numeric data (Little 1988). The
predictors used for PMM were chosen based on recommendations in
the R/mice documentation, and included female parent, male parent,
cross, location, replication, planting density, and numeric measure-
ments with complete data. The values imputed by the PMM were
generated by running its associated MCMC sampler until it reached
a stationary distribution (usually at�40 iterations; Figure S4 in File S1),
and then recording sampled values from a later iteration (e.g., iteration
70). This was repeatedm = 50 times to generatem imputed data sets.

Griffing’s analysis: Each of them imputed data sets was analyzed using
Griffing’s Method I, Model I (Griffing 1956b), which treats genotypes
and blocks as fixed effects and has the base model:

Figure 1 Variation in means and 95% confidence intervals for canopy
height (130DAP) among carrot inbred lines used in this study.

n Table 1 Carrot traits evaluated, their range among parents, and number of complete observations for each environment in this study

Phenotype Measurement Unit Parental Range

Number of Complete
Observationsa

Data
Transformation WI2015 CA2015 CA2016

Canopy height Three points within
the plot

Centimeters (cm) 29.9–52.8 None 50 72 69

Canopy width Three points within
the plot

Centimeters (cm) 41.5–61.3 None 50 72 69

Shoot biomass Fresh and dry Grams (g) 6.43–21.3 (fresh) ln(x) 49 72 68
1.02–3.39 (dry)

Root biomass Fresh and dry Grams (g) 29.0–64.9 (fresh) ln(x) 49 72 68
4.22–8.64 (dry)

Shoot to root ratio Shoot biomass/root
biomass (dry)

Grams (g) 0.23–0.64 ln(x) 49 72 68

a
72 observations possible per environment (36 entries · 2 replications).
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yijk ¼ mþ gj þ gk þ sjk þ rjk þ eijk;

where m is the population mean, gj and gk are the GCA effects for the
jth and kth parents, respectively, sjk is the SCA effect for the cross of
the jth and kth parents ðsjk ¼ skjÞ; rjk is the reciprocal effect for the
cross of the jth and kth parents (rjk ¼ 2 rkj), and eijk is the envi-
ronmental effect for the ijkth observation. Griffing’s analysis was run
using the diallel1 function in the R package plantbreeding (Rosyara
2014), which we modified to include environmental effects and ge-
notype · environment interactions (G · E) as previously described
by Singh (1973), Lin et al. (1977), and Zhang and Kang (1997). Mean
squares and approximate F-tests were pooled following the method
proposed by Raghunathan and Dong (2011, unpublished data) (Table
S1 in File S1). Estimates for GCA, SCA, and reciprocal effects were
combined according to Rubin’s rules (Rubin 1987) and as imple-
mented in R/mice (van Buuren and Groothuis-Oudshoorn 2011).

Theproportionofadditivetononadditivegeneticvariationwasestimated
from the fixed model using Baker’s ratio of 2MSGCA : 2MSGCA þMSSCA;
with values close to unity suggesting higher predictability based solely on
GCA (Baker 1978). Because the inclusion of parental lines in Method
I can cause an upward bias in estimates of combining ability vari-
ances, we also report Baker’s ratio using Method III, which includes
F1 hybrids and reciprocal F1s, but excludes parental lines (Hayes and
Paroda 1974).

Identification of tester lines: Informative tester lineswere identified for
each phenotype using the GGE biplot method as specified by Yan and
Hunt (2002). Biplots were constructed from a two-way data matrix of
means for each phenotype, with parental lines treated as both entries
and testers. The R packageGGEBiplotGUI (Frutos et al. 2014) was used
to generate biplots with symmetrical scaling, tester centering, and the
“discriminativeness against representativeness” view, which establishes
an axis representative of the average tester. Useful testers were identi-
fied as parental lines which were both discriminating (i.e., able to rank
the combining abilities of other parental lines; represented on the biplot
by the longest vector), and the most representative, reflecting the aver-
age of all parental lines (i.e., zero or minimal SCA effects; represented
by the vector with the least projection onto the average tester axis) (Yan
and Hunt 2002). Additional details and biplots for each trait are pro-
vided in File S1.

Bayesian mixed model for diallel analysis: A brief overview of the
BayesDiallelmodel is providedbelow.Additional details are available
in the original BayesDiallel manuscript by Lenarcic et al. (2012),
which provides comprehensive explanations of the BayesDiallel
model, including the theoretical and practical justifications, and a
thorough comparison with Griffing’s method. Conceptually, the
BayesDiallel model can be broken down into three components:
(1) a mixed model with .5 variance components, (2) a set of priors
on the variance components which make the model Bayesian, and
(3) a MCMC algorithm that fits the model.

For this study, raw data for each phenotype (yi), measured for
individuals i 2 f1; . . . ; ngwith female parent j andmale parent k;were
decomposed into additive effects (a), effects of being inbred both as
an overall effect (binbred) and a parent-specific deviation (b), maternal
effects (m), cross-specific symmetric effects (v; i.e., common across
reciprocals), and cross-specific asymmetric effects (w; i.e., reciprocal-
specific), as described by Lenarcic et al. (2012) and Crowley et al.
(2014), and implemented as a Gibbs sampler in the R package
BayesDiallel. Specifically, we used BayesDiallel’s full unsexed model
(“fullu”):

yi ¼ mþ xTi b|ffl{zffl}
user  fixed

þ
XR
r¼1

uðrÞi|fflfflfflffl{zfflfflfflffl}
user  random

þ aj½i� þ ak½i�|fflfflfflfflfflffl{zfflfflfflfflfflffl}
additive

þ Ifj½i�¼k½i�g
�
binbred þ bj½i�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inbred

þmj½i� 2mk½i�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
maternal

þ Ifj½i�6¼k½i�gvðjkÞ½i�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
symmetric

þ Ifj½i�, k½i�gwðjkÞ½i�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
asymmetric

þei;

where j½i�; k½i� and ðjkÞ½i�; respectively, denote the female, male, and
female-male combination relevant to individual i; and each group
of effects parameters is modeled from its own random effects distribu-
tion, e.g., aj � Nð0; t2aÞ with t2a � Inverse x2 (d.f. = 0.5, mean = 1).
Fixed effects for covariates xi and fixed effects m and binbred are
modeled as having vague priors of Nð0; 103Þ; while R additional
random-effect components are included as uðrÞi � Nð0; t2r Þ for each
r 2 f1; . . . ;Rg:

The above model was fitted in BayesDiallel using a MCMC Gibbs
sampler with five chains, 10,000 iterations, and a burn-in of 1000.
Planting density (0–3 scale, 0 = no plants, 1 = low, 3 = high) was
included as a fixed covariate to capture linear trends and as a random
effect to estimate deviations from linearity. Location (WI2015, CA2015,
and CA2016) was included as a random effect. To compare rankings
for hybrids across growing environments as a measure of genotype by
environment (G · E) interaction, the BayesDiallel model was also
applied to data stratified by location.

The model parameters in BayesDiallel were previously described by
Lenarcic et al. (2012) and are summarized as follows. In the “fullu”
model described above, additive effects (aj) are modeled as random
effects (as in, for example, Zhu and Weir 1996), and provide estimates
of the dosage effect for a given parent j in combination with another
parent k. If a strictly additive model is run in BayesDiallel (the “a”
model), aj corresponds to GCA as defined by Sprague and Tatum
(1942); but this comparison becomes less constructive when other
effects are incorporated into the BayesDiallel model. Building upon
the “a” model, the “Bab” model incorporates parent-specific inbred
deviations, modeled as an inbred penalty random effect, bj; with a
common distribution centered at a fixed effect (binbred). This differs
from conventional models of dominance in that heterosis is modeled as
inbred-specific deviations from heterozygote-based predictions; that is,
homozygotes (i.e., parental selfs), which are aminority in the diallel, are
treated as a special class. Parent-of-origin effects (mj) are thenmodeled
as symmetric (random effect) deviations around the “Bab” model to
generate the “Babm” model. Finally, statistical interactions between
pairs of parents are modeled as two types of random effect departures
from the “Babm” model: cross-specific symmetric effects (v), which
model differences specific to a given cross, regardless of parental
inheritance and independent of reciprocal effects (i.e., crosses jk and
kj have the same effect); and cross-specific asymmetric effects (w),
which model deviations from cross-specific symmetric effects due to
differences between reciprocal crosses (i.e., jk and kj have different
effects).

Estimating the degree of dominance: Although BayesDiallel does not
model an explicit term for dominance, it is straightforward to define
dominance as a function of existing parameters, and, by applying that
function to repeated MCMC samples, estimate its full posterior.
Following Maurizio et al. (2017), we define an aggregate signal of
dominance within each pairwise cross using an adaptation of the

414 | S. D. Turner et al.

http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300235/-/DC1/FileS1.pdf
http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.117.300235/-/DC1/FileS1.pdf


degree of dominance (aCR), as defined by Comstock and Robinson
(1948) and applied to maize by Gardner and Lonnquist (1959). In
this case, the degree of dominance of parent A when combined with
a second parent B is:

aCR ¼ 12 2 ·
�
yBB 2 yBb
yBB 2 ybb

�
;

where yBB; yBb; and ybb are the posterior expectations of predicted
phenotype values for the parental contributions of two alleles at a given
locus (the dominant B allele and the recessive b allele), which are con-
sidered in this case as contributions from a given parental genome in-
stead of individual loci. Values for aCR can be interpreted as follows: that
parent A is pseudo-under-recessive to parent B (aCR ,,21); that A is
recessive to B (aCR = 21); that A is additive (i.e., codominant) with B
(aCR = 0); that A is dominant (or completely dominant) to B (aCR = 1);

that A is pseudo-overdominant to B (aCR .. 1). This estimate only
captures pseudo-overdominance, as we are unable to distinguish be-
tween true overdominance and the repulsion-phase linkage of loci with
complete or partial dominance (Gardner and Lonnquist 1959). Appen-
dix A describes the calculation of the Comstock-Robinson degree of
dominance, and its relation to the dominance index, D  ; originally pre-
sented by Kacser and Burns (1981) and Wright (1934) and as recently
applied by Maurizio et al. (2017).

Diallel variance projection as a repeatability-like measure: In order
to report the relative contribution of each diallel inheritance class to a
given phenotype, Crowley et al. (2014) proposed the diallel variance
projection (VarP). This approach uses the posterior predictive distri-
bution of effects from BayesDiallel to simulate future, complete, per-
fectly balanced diallels of the same parental lines. In each simulated

Figure 2 Pearson’s correlation coefficients (lower diagonal) and significance (upper diagonal) among carrot growth traits measured in this study
for raw phenotypic observations in (A), estimates of additive effects from BayesDiallel in (B) and estimates of inbred deviations from BayesDiallel in
(C). Significance codes: ���P # 0.001, ��P # 0.01, �P # 0.05. NS, not significant.
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dataset, the contribution of each inheritance class (additive, inbred, etc.)
is then calculated as its sum of squares (SS) divided by the total phe-
notype SS. The resulting proportion, the VarP, is similar to the tradi-
tional estimates of repeatability described by Mather and Jinks (1982)
and Lynch andWalsh (1998), but with two important differences: (1) it
is explicitly prospective, in that it seeks to describe how much additive
effects, say, would impact a future experiment; and (2) its estimation is
more precise, since it is calculated as a function primarily of the effects
parameters (e.g., a1; a2; . . . ; a6), which are well informed by the data,
rather than of the variance components ( t2a; t2m; etc.), which are
typically not (Sorensen and Gianola 2002; Crowley et al. 2014; Furlotte
et al. 2014). VarPs are calculated frommultiple posterior draws leading
to a complete posterior distribution of the VarP for each inheritance
class, summarized here as highest posterior credibility intervals. Cred-
ibility intervals that include zero are interpreted as not contributing
positive, nonzero information to the prediction of yi; whereas credibil-
ity intervals excluding zero provide strong evidence that an effect is
important to the model.

Data availability
All data and code used in this study are available on GitHub at https://
github.com/mishaploid/carrot-diallel. Supporting information for each
trait [parental phenotypes, biplot analysis, GCA, SCA, highest posterior
density (HPD) intervals, degree of dominance, and hybrid ranks] is
provided in File S1.

RESULTS

Imputation of missing data
There was a high incidence of missing data due to variation in seed
production and disease pressure (Figure S3 in File S1 and Table 1). A
large proportion of missing data occurred in theWI2015 environment,
whichwas subject to severe infestation by Alternaria leaf blight, a fungal
pathogen that causes leaf necrosis and plant death in carrots (Pryor and
Strandberg 2001). Distributions of imputed data matched those
expected from observed data when accounting for environmental var-
iation (Figures S5 and S6 in File S1).

Additive and nonadditive gene action contributed to
observed phenotypes
Most phenotypes were positively correlated based on Pearson’s r and
significant at a = 0.001, with the exception of the ratio for shoot:
root biomass with both canopy height and width at 80 DAP (Figure
2A). Griffing’s analysis revealed significant genotypic differences for
all phenotypes (Table 2), which are also reflected in the posterior
predicted means from BayesDiallel (Figure 3A and File S1). For all
traits, both GCA and SCA contributed significantly to the observed
genotypic variation, suggesting that both additive and nonadditive
effects are important (Table 2). Additionally, Baker’s ratio suggested
a larger influence of GCA variance (i.e., additive effects) compared
to SCA variance (i.e., dominance and/or epistatic effects) for the
phenotypes measured (Table 2). This is reaffirmed by the results
from BayesDiallel, in which the highest posterior density intervals
for parent-specific inbred effects were more dispersed than for ad-
ditive effects (Figure 3B and File S1).

For effect estimates from BayesDiallel, significant correlations were
observed among additive effects for similar phenotypes, e.g., between
canopy height at 80 and 130 DAP (r = 0.84, P # 0.05) (Figure 2B).
Additive effects for canopy height at 130 DAP were also correlated
with those for shoot biomass (r = 0.86, P # 0.05) and for shoot:root
ratio (r = 0.86, P # 0.05) (Figure 2B). Although not always signifi-
cant, inbred effects had high correlations (r . 0.5) among canopy
height and width, both 80 and 130 DAP, and among shoot and root
biomass (Figure 2C). Interestingly, inbred effects for all phenotypes
were negatively correlated with shoot:root ratio, of which only the
correlation with root biomass was significant (r = 20.94, P # 0.01)
(Figure 2C).

Inbred deviations differed across genetic backgrounds
Results from Griffing’s analysis indicated that the observed phenotypes
were largely under additive genetic control (Table 2), which is also
reflected in the posterior predictedmeans and highest posterior density
intervals from BayesDiallel (File S1). However, the BayesDiallel model
also captured notable parent-specific inbred deviations. These effects

n Table 2 Griffing’s method I, model I ANOVA mean square values for carrot growth traits, including canopy height and width, shoot
biomass, root biomass, and the ratio of shoot:root biomass

Height Width Shoot Biomassa Root Biomassa

Shoot:Root RatioaSource df 80 DAP 130 DAP 80 DAP 130 DAP Fresh Dry Fresh Dry

Genotype (G) 35 331.34��� 489.3��� 353.57��� 433.77��� 1.8��� 2.13��� 0.76��� 0.91��� 0.24���

GCA 5 516.06��� 1488.95��� 363.35��� 1024.37��� 7.27��� 8.55��� 1.13��� 1.74��� 1.27���

SCA 15 393.69��� 376.33��� 362.43��� 435.66��� 0.95��� 1.21��� 1.11��� 1.3��� 0.06���

Reciprocal 15 207.42��� 269.07��� 341.46��� 235.02��� 0.83��� 0.91��� 0.28��� 0.24�� 0.07���

Location (E) 2 10794.6��� 268.7�� 11668.22��� 944.08��� 0.11 2.06��� 17.8��� 19.71��� 0.27���

G · E 70 25.91� 68.48��� 55.6 64.74 0.26��� 0.28�� 0.12 0.12 0.04���

GCA · E 10 39.72� 134.49��� 55.63 110.75� 0.45��� 0.4�� 0.21� 0.2 0.08���

SCA · E 30 25.26� 43.07 36.82 50.95 0.26�� 0.31�� 0.14 0.13 0.04���

Reciprocal · E 30 21.96 71.88�� 74.37 63.2 0.19� 0.2 0.09 0.09 0.02
rep(E) 3 24 12.49 56.44 106.03 0.1 0.12 0.14 0.15 0.01
Error 105 15.38 32.14 45.39 53.17 0.12 0.14 0.09 0.1 0.01
Baker’s ratiob

Method I 0.72 0.89 0.67 0.82 0.94 0.93 0.67 0.73 0.98
Method III 0.95 0.99 0.90 0.97 0.96 0.96 0.88 0.93 0.96
��� P # 0.001, �� P # 0.01, � P # 0.05.
a
Natural log transformation; measured at harvest (130 DAP).

b
Baker’s ratio of GCA to SCA variance, calculated as 2MSGCA : 2MSGCA 1 MSSCA, is reported for both Method I (F1s, reciprocal F1s, and parents) and Method III
(F1s and reciprocal F1s only).
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are illustrated by the BayesDiallel results for canopy height at 130 DAP,
for which inbred lines were an average of 8.3 cm shorter than their
hybrid counterparts (overall inbred effect, binbred; in Figure 3). Addi-
tionally, the intensity of inbred effects also varied across genetic back-
ground (Figure 3 and File S1). Relative to heterozygotes, line L6038 had a
net reduction in canopy height of 2.9 cm (binbred þ bj½1�), while line
P6139 had a net 23.4 cm reduction in canopy height (binbred þ bj½5�)
(Figure 3).

Identification of superior parents, hybrids, and testers
for applied breeding
GCA estimates from Griffing’s analysis were compared to determine
the relative performance of each parent (Table 3). Parent L6038 had
negative and significant GCA for all traits except canopy height and
width at 80 DAP. Low and significant GCA was also observed in
parent L7550 for height (130 DAP) and the ratio of shoot:root bio-
mass. For canopy height, parents with positive and significant GCA
included Nbh2189 (130 DAP), P6139 (80 and 130 DAP), and B7262
(130 DAP). Parent Nbh2189 was the only inbred with significant and
positive GCA for canopy width (130 DAP). Parents P0159 and B7262
had high and significant GCA for both shoot biomass and the ratio of
shoot:root biomass. Positive and significant GCA for root biomass was
only observed for parent P0159.

Although the estimation methods were different, GCA estimates
largely agree with the additive effects estimated from BayesDiallel,
which provided similar rankings based on posterior predictedmeans
(Figure 3A and File S1) and HPD intervals (Figure 3B and File S1).

For canopy height (130 DAP), hybrids with parents L6038 and
L7750 were, on average, �7.3 cm shorter, while hybrids with par-
ents P6139 and B7262 were an average of 4.2 cm taller (Figure 3).
The posterior predicted means for canopy height (130 DAP) also
demonstrate relatively higher values for hybrids with parents
Nbh2189, P6139, and B7262, as well as lower values for hybrids
with parents L6038 and L7550 (Figure 3).

For Griffing’s analysis, SCA effects were identified as crosses
that performed better or worse than expected based on the GCA
values of the contributing parents (Table 4). Hybrid Nbh2189 ·
P6139 had high SCA for both height and width (80 and 130 DAP).
For shoot biomass, the largest SCA was observed in hybrid
Nbh2189 · B7262. Hybrids with high SCA for root biomass in-
cluded L7550 · B7262, P0159 · Nbh2189, and Nbh2189 ·
B7262. No significant positive effects were observed for shoot:root
ratio. These results are consistent with posterior distributions for the
degree of dominance, with pseudo-overdominance observed in hy-
brid Nbh2189 · P6139 for canopy height (80 and 130 DAP; Figure
4 and Figure S11 in File S1) and in hybrids L7550 · B7262 and
Nbh2189 · B7262 for root biomass (Figures S47 and S53 in File
S1). Signals of dominance and pseudo-overdominance were also de-
tected for canopy width at 130 DAP in hybrids L7550 · P6139 and
Nbh2189 · B7262 (Figure S29 in File S1). Notably, parents L6038
and P0159 also showed signals of pseudo-overdominance for root
biomass when crossed to B7262 (Figures S47 and S53 in File S1).

In addition topseudo-overdominance, other signals of nonadditivity
were detected based on the degree of dominance. Several parents

Figure 3 Diallel effects for carrot canopy
height at 130d after planting. (A) Pre-
dicted means from BayesDiallel. Shading
indicates height on a scale from 21.4cm
(lighter) to 61.7cm (darker). (B) HPD inter-
vals of parent-specific additive effects, in-
bred deviations, and overall inbred penalty
(b). For each effect, thin and thick horizon-
tal lines show the 95 and 50% HPD inter-
vals, respectively, with breaks indicating
the posterior median and short vertical
bars the posterior mean.

n Table 3 Pooled estimates of GCA for carrot growth traits combined across all growing environments

Height Width Biomassa

Parent 80 DAP 130 DAP 80 DAP 130 DAP Shoot Root Shoot:Root Ratio

L6038 21.39 26.5��� 0.09 23.5�� 20.53��� 20.19� 20.19���

L7550 22.83 24.94��� 20.63 22.23 20.15 20.03 20.08��

P0159 0.85 1.43 21.56 21.41 0.39��� 0.27��� 0.1���

Nbh2189 2.43 3.62�� 3.15 7.13��� 0.11 0.06 0.03
P6139 3.52� 3.87�� 1.86 0.53 20.15 20.07 20.03
B7262 22.58 2.52� 22.92 20.53 0.33��� 20.03 0.18���

Grand Mean 32.27 45.77 43.57 53.74 1.55 2.55 0.6
��� P # 0.001, �� P # 0.01, � P # 0.05.
a
Natural log transformation; dry weight as measured at harvest (130 DAP).
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expressed dominance when crossed to P6139, including L7550 for
canopy width at 80 DAP (Figure S23 in File S1), Nbh2189 for canopy
width at 130 DAP (Figure S29 in File S1), and P0159 for fresh shoot
biomass (Figure S35 in File S1). Parent L6038 was generally recessive or
pseudo-under-recessive for all traits except root biomass, agreeing with
previous observations of low GCA (File S1). Similarly, parent L7550
was either recessive or pseudo-under-recessive when crossed to P0159,
Nbh2189, and B7262 for shoot biomass (Figures S35 and S41 in File
S1), and to Nbh2189 for shoot:root ratio (Figure S59 in File S1). In
contrast with the other phenotypes, strong signals of additivity were
detected for shoot:root ratio, particularly for crosses with parents P0159
and B7262 (Figure S59 in File S1).

The best tester for each trait was both discriminating (i.e., able to
rank the other parental lines by combining ability) and representative
(i.e., minimal SCA effects) based on biplot analysis. Line B7262 was the
most discriminating parent in hybrid combination for height and
width, both 80 and 130 DAP (Figures S7, S13, S19, and S25 in File
S1), suggesting it can serve as a valuable tester to rank the combining
ability of other parental lines for shoot height and width in carrot. The
best testers for other traits included line P0159 for shoot biomass
(Figures S31 and S37 in File S1), line P6139 for root biomass (Figures
S43 and S49 in File S1), and line L6038 for shoot:root ratio (Figure S55
in File S1).

Influence of reciprocal cross effects and genotype-by-
environment interactions
Highly significant reciprocal effects were detected for all traits in
Griffing’s analysis (Tables 2 and 5), suggesting parent-of-origin influ-
ences phenotypic expression. For increasing height and width (80 and
130 DAP), lines L6038 and P0159 tended to perform best as female
parents and lines L7550 and B7262 tended to perform best as male
parents. Significant increases were also observed for shoot biomass,
root biomass, and shoot:root ratio when line L7550 was used as a

female parent and when lines P0159 and Nbh2189 were used as
male parents.

Based on Griffing’s analysis, genotype by environment interaction
(G · E) was significant for canopy height (80 and 130 DAP), shoot
biomass (fresh and dry), and shoot:root ratio (Table 2). For correspond-
ing traits with significant GCA · E, SCA · E, and Reciprocal · E
interactions, estimates and nonparametric correlations among environ-
ments (Spearman’s r) for each location are provided in Tables S2–S23 in
File S1. Significant GCA · E interactions were observed for canopy
height (80 and 130 DAP), shoot biomass, and shoot:root ratio. For
canopy height (130 DAP), GCA ranked consistently negative across
environments for parents L6038 and L7550 (Figure 5 and Table S6 in
File S1). Parent P6139 had positive GCA in all environments, but effects
were only significant for the WI2015 and CA2016 locations (Table
S6 in File S1). The performance of parents P0159 and B7262 was
notably inconsistent and fluctuated between negative and positive
values of GCA (Figure 5). SCA · E interactions were significant
for height (80 DAP), shoot biomass, and shoot:root ratio, but it was
still possible to identify consistently high performing hybrids across
environments using hybrid rankings from BayesDiallel (Figures S12,
S36, S42, and S60 in File S1). Similarly, significant Reciprocal · E
interactions were observed for canopy height (130 DAP) and fresh
shoot biomass. Differences across replications within a location were
not significant.

Effects estimated inBayesDiallel includedplantingdensity (fixedand
random) and location (random) (File S1). On average, planting density
increased plant height in a mostly linear fashion, with a greater
effect at 80 DAP (5.4 cm) compared to 130 DAP (3.5 cm) (Figure
6). Similarly, location had a greater influence on height at 80 DAP
than at 130 DAP, with the highest mean in the WI2015 season and
the lowest mean in the CA2016 season (Figure 6). Stratified analysis
by location also allowed estimation of G · E by providing rankings
of crosses in each growing environment (Figure 7). For canopy

n Table 4 Pooled estimates of SCA for carrot growth traits combined across all growing environments

Height Width Biomassa

80 DAP 130 DAP 80 DAP 130 DAP Shoot Root Shoot:Root Ratio

F1 hybrids
L6038 · L7550 20.53 20.75 21.4 22.27 0.1 0 0.06
L6038 · P0159 1.05 1.83 1.82 2.86 0.12 0.17 0.05
L6038 · Nbh2189 1.01 22.03 0.45 22.62 20.24 20.06 20.1�

L6038 · P6139 1.66 0.96 20.8 2.43 0.21 0.15 0.06
L6038 · B7262 2.05 0.95 4.62 2.67 20.06 0.09 20.04
L7550 · P0159 21.08 21.75 21.91 0.61 0.1 0.19 20.01
L7550 · Nbh2189 0.48 20.63 21.97 20.28 0.28 0.04 0.09
L7550 · P6139 0.34 0.68 0.01 20.76 20.05 20.03 0.01
L7550 · B7262 23.43 22.92 0.96 21.45 0.33� 0.39��� 0
P0159 · Nbh2189 1.46 1.77 1.38 0.23 0.09 0.28�� 20.05
P0159 · P6139 4.04� 4.99� 3.95 1.24 20.14 20.04 20.05
P0159 · B7262 4.39�� 2.93 4.28 4.79� 20.12 20.09 20.08
Nbh2189 · P6139 5.57��� 6.26�� 7.01�� 7.2�� 0.17 0.12 0.05
Nbh2189 · B7262 25.45�� 0.6 21.66 1.7 0.54��� 0.3�� 0.08
P6139 · B7262 2.32 3.17 2.73 5� 20.22 20.04 20.09�

Parental selfs
L6038 25.24� 21.97 24.58 23.73 20.16 20.33� 20.03
L7550 2.35 4.31 1.74 3.14 20.44� 20.38�� 20.08
P0159 213.12��� 212.06��� 210.72�� 211.63�� 20.43� 20.83��� 0.1
Nbh2189 26.40�� 24.48 29.11�� 28.38� 20.47� 20.52��� 0.01
P6139 218.85��� 219.93��� 216.83��� 219.55��� 20.15 20.34� 20.01
B7262 23.42 26.22 28.6� 210.37�� 20.81��� 20.88��� 0.05

��� P # 0.001, �� P # 0.01, � P # 0.05.
a
Natural log transformation; dry weight as measured at harvest (130 DAP).
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height (130 DAP), hybrids P6139 · P0159, P6139 · Nbh2189,
and P6139 · B7262 consistently ranked among the tallest in all
locations (Figure 7). Although rankings had greater uncertainty in
the WI2015 environment, it was generally possible to distinguish
consistently high and low ranking hybrids across environments for
all phenotypes.

Genetic architecture varied across traits and over
developmental time
Although most correlations among phenotypes ranged from moderate
(r . 0.3) to high (r . 0.5) (Figure 2A), genetic architecture var-
ied substantially by trait and across developmental time (Figure 8).
Similarly, estimates of Baker’s ratio using both Method I (with

Figure 4 Posterior distributions of the de-
gree of dominance (aCR) for canopy height at
130d after planting. Posterior means within
the interval are indicated by red dotted lines
and medians by blue solid lines, with 95%
central quantiles shown in gray. A signal was
considered strong if the mean, median, and
the majority of the posterior distribution fell
within the specified ranges: pseudo-under-
recessive (2N,21.5), recessive (21.5,20.5),
additive (20.5,0.5), dominant (0.5,1.5), pseudo-
overdominant (1.5,N). Asterisks indicate a
high posterior probability that, in aggregate,
genetic effects of parent A influencing can-
opy height at 130 DAP are pseudo-under-
recessive, recessive, additive, dominant, or
pseudo-overdominant to those of parent B
(e.g., there is a high posterior probability that
the genetic effects of parent L6038 influenc-
ing canopy height at 130 DAP are recessive
to those of parent B7262).

n Table 5 Pooled estimates of reciprocal cross effects for carrot growth traits over all growing environments

Height Width Biomassa

F1 Hybrids 80 DAP 130 DAP 80 DAP 130 DAP Shoot Root Shoot:Root Ratio

L6038 · L7550 4��� 4.35�� 4.51� 5.25�� 20.1 20.08 20.02
L6038 · P0159 20.91 22.21 23.37 22.62 0.19 0.12 0.05
L6038 · Nbh2189 2.97�� 2.43 2.22 3.74� 0.12 0.05 0.03
L6038 · P6139 2.96�� 2.76 3.01 3.61� 20.01 0.1 20.03
L6038 · B7262 7.18��� 9.93��� 8.75��� 7.14��� 20.15 20.06 20.06
L7550 · P0159 22.89�� 21.61 23.44 0.32 0.58��� 0.28��� 0.14���

L7550 · Nbh2189 27.17��� 24.3 29.45��� 25.42� 0.77��� 0.36��� 0.22���

L7550 · P6139 24.58��� 21.5 27.17��� 24.13� 0.03 0.04 0.01
L7550 · B7262 20.24 2.46 1.4 1.04 0.11 0.15 20.02
P0159 · Nbh2189 21.5 26.63��� 23.29 22.81 0.04 0.04 0.01
P0159 · P6139 24.72��� 22.96 26.78��� 24.24� 20.01 20.01 0.01
P0159 · B7262 3.18�� 6.74��� 1.31 4.09� 20.07 20.03 0.01
Nbh2189 · P6139 0.81 21.92 20.97 20.82 0 0.07 20.02
Nbh2189 · B7262 6.14��� 7.35�� 7.15�� 8.75��� 20.28� 20.09 20.08�

P6139 · B7262 3.96��� 2.58 5.39�� 1.71 20.01 20.06 0
��� P # 0.001, �� P # 0.01, � P # 0.05.
a
Natural log transformation; dry weight as measured at harvest (130 DAP).
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parents) and Method III (without parents) suggest the influence of
SCA on canopy height and width is larger early in the growing
season (80 DAP) compared to the end of the season (130 DAP),
although the magnitude of this difference is diminished when using
Method III (Table 2). Interestingly, and regardless of estimation
method, the lowest value for Baker’s ratio was observed for root
biomass, suggesting this trait has a higher influence of SCA effects
relative to the other phenotypes measured (Table 2). Results from
BayesDiallel reveal a similar relationship, with the overall inbred
penalty ðbinbredÞ explaining more or similar amounts of variation
compared to additive effects for midseason height, midseason
width, and root biomass (Figure 8 and Table 6).

As described by Crowley et al. (2014), the variance projection of the
additive diallel inheritance class, VarP[a], can be likened to repeatabil-
ity. Traits with significant additive effects included canopy height at
80 DAP (VarP[a] = 0.22), canopy height at 130 DAP (0.43), canopy
width at 130 DAP (0.23), shoot biomass (0.31), root biomass (0.12),
and shoot:root ratio (0.29) (Figure 8 and Table 6). The influence of
nonadditive variation was largely due to the overall inbred penalty,
which contributed significantly to canopy height at 80 DAP
(VarP[B] = 0.20), canopy width at 80 DAP (0.21) and at 130 DAP
(0.14), shoot biomass (0.09), and root biomass (0.27) (Figure 8 and
Table 6). However, parent-specific inbred effects, cross-specific sym-
metric effects, and cross-specific asymmetric effects did not contribute
significantly to the predicted phenotypes (Figure 8 and Table 6). While
parent-of-origin is not a genetic effect, it did explain variation for
canopy height at 80 DAP (Var[m] = 0.07) and 130 DAP (0.04),
canopy width at 80 DAP (0.07) and 130 DAP (0.02), and shoot
biomass (0.05) (Figure 8 and Table 6).

DISCUSSION

Primary gene action
In this study,we estimated genetic, parent-of-origin, and environmental
effects on carrot growth traits for six carrot inbred lines, and their
combinations, in a 6 · 6 diallel framework. Significant genetic varia-
tion contributed to all carrot growth attributes, suggesting that there is
potential to improve these traits in carrot.

Apart from canopy width at 80 DAP, all phenotypes had a mea-
surable proportion of heritable variation, as evidenced by the pres-
ence of nonzero additive effects in the diallel variance projection.
Traits with high additivity included canopy height (130 DAP) and
shoot biomass, both of which are well documented as highly heri-

table polygenic traits that play a fundamental role in plant fitness
and adaptation (Khush 2001; Meyer et al. 2004; Peiffer et al. 2014).
High additivity was also observed for the ratio of shoot:root bio-
mass, which had strong signals of additivity based on the degree of
dominance, aCR:

For the parental lines in this study,we observed varying sensitivity to
inbreeding, which could be due to genetic divergence and/or differing
levels of prior inbreeding (East 1936; Birchler et al. 2003). This matches
expectations based on the biological constraints of outcrossing in
carrot, which has putative susceptibility to inbreeding depression
(Simon 2000). Consequently, hybrid vigor was evident for root
biomass, which had relatively high proportions of nonadditive
genetic variation, significant estimates of an inbred penalty, and
signals of pseudo-overdominance (Figure 8 and Figures S47 and
S53 in File S1). This result coincides with widespread evidence of
heterosis in plants, whereby hybrids demonstrate increased de-
velopmental speed and greater biomass acquisition relative to
their inbred parents (Shull 1908; East 1936; Birchler et al. 2003;
Meyer et al. 2004), and agrees with previous observations of hy-
brid vigor for root weight in carrot (Simon et al. 1982; Duan et al.
1996; Simon and Strandberg 1998; Suh et al. 1999; Jagosz 2011,
2012).

Breeding strategies
With discovery of CMS systems in carrot (Welch and Grimball 1947),
breeding strategies transitioned from selection in open-pollinated
populations to an inbred-hybrid system, thereby improving crop
uniformity and vigor (Peterson and Simon 1986). We expect that
traits with significant overall inbred effects, such as canopy height

Figure 5 Interaction of GCA and location (WI2015, CA2015, CA2016)
for canopy height at 130 DAP.

Figure 6 HPD intervals of location and planting density (stand; 1–3
scale, 1 = low, 3 = high) for canopy height at 80 DAP (black) and
130 DAP (red). For each effect, thin and thick horizontal bars show
the 95 and 50% HPD intervals, respectively, with vertical breaks in-
dicating the posterior median and short vertical bars the posterior
mean.
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(80 DAP), canopy width (80 DAP), and root biomass, will be re-
sponsive to commonly used hybrid breeding strategies in carrot,
such as reciprocal recurrent selection. Alternatively, selection for
traits with high additivity, such as canopy height (130 DAP), canopy
width (130 DAP), shoot biomass, and shoot:root ratio may allow
more rapid genetic gain while indirectly selecting for positively corre-
lated traits under nonadditive control. For all phenotypes in this
study, we also identified promising parental lines and hybrids for use
in applied breeding. Line B7262 was especially notable as a favorable
tester for canopy height and width, which may be useful to assess
the combining abilities of carrot germplasm at midseason and at
harvest.

Accounting for G · E is especially important in biennial crops
like carrot, as breeding programs rely on winter nurseries to

achieve an annual breeding cycle (Simon et al. 2008). We con-
ducted trials in CA and WI, which are two of the leading carrot
production regions and representative of common, but contrasting,
breeding environments. In general, significant G · E interactions
did not affect the ability to identify high and low rankings among
parents and hybrids. Thus, we anticipate that environmental dif-
ferences are important, but should have a minimal impact on se-
lection efforts.

Source–sink relationships
Biomass partitioning between the shoot and root is a major consider-
ation in carrot breeding, and has been extensively studied, both in a
breeding and an ecological context (Barnes 1979; Currah and Thomas
1979; Hole et al. 1983; Thomas et al. 1983; Hole and Dearman 1991).
The ideotype for carrot shoot growth is rapid initial growth that pla-
teaus following canopy closure, simultaneously reducing the critical
weed free period and promoting taproot development. Equally impor-
tant is avoiding growth habits with large, dense canopies, which foster a
microclimate that is conducive to the development of foliar diseases
(Simon et al. 2008).

Consistent with findings by Hole et al. (1983), we found a strong
linear relationship between the log transforms of shoot and root bio-
mass (r = 0.69, P , 0.001). However, the ratio of shoot:root biomass
had a wide range across parents (0.23–0.64), providing evidence that
high shoot biomass is not necessary to produce roots with high bio-
mass, and vice versa.

Previous work has demonstrated rapid and early acquisition of
dry matter in carrot storage roots, with the taproot constituting 42%
of the plant dry weight at 67 d after sowing (Benjamin and
Wren 1978). Interestingly, our results demonstrate that canopy
height and width at 80 DAP were negatively correlated with the
ratio of shoot:root biomass (r = 20.26 and 20.29, respectively,
P , 0.001) and positively correlated with root biomass at harvest
(r = 0.58 and 0.55, respectively, P , 0.001). Conversely, canopy
height at harvest (130 DAP) was positively correlated with shoot:
root ratio (r = 0.39, P , 0.001) and not significantly correlated
with root biomass (r = 0.10, P = 0.18). This suggests that early
shoot growth is important for root biomass accumulation and, in
combination with observations of pseudo-overdominance and sig-
nificant inbred effects, agrees with previous conclusions that these
traits may be subject to hybrid vigor.

Method of analysis
When applied appropriately, traditional diallel analysis provides valu-
able information on combining abilities for parental lines and the
underlying gene action for complex traits (Griffing 1956b). However,
the benefits of diallel mating designs are often overshadowed by prac-
tical and theoretical constraints of the analysis. The use of hierarchical
modeling, and, in particular, the use of a Bayesian MCMC approach as
used here, confers several advantages, including robust handling of
imbalanced data, which is especially important for crops with poor
seed set or limited availability of inbred lines; better support inter-
vals for ranks and variances; straightforward inference of potentially
complex functions of estimated parameters (such as the degree of
dominance), and, as a consequence of these, improved biological
interpretability (Greenberg et al. 2010; Lenarcic et al. 2012). For this
study, we chose to present two complementary analyses of diallel
data: a traditional analysis using Griffing’s Model I, combined in
this case with multiple imputation, and a modern analysis using
BayesDiallel. The advantage of this comparison is the presentation

Figure 7 Mean values and 95% HPD intervals of hybrid rankings for
canopy height (130 DAP) in a six-parent carrot diallel. Hybrids with
intervals in the bottom 15 are shown in green, and hybrids with inter-
vals in the top 15 are shown in orange.
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of results from BayesDiallel, which is not currently used in plant
breeding and may be intimidating to researchers unfamiliar with
Bayesian approaches, in the context of Griffing’s analysis, which is
relatable and familiar to plant breeders. Both methods provided
similar conclusions regarding primary gene action, parental rank-
ings, and hybrid performance.

Of relevance in this experiment was robustness to data imbal-
ance, which is a pervasive challenge in field experiments. Although
this was not a problem for BayesDiallel, it was a substantial
challenge when applying Griffing’s model, for which balance is
required. To ensure valid application of Griffing’s model under
data imbalance, we framed the imbalance as a missing data problem,
and addressed this using multiple imputation, which produces a set
of plausible values to replace missing information (Rubin 1987).
This approach may be useful for researchers interested in perform-
ing traditional diallel analysis with fixed genotypes. Imputation has
advantages over alternative methods to address missing data in
diallel experiments in that it is relatively simple to implement,
makes use of all available data for a given trait, and replaces missing
data with plausible estimates to avoid reductions in sample size.
However, there are several caveats and compromises regarding
multiple imputation, namely, that there are inadequate or vague
diagnostics and, although simple in principle, methods to pool
multi-factor ANOVA results are often vague, or are not widely
accessible (van Ginkel and Kroonenberg 2014; Grund et al. 2016).
In this study, we demonstrate the application of existing, relatively

straightforward, methods to pool results for diallel analysis across
multiple environments.

A notable advantage of BayesDiallel was the option to add
covariates for location and planting density as random and fixed
effects. Posterior distributions for location matched expectations
based on observed data, with higher means observed in WI2015
compared to CA2015 and CA2016. The inclusion of planting density
was especially advantageous and matched expectations from pre-
vious studies, which demonstrated significant effects of planting
density on canopy height and biomass partitioning in carrot (Bleasdale
1967; Benjamin and Sutherland 1992; Li et al. 1996; Traka-Mavrona
1996). Of interest in future studies will be further investigation of
potential genotype · density interactions.

Precise estimates of repeatability are useful when determiningwhich
breeding strategy will result in the most genetic gain. However, tradi-
tional repeatabilitymeasuresbasedonestimatesof variance components
typically have wide confidence intervals, and their formulation as a
population-level statistic can make meaningful interpretation possible
only under restrictive conditions. As an alternative, BayesDiallel’s var-
iance projection (VarP) (Crowley et al. 2014) is a more precise,
repeatability-like measure with a practical focus: it benefits applied
breeding by (1) describing how several inheritance classes will influence
future experiments composed of the same parents, and (2) providing a
95% credibility interval as ameasure of uncertainty, which affordsmore
flexibility when designing future experiments and estimating potential
for genetic gain.

Figure 8 Diallel variance projections charac-
terizing the genetic architecture for each trait,
including additive (a), maternal (m), overall
inbred penalty (B), parent-specific inbred de-
viations (b), cross-specific symmetric (v), and
cross-specific asymmetric (w) effect classes.
Left: mean and 95% credibility intervals of
effect classes for each trait. Right: Mean values
showing overall genetic architecture.
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Conclusions
Theriseof sustainable agriculturehas taskedbreeders todevelopcultivars
with improved weed competitive ability. Using traditional and modern
approaches, we analyzed diallel data to describe the quantitative in-
heritance of previously uncharacterized traits in carrot, which have been
demonstrated to confer improved competitive ability in other crops.
However, future trialing for weed competitive ability in carrot will be
essential to validate the utility of these traits, to determine the underlying
mechanism of competitive ability (i.e., tolerance or suppression), and to
assess relative fitness costs (e.g., trade-offs with yield).

Results from this study support applied breeding efforts for carrot
shoot growth in numerous ways, most notably through the quantifica-
tion of inbred performance, the identification of useful tester lines, and
the assessment of potential hybrid combinations. Furthermore, the
detailed characterization of the inbred parents in this study provides
a foundation for the development of a multi-parental advanced gener-
ation intercross (MAGIC) population in carrot, which will facilitate
future in-depth genetic studies (Huang et al. 2015).

Lastly, we demonstrate the utility of the BayesDiallel framework for
modeling heritable and nonheritable components of carrot phenotypes.
This examplewillmakeBayesDiallelmore accessible as a resource in the
plant breeding community to maximize the potential of diallel exper-
iments, especially in under-resourced crops with limited characteriza-
tion of heterotic groups and combining abilities.
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APPENDIX A

Degree of Dominance: Statistical Methods
In Comstock and Robinson (1948), a method was described for obtaining a quantitative estimate of the degree of dominance, a; from a simple
linear model of phenotypes on genotypes. The model is reproduced in summary below:

p ¼ y þ e (A1)

where p is the phenotype, y is the genetic component, and e is the deviation or residual. The paper goes on to describe a variance-component
based method of determining the aggregate dominance contribution to the phenotype.1

Givena specific locus (inour case,we are considering foundergenomecontributions rather than loci), two alleles, B andb, canbe combined asBB,
Bb, or bb in a breeding population, and the phenotypic expectation for hybrids, in the absence of dominance, is given by:

yBb ¼
�
yBB þ ybb

�	
2 (A2)

or, equivalently,

yBB 2 yBb ¼ yBb 2 ybb (A3)

Elaborating the notation to consider the case where dominance plays a role, we have:

yBB ¼ z þ 2u (A4)

yBB ¼ z þ uþ au (A5)

ybb ¼ z (A6)

We can then rewrite the value of a according to the relationship between yBB; yBb; and ybb in the following steps. First, regardless of the value of a;
we know that:

yBB 2 ybb ¼ z þ 2u2 ðzÞ ¼ 2u (A7)

Also, we know that:

yBB 2 yBb ¼ z þ 2u2 ðz þ uþ auÞ ¼ u2 au ¼ ð12 aÞ � u (A8)

�
yBB 2 yBb

�	
u ¼ 12 a (A9)

a ¼ 12
�
yBB 2 yBb

�	
u (A10)

We substitute the value of u in Equation A7 for the u in Equation A8, giving us the relation:

a ¼ 12 2 �
�
yBB 2 yBb
yBB 2 ybb

�
(A11)

We recognize that the quantity on the right, ðyBB 2 yBbÞ=ðyBB 2 ybbÞ, is equivalent to the definition of the dominance index,D; in Kacser and
Burns (1981), which is used in a diallel analysis of dominance in Maurizio et al. (2017).

The Comstock-Robinson parameter for dominance2,3, referred to as aCR in this article, was furthermore used by Gardner and Lonnquist (1959)
to quantify the degree of dominance in genetic crosses of maize. We adapt the classification of degree of dominance in that paper, as follows, with
the corresponding values for the Kacser–Burns dominance index, D; given on the right:

Category Value (aCR ) Value (DKB )

Pseudo-under-recessivity a � 2 1:0 D � 1:0
Recessivity a ¼ 2 1:0 D ¼ 1:0
No dominance (additivity) a ¼ 0:0 D ¼ 0:5
Dominance a ¼ 1:0 D ¼ 0:0
Pseudo-overdominance a � 1:0 D � 0:0
1For our purposes, rather than compute estimates of the average or aggregate
dominance contribution based on the variance components, which is captured
to some extent in the Variance Projection analysis, we use the posterior
predictive estimates of phenotypes within the inbred and hybrid groups to
generate a posterior distribution of the degree of dominance parameter, aCR ;
for all pairings of different inbred parents in the 6 · 6 diallel (n = 15 categories).

2Note that a is a measure of dominance; it equals zero when dominance is absent
and increases in magnitude as yBb deviates from the midpoint between yBB and ybb.

3Therefore if the estimate of a is significantly greater than one, it can be concluded
that one or more a is greater than one, i.e., that there is overdominance of genes
at one or more locus.
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