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Immune checkpoint inhibitor therapies and allogeneic hematopoietic cell transplant
(alloHCT) represent two distinct modalities that offer a chance for long-term cure in a
diverse array of malignancies and have experienced many breakthroughs in recent years.
Herein, we review the CD27-CD70 co-stimulatory pathway and its therapeutic potential in
1) combination with checkpoint inhibitor and other immune therapies and 2) its potential
ability to serve as a novel approach in graft-versus-host disease (GVHD) prevention. We
further review recent advances in the understanding of GVHD as a complex immune
phenomenon between donor and host immune systems, particularly in the early stages
with mixed chimerism, and potential novel therapeutic approaches to prevent the
development of GVHD.

Keywords: CD27, CD70, immunotherapy, allogeneic hematopoietic cell transplant (alloHCT), graft-versus-host
disease (GVHD)
INTRODUCTION

Allogeneic hematopoietic cell transplant (alloHCT) provides the greatest probability for long-term
cure in many hematologic malignancies where few other effective therapeutic options exist.
However, despite the obvious life-saving benefits of alloHCT, graft-versus-host disease (GVHD),
a significant toxicity of alloHCT, can be devastating and lead to multi-system tissue damage
including the skin, liver, GI tract, and eyes potentially leading to significant morbidity and mortality
including liver failure, systemic sclerosis, and severe ocular surface disease (1, 2). The treatment
paradigm in alloHCT has evolved rapidly in the last three decades, largely due to a better
mechanistic understanding of the complex interactions between donor and host immune cells
and host organ systems. This understanding has revolutionized care and dramatically improved
patient outcomes. This is well demonstrated by a retrospective analysis comparing alloHCT
recipients with grade III and IV acute GVHD from 1997-2006 and 2007-2012 where 12-month
treatment related mortality decreased from 58% to 38% in this period of time (3). These improved
org September 2021 | Volume 12 | Article 7159091
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clinical outcomes have occurred as a result of an improved
understanding of the pathogenesis of GVHD. However, despite
advances, GVHD remains a significant cause of morbidity and
non-relapse related mortality in alloHCT.

The framework of classical acute GVHD occurring in the first
100 days of transplant due to alloreactivity driven by donor T-cells
has more recently been supplanted by a more robust
understanding involving the intricate interplay of donor and
host immune cells with host tissue (4). The initiation phase of
GVHD is believed to be mediated by both surviving host and
donor Antigen Presenting Cells (APCs) (5, 6). The insult of
conditioning chemotherapy and Total Body Irradiation (TBI)
has been shown to cause significant changes in hematopoiesis,
activation of host APCs, and host tissue damage, leading to an
inflammatory environment, which sets the stage for the
development of acute GVHD (7–10). This inflammatory milieu
includes cytokine release in both hematopoietic and non-
hematopoietic compartments, leading to both host and donor T-
cell activation and proliferation and alloreactivity which
subsequently damages host tissue as GVHD manifests (9–13). A
multitude of diverse therapies to alter these underlying
mechanisms of GVHD have been adopted into standard clinical
practice. As the current standard of care, this has included post-
transplant T-cell depletion with cyclophosphamide as well as
corticosteroids, calcineurin and Inosine-5′-monophosphate
dehydrogenase (IMPDH) inhibitors, and Janus kinase inhibitors;
while many others, including checkpoint inhibitors (CPI) and co-
stimulatory pathways have also been investigated in GVHD
models (6, 14–18).

Another realm of treatment modality in the arena of cancer
therapy that has revolutionized the field has been the adoption of
CPI therapies, which are now utilized in the treatment of a diverse
array of advanced stage malignancies, from non-small cell lung
cancer to classical Hodgkin’s lymphoma (19, 20). Despite their
successes in a diverse array of malignancies, overall response to
CPI therapy remains low, with reported response rates of 12-24%
in solid tumors to date (21, 22). The adoption of CPI therapy is
based on the premise of the importance of the immune system,
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particularly the tumor microenvironment and more specifically
cytotoxic CD8+ T-cells, in regulating tumor pathogenesis and
progression. An important mechanism of tumor immune escape is
the attenuation of cytotoxic T-cell activity and proliferation by T-
cell exhaustion. Exhaustion occurs by a multifactorial etiology due
to persistent tumor antigen exposure, loss of effector cytokine
secretion/stimulation [Interleuken-2 (IL-2), Interferon (IFN)-
gamma), immunosuppressive cell types (e.g. myeloid derived
suppressor cells (MDSCs)], and immunophenotypic changes,
including increased checkpoint inhibitor expression
[programmed death receptor-1 (PD-1), cytotoxic T-lymphocyte
antigen number 4 (CTLA-4), T-cell immunoglobulin mucin-3
(TIM-3), and Lymphocyte-activation gene 3 (LAG-3)] (23, 24).

While CPI targeting agents derive their function by
countering an inhibitory signal, an alternate and possibly
synergistic approach has been agonizing T-cell stimulatory co-
signaling pathways. Co-stimulatory pathways are broadly
speaking, either part of the B7/CD28 or tumor necrosis factor
(TNF) family (25). Clinically significant co-signaling pathways
include CD26, CD27, CD28, CD40, 4-1BB (CD137), OX40
(CD134), glucocorticoid-induced TNF receptor family-related
protein (GITR), herpes virus entry mediator (HVEM) (CD270),
and inducible T-cell co-stimulator (ICOS) (26–29). Although a
significant oversimplification, this is analogously described as
CPI therapy being akin to “pulling the foot off of the brake”,
while agonizing co-signaling pathways are “pressing down on the
accelerator” (See Figure 1).

Thus far, the clinical use of co-stimulatory signaling pathways
have lagged behind that of CPIs. However, given the need for
improved response rates in those undergoing CPI therapy, the
use of co-stimulatory pathways has been explored as a potential
therapeutic intervention to increase responses. Additionally, the
co-stimulatory receptors CD28 and 4-1BB (CD137) have been
utilized in the development of both experimental and
commercially available second generation chimeric antigen
receptor T-cell (CAR-T) therapies leading to significantly
greater activation, expansion, and persistence of CAR-T cells
(30, 31). More recently, these pathways have also been studied
A B

FIGURE 1 | T-cell signaling, function, and pharmacologic targets: (A) Co-stimulatory receptors and (B) inhibitory receptors; represents inhibitor, represents agonist.
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and exploited as potential therapeutic targets for attenuating
GVHD. Ultimately, however, the concern remains that any
immunosuppressive GVHD-targeted therapy may adversely
impact the graft-versus-tumor (GVT) effect as there is a strong
correlation between incidence and severity of GVHD and disease
free survival (32).

Thus, it is critical to identify co-stimulatory pathways which
when blocked decrease GVHD but do not interfere with GVT. One
potential way to decrease the incidence of GVHD would be by
inhibiting a co-stimulatory receptor thereby attenuating CD4+ and
CD8+ cytotoxic T-cell activity. CD26 has been studied in both pre-
clinical and clinical models, while the CD27-CD70 pathway has
been studied extensively in pre-clinical murine models. In murine
models, inhibition of CD26 [also known as dipeptidyl peptidase-4
(DPP4)] by a monoclonal antibody has been demonstrated to
decrease GVHD incidence without compromising GVT (33). In a
small, non-randomized clinical trial, the diabetic medication and
DPP4 inhibitor, sitagliptin, was administered from day -1 to day
+14 of alloHCT, resulting in a low incidence (5%) of grades II-IV
GVHD followed to day +100 (34). CD27-CD70 has also been
studied in murine and cellular models. Cao et al. and colleagues
demonstrated that antagonism of the host CD27-CD70 co-
stimulatory pathway significantly increased, rather than decreased,
the development of murine GVHD (35, 36).

Herein, we conduct an in-depth review of the CD27-CD70
pathway and its application in both GVHD attenuation
following alloHCT and its use in the treatment of numerous
malignancies in combination with CPI therapies.
CD27-CD70 PATHWAY

CD27, a member of the TNF receptor superfamily is constitutively
expressed on naive T-cells, memory B-cells, NK-cells, and
hematopoietic stem cells (HSCs) and progenitor cells (37–40).
CD27 is a transmembrane phosphoglycoprotein expressed on
both CD4+ and CD8+ T-cells with increased expression upon
T-cell activation and shedding from the cellular surface and
formation of soluble CD27 (sCD27) upon activation (41, 42).
CD70 (CD27L), the only ligand for CD27, is a tightly regulated
transmembrane glycoprotein expressed on both B and T-
lymphocytes and APCs (43). CD70 has structural similarity to
other TNF superfamily members (TNFa, FasL, receptor activator
of NF-kB ligand (RANKL), TNF-related apoptosis-inducing
ligand (TRAIL), 4-1BBL, CD30L, and CD40L) (44). Upon
binding of CD70, CD27 is bound to TNF receptor-associated
factors (TRAFs) leading to intracellular signaling which
potentiates survival and activation of T, B, and natural killer
(NK) cells via Traf2 and Traf5 signaling and activation of the
NF-kB pathway (45). The interaction of CD27-CD70 is tightly
regulated to prevent overexpression and subsequent excessive
lymphocyte activation. In a normal physiologic state, CD70 is
only expressed in the thymus and lamina propria (46). However,
stimulation by interaction with toll-like receptor (TLR) ligands
and dendritic cells (DCs), the most prominent of APCs, results in
increased expression of CD70 on DCs, albeit transiently (47).
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Although exceedingly rare, human CD27 deficiency has been
associated with Epstein-Barr virus (EBV) associated
lymphoproliferative disorders [lymphoma and hemophagocytic
lymphohistiocytosis (HLH)], and recurrent infections (48, 49).

Under pro-inflammatory conditions (infection, malignancy,
autoimmune conditions) CD27-CD70 activity is increased,
leading to proliferation and survival of lymphocytes with
multiple downstream effects (50). CD27-CD70 signaling has
also been shown to promote B-cell activation and terminal
differentiation to plasma cells, increase cytotoxic CD8+ T-cell
activity, promote TNFa production by T-cells, and increase NK-
cell activity with production of IFNg and IL-2 (44). In response
to IFN-g secretion due to CD27-CD70 stimulation, C-X-C motif
chemokine ligand 10 (CXCL10) [also known as interferon
gamma-induced protein 10 (IP-10)] has been demonstrated to
increase the CD8+ T-cell effector pool (51). Additionally, CD27
expression was noted in a subset of IFNg producing gd T-cells
following infection, while CD27 negative gd T-cells did not
produce IFNg, suggesting a role for CD27 in regulation of
interferon and specific cytokine production in immune
responses (52). The CD27 co-stimulatory response has also
been shown to be key for acute effector CD8+ T-cell
expression of IL-7Ra, an important cytokine for the generation
of CD8+ T-memory cells (53).

In the bone marrow, HSCs are a heterogeneous population
serving as precursors to all myeloid and lymphoid lineage cell
types (54). In contrast to their mature counterparts, HSCs have
limited surface antigen expression and lack lineage specific cell
surface markers. However, interestingly, HSCs have been shown
to exhibit high CD27 expression (90% of HSCs in murine models
express CD27) (38, 55). In murine in vitro models, CD27
agonism of bone marrow progenitor cells decreased monocytic
differentiation and overall inhibited leukocyte differentiation,
while in competitive transplantation assays CD27 agonism
decreased donor B and T lymphocytes, suggesting the CD27-
CD70 pathway’s ability to influence hematopoiesis and immune
cell differentiation (56).
CD27-CD70 FOR CANCER
IMMUNOTHERAPY

At the time of writing, the study of the CD27-CD70 pathway in
GVHD remains confined to murine and cellular models, with
ongoing studies seeking to better understand the effect of CD27
agonism on donor hematopoietic cell differentiation, engraftment,
and GVT effect. However, a CD27 agonizing monoclonal antibody,
varlilumab, has been extensively studied both in in vitro and in vivo
in phase I/II clinical trials for a number of hematologic and solid
tumor types, including Hodgkin’s lymphoma, non-Hodgkin’s
lymphoma (NHL), glioblastoma, melanoma, renal cell carcinoma,
prostate adenocarcinoma, colorectal adenocarcinoma, and ovarian
cancer (57–60). (See Table 1 for further details of previous and
ongoing registered clinical trials.) The rationale behind these trials
has been to study the impact of CD27 agonism alone as a T-cell co-
stimulator as well as to determine if it functions in a synergistic
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manner in combination with checkpoint inhibitor therapy and
cancer vaccines to improve antineoplastic response. Additionally,
many B-cell lymphomas express CD27, which may serve as a direct
target in a fashion similar to CD20 targeting with Rituximab. In
multiple in vitro and murine tumor models, PD1/PDL1 blockade in
combination with an agonist CD27 monoclonal antibody was
shown to enhance CD8+ cytotoxic T-cell expansion and function
in an IL-2 dependent manner with gene expression changes
promoting T-cell proliferation (66). In various syngeneic tumor
murine models, varlilumab was shown to have two predominating
anti-tumor mechanisms of action by its co-stimulatory effect and
Treg depletion (67).

The recent development of a bispecific antibody, CDX-527, has
sought to improve the efficacy of the CD27 agonism and PD1/
PDL1 blockade by combining CD27 agonism with cross-linking
through PDL1 and Fc receptors (68). CDX-527 was demonstrated
to have potent T-cell activation by increasing IL-2 and IFNg
production and anti-tumor activity to CD27-expressing
lymphoma cells in an immunodeficient mouse model, with
comparable anti-tumor activity to separate CD27 agonizing and
PDL1 inhibiting monoclonal antibodies. Similarly, a hexavalent
TNF receptor agonist (HERA) targeting CD27 has been developed
and demonstrated to cause an increased proliferative response to
CD4+ and CD8+ T-cells when compared to CD27L in vitro with
healthy human T-cells and in vivo in murine models (69).

In addition to combination with checkpoint inhibitor therapy,
the combination of anti-CD20 and CD27 agonizing monoclonal
antibodies has been investigated in an immunocompetent murine
B-cell lymphomaandB-chronic lymphocytic leukemiamodelswith
a 100% tumor remission rate noted at 100 days (70). The
combination antibody group was noted to have significantly
increased CD8+ cytotoxic T-cells and Treg cells compared to
CD20 monoclonal antibody alone. Additionally, the combination
was shown to promote tumor infiltration and activation ofmyeloid
cells and macrophages towards an anti-tumor phenotype. The
efficacy of this combined therapy is currently being investigated
in humans in the RIVA study, a phase IIa open-label clinical trial of
patients with relapsed/refractory CD20+ B-cell lymphomas (64).

In the limited clinical trials to date, the CD27 agonizing
monoclonal antibody, varlilumab, as monotherapy and with PD1/
PDL1 checkpoint inhibitor therapy (nivolumab, atezolizumab), has
resulted in varying degrees of objective clinical responses in a subset
of cancer patients enrolled. This has included complete remission in
Hodgkin’s lymphoma and partial responses in ovarian, colorectal,
and squamous cell cancer of the head and neck (see Table 1).
Furthermore, it was well tolerated with limited, predominately grade
1-2 toxicities (fatigue, nausea, and thrombocytopenia) reported at all
dose levels up to 10mg/kg in trial subjects (57, 71). In ovarian cancer
patients, the combination therapy of varlilumab and nivolumab
resulted in increased tumor expression of PD-L1 and CD8+ tumor
infiltrating lymphocytes in 61% and 58% of patients, respectively
(61). Upon administration to trial subjects, soluble CD27 plasma
concentrations were significantly increased in a dose-dependent
fashion. Cytokines were also increased in a dose-independent
manner, indicative of an inflammatory response, particularly
IL-12, monokine induced by IFNg (CXCL9), MIP-1b (CCL4),
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and monocyte chemoattractant protein-1 (CCL2). In in vitro
studies of T-cell isolates from healthy volunteer peripheral blood
mononuclear cells (PBMCs) treated with varlilumab revealed that
both CD4+ and CD8+ T-cells were stimulated (although with a
greater emphasis on CD8+ activation), which was accompanied by
upregulation of other co-stimulatory pathways (4-1BB, OX40,
GITR, and ICOS) along with the inhibitory PD1 pathway (72).

CD27 agonism alone and with an PD1 checkpoint inhibitor
has also been explored as a potential mechanism of increasing the
efficacy of tumor-specific peptide vaccines by enhancing CD4+
helper T-cell and CD8+ cytotoxic T-cell response following
vaccination (73, 74). Clinical trials are currently underway
combining varlilumab with 6MHP, a vaccine of six melanoma
peptides; ONT-10, a peptide vaccine incorporating MUC1 tumor
antigen, a TLR-4 agonist, and PET lipid A in breast and ovarian
malignancies; and IMA950, a multi-peptide vaccine with 11
glioma-associated antigens.

While varlilumab has yet to obtain an FDA indicated approval
for use, six clinical trials with varlilumab are actively recruiting
patients with B and T-cell lymphomas, neurologic malignancies,
melanoma, and non-small cell lung cancer (Table 1).
CD27-CD70 IN alloHCT AND GVHD

Traditionally, the prevailing thought behind the etiology of GVHD
rested solely with donor immune cells, particularly T-cells becoming
activated upon alloreactivity to host antigens. However, more
recently, the complex interaction between donor and host
immune systems leading to GVHD has been noted, particularly
in the early stages of alloHCT, where a mixed chimerism exists (75,
76). While the pre-alloHCT conditioning regimen clears the
peripheral blood of most host T-cells, they often persist for many
months in the tissues most effected by acute GVHD—the skin and
gastrointestinal tract. The role of persistent host T-cells mediating
acute GVHD by interaction with donor APCs has been noted in
murine models and in alloHCT transplant patients with increased
IFNg–secreting CD4+ T-cells in skin GVHD biopsies compared to
healthy controls, as well as an increased monocyte population with
upregulation of chemoattractant receptors and IFN-response genes
(IFITM1 and GBP1) compared with healthy controls (77).
Conversely, the interaction between host APCs and donor T-cells
had been reported earlier to be associated with the development of
acute GVHD (7, 11). These findings underscore the complexity of
immune interactions between a diverse array of both donor and
host immune cells that may ultimately result in the development of
GVHD (see Figure 2).

The most commonly employed conditioning regimens in
alloHCT are given with myeloablative or reduced intensity/non-
myeloablative intensity consisting of a combination of myelotoxic
chemotherapeutic agents with or without TBI (78–80). The
conditioning regimen acts as a profound insult to the marrow
microenvironment leading to increased cytokine and interferon
levels. This also impacts the function of HSCs, akin to emergency
hematopoiesis seen in other stressful states such as severe
infection and radiation exposure where pro-inflammatory
September 2021 | Volume 12 | Article 715909
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TABLE 1 | Clinical trials with CD27 agonizing monoclonal antibody.
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Study Title: Trial
identifier:

Status: Sponsor: Phase: Conditions: Intervention:

A Dose Escalation and Cohort
Expansion Study of Anti-CD27
(Varlilumab) and Anti-PD-1
(Nivolumab) in Advanced
Refractory Solid Tumors

NCT02335918 Completed Celldex Therapeutics I/II Squamous Cell Carcinoma of the Head and
Neck, Ovarian Carcinoma, Colorectal
Cancer, Renal Cell Carcinoma, Glioblastoma
multiforme

varlilumab and nivolumab Colore
41 pat
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Squam
Head
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A Study of CDX-1127 (Varlilumab)
in Patients With Select Solid
Tumor Types or Hematologic
Cancers

NCT01460134 Completed Celldex Therapeutics I CD27 Expressing B-cell Malignancies
(Hodgkin’s Lymphoma, Chronic
Lymphocytic Leukemia, Mantle Cell
Lymphoma, Marginal Zone B Cell
Lymphoma, Any T-cell Malignancy, Solid
Tumors (Metastatic Melanoma, Renal (Clear)
Cell Carcinoma, Hormone-refractory
Prostate Adenocarcinoma, Ovarian Cancer,
Colorectal Adenocarcinoma, Non-small Cell
Lung Cancer), Burkett’s Lymphoma,
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Study of ONT-10 and Varlilumab
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Therapeutics Inc.

I Advanced Breast Carcinoma, Advanced
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ONT-10 and varlilumab None

A Study of Varlilumab and IMA950
Vaccine Plus Poly-ICLC in Patients
With WHO Grade II Low-Grade
Glioma (LGG)

NCT02924038 Recruiting Nicholas Butowski,
MD,University of
California San
Fransisco

I Glioma, Malignant Glioma, Astrocytoma,
Grade II, Oligodendroglioma, Glioma,
Astrocytic, Oligoastrocytoma, Mixed

IMA950 vaccine, poly-
ICLC vaccine, and
varlilumab

None

Nivolumab With or Without
Varlilumab in Treating Patients
With Relapsed or Refractory
Aggressive B-cell Lymphomas

NCT03038672 Recruiting National Cancer
Institute

II Numerous subtypes of Non-Hodgkin
lymphoma

varlilumab and nivolumab None

A Combination of Rituximab and
Varlilumab Immunotherapy in
Patients With B-cell Lymphoma
(RIVA)

NCT03307746 Recruiting University Hospital
Southampton NHS
Foundation Trust

I/II CD20+ B-Cell Lymphoma varlilumab and rituximab None

Atezolizumab and Varlilumab in
Combination With Radiation
Therapy for NSCLC

NCT04081688 Recruiting Rutgers, The State
University of New
Jersey

I Refractory Lung Non-Small Cell Carcinoma,
Stage IV Lung Cancer

varlilumab, atezolizumab,
and stereotactic radiation
therapy

None

Vaccination With 6MHP, With or
Without Systemic CDX-1127, in
Patients With Stage II-IV
Melanoma

NCT03617328 Recruiting Craig L Slingluff, Jr
MD,University of
Virginia

I/II Melanoma CDX-1127 (varlilumab),
6MHP, Montanide ISA-51,
polyICLC

None

DC Migration Study to Evaluate
TReg Depletion In GBM Patients
With and Without Varlilumab
(DERIVE)

NCT03688178 Recruiting Gary Archer Ph.D.,
Duke University

II Glioblastoma Human CMV pp65-LAMP
mRNA-pulsed autologous
DCs, temozolomide,
varlilumab, Td, 111In-
labeled DCs, Unpulsed
DCs

None

A Study of Varlilumab (Anti-CD27)
and Ipilimumab and CDX-1401 in
Patients With Unresectable Stage
III or IV Melanoma

NCT02413827 Terminated Celldex Therapeutics I/II Unresectable Stage III or Stage IV
Melanoma

varlilumab and ipilimumab;
varlilumab, ipilimumab,
CDX-1401, and poly-ICLC

None

A Study of Varlilumab (Anti-CD27)
and Sunitinib in Patients With
Metastatic Clear Cell Renal Cell
Carcinoma

NCT02386111 Terminated Celldex Therapeutics I Carcinoma, Renal Cell, Urogenital/Urologic
Neoplasms

varlilumab and sunitinib None

A Study of Varlilumab and
Atezolizumab in Patients With
Advanced Cancer

NCT02543645 Terminated Celldex Therapeutics I/II Carcinoma, Renal Cell, Urogenital/Urologic
Neoplasms, Melanoma, Triple negative
breast cancer, Head and neck cancer, Non-
small cell lung cancer

varlilumab and
atezolizumab

None

Pilot Study of SBRT and CDX-
1127 in Prostate Cancer (Prostate-
04)

NCT02284971 Terminated James Larner, MD,
University of Virginia

I Prostate cancer Stereotactic Body
Radiation and varlilumab

None
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signals (IFNa/b, IFNg, TNFa, IL1-R, IL-5, and IL-6) encourage
HSC response and subsequent downstream maturation and
differentiation (10, 12, 13). In a study of the bone marrow
microenvironment in 28 patients undergoing alloHCT for
hematologic malignancies, dramatic changes were noted over the
course of one year. In six patients undergoing a myeloablative
conditioning regimen, bone marrow samples were obtained on
the day of transplantation (day 0) to determine the effect of
conditioning, which demonstrated a statistically significant
increase in Tregs and a 30-fold increase in IFNg concentration
(9). However, the concentration of IL-2, IL-6, IL-10, and IL-17A
were not significantly different, while IL-1b, IL-4, IL-11, and TNFa
were mostly undetectable. By day +100 (the timeframe for classical
acute GVHD), the percentage of Tregs and concentration of IFNg
was comparable to healthy donors, suggesting a normalization of
the bone marrow microenvironment by day +100.

Collectively, these findings suggest the importance of
alterations in the bone marrow microenvironment following
the noxious insult of the conditioning regimen leading to
emergency hematopoiesis and the complex interaction of host
and donor immune cells which may persist for many months
following alloHCT, during the time acute GVHD is most likely
to occur.

Given its ability to broadly influence hematopoietic
differentiation and lymphocyte activity, the CD27-CD70 pathway
presents itself as an attractive and novel target in the development
of a future GVHD targeted therapy. Similar to the inhibition of
CD26, it has been hypothesized that inhibition of CD27 would
result in attenuated GVHD, namely by decreasing cytotoxic T-cell
alloreactivity. However, inmurine models, the administration of an
anti-CD70 monoclonal antibody following alloHCT resulted in
significantly increased GVHD in a dose dependent fashion (35).
This was an unexpected finding, suggesting an alternative and
more vital mechanism relating to the pathogenesis and
development of GVHD. In further study, while APC-expressed
CD70 provides a co-stimulatory signal, T-cell-expressed CD70
serves an inhibitory role in T-cell response, akin to CPIs PD-1
and TIM-3, leading to decreased inflammatory response and
GVHD in murine models (36). To better elucidate the
mechanism of the CD27-CD70 pathway and its impact on
GVHD pathogenesis, cytokines associated with GVHD were
measured in CD70 knockout host mice which showed
significantly higher levels of pro-inflammatory IFNg, TNFa,
IL-2, and IL-17 when compared to WT mice (see Figure 3) (35).
This was noted to result in significant changes in host and donor
immunophenotype with expansion of donor, but not host, CD4+
and CD8+ T-cells. Furthermore, CD70 knockout was studied in
host hematopoietic and non-hematopoietic compartments, with
CD70 knockout in hematopoietic compartments shown to result in
greater GVHD, indicating that CD70 expression in host
hematopoietic cells was the main contributor to the development
of GVHD in these models. Meanwhile, interestingly, T-cell derived
CD70 was shown to have an inhibitory role by inhibiting allogeneic
CD4+ and CD8+ T-cell responses via caspase-dependent T-cell
apoptosis and upregulation of inhibitory immune checkpoint
inhibitor pathways (36). Thus, based on these findings, the
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CD27-CD70 pathway has multiple immunomodulating effects,
both activating and inactivating, depending on the environment
and cell type expressing CD27 or CD70. This further suggests that
the CD27-CD70 pathway also has an impact on host
hematopoiesis and immune cell differentiation, impacting the
development of GVHD, perhaps by promoting a decrease in
inflammatory cell types in favor of less inflammatory ones,
although more studies are required to develop an understanding
of the underlying mechanisms.
CONCLUDING REMARKS

More recently, with the evolution of CPI and other T-cell
concentrated therapies in other fields of Oncology, co-stimulatory
mechanisms involved in the activation and proliferation of T-cells
have been explored. Of notable importance, agonism of the
co-stimulatory CD27-CD70 pathway, a member of the TNF
superfamily, has been studied as a potential therapeutic
Frontiers in Immunology | www.frontiersin.org 7
intervention as an oncologic therapy for multiple tumor cell types
as well as a therapeutic intervention to attenuate GVHD. Thus,
agonism of the CD27-CD70 pathway presents itself as a novel
future therapeutic target, particularly with the availability of a CD27
agonizing monoclonal antibody that has completed phase I/II study
and been shown to be quite safe and well tolerated with minimal
high-grade toxicities reported.
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FIGURE 2 | Host and donor immune cell interactions and pathogenesis of acute GVHD. The current understanding of acute GVHD pathogenesis involves a
complex interaction of host and donor immune cells.
FIGURE 3 | Mechanism of increased GVHD in CD70 knockout mice. Compared to WT control, CD70 knockout mice have significantly more GVHD with increased
inflammatory cytokines, decreased CPI expression, and increased expansion of donor T-cells.
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