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A B S T R A C T   

Increasing awareness about germline predisposition and the widespread application of unbiased 
whole exome sequencing contributed to the discovery of new clinical entities with high risk for 
the development of haematopoietic malignancies. The revised 2016 WHO classification intro-
duced a novel category of “myeloid neoplasms with germline predisposition” with GATA2, 
CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary 
myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including 
SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of 
predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management 
of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and 
SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary 
paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 
cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been 
reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course 
that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders 
show incomplete penetrance with various clinical outcomes ranging from spontaneous haema-
tological remission observed in young children to malignant progression.   

Introduction: germline predisposition in myeloid neoplasms 

Nearly a century ago the first classical inherited bone marrow failure (BMF) syndrome predisposing to myeloid neoplasms (MN) 
had been reported by the paediatrician Guido Fanconi, and later named Fanconi Anemia (FA) [1]. Since then, a number of additional 
inherited BMF syndromes with risk for the development of myelodysplastic syndrome (MDS) and leukemia have been discovered, 
including severe congenital neutropenia (SCN), Shwachman Diamond syndrome (SDS), telomere biology disorders/dyskeratosis 
congenita, Down syndrome, RASopathies, and DNA repair disorders [2–10]. These disorders are usually straightforward to diagnose 
because of preexisting dysmorphologies and haematological symptoms arising from abnormalities of haematopoietic stem and pro-
genitor cells. The characteristics of recurrently occurring genetic syndromes are outlined in Table 1. Although BMF manifests early in 
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Table 1 
Germline syndromes predisposing to myeloid neoplasms.  

Disease/Gene Risk for MN Age of MN 
onset,  
years * 

Population at 
High Risk for 
MN 

Reported somatic mutations Reported 
karyotypes 

Congenital 
anomalies 

Immune 
deficiency 

Germline predisposition to myelodysplastic syndromes/acute myeloid leukemia (MDS/AML) 
GATA2 High 0.4–78 

(~20) 
Children – 
Adults 

SETBP1, ASXL1, RUNX1, 
PTPN11, NRAS, KRAS, CBL, 
EZH2, ETV6, STAG2, JAK3, 
IKZF1, CRLF2, IDH2, TP53 

− 7, der(1; 7), +8, 
+21 

++ ++

SAMD9, SAMD9L Moderate Paediatric 
age, not yet 
defined 

Children SETBP1, ASXL1, RUNX1, 
PTPN11, KRAS, CBL, EZH2, 
ETV6, BRAF, RAD21 

− 7, del(7q), 
del12p13.2, 
UPD7q 

++ – 

Somatic revertant mosaicism 
(cis SAMD9/9L, UPD7q) 

RUNX1 High 6-77 (~33) Children – 
Adults 

RUNX1 (trans mutation or 
duplication via LOH), ASXL1, 
BCOR, DNMT3A, PHF6, 
WT1, GATA2, FLI1, JMJD5, 
KDM6B, CDC25C 

+21, +8, − 7 – – 

CEBPA High 2-50 (~25) Children – 
Adults 

CEBPA (trans mutation at 3′

end), GATA2, WT1, EZH2, 
TET2, SMC3, NRAS, DDX41, 
CSF3R  

– – 

ETV6 Moderate 
(mostly 
ALL) 

8–82 Adults BCOR, RUNX1, NRAS  – – 

DDX41 Moderate 6-93 (~55) Adults DDX41 (trans p.Arg525His 
mutation, p.Ala255Asp, p. 
Glu247Lys, p.Pro321Lys) 

del(20q), del(7q), 
− 7, +8 

– – 

ANKRD26 Low >30 Adults   – – 
TET2 (1 family with p. 

K1363fs mutation) 
Not known 53-61 (60) Adults TET2 (p.His863fs), BRAF, 

ZRSR2, SRSF2, JAK2, GATA2 
– – – 

Classical inherited bone marrow failure syndromes 
Fanconi Anemia 
22 FA genes High 0.1–49 (13) Children Somatic revertant 

mosaicisms (back 
mutations), 

del(7q), dup(1q), 
dup(3q), complex 

++ – 

RUNX1 
Severe Congenital 

Neutropenia 
ELANE, G6PC3, 
HAX1, JAGN1, 
GFI1, VPS45A, 
TCRG1 

High 2-49 (12) Children – 
Adults 

CSF3R, RUNX1, RAS genes − 7, del(7q), +21 + – 

Shwachman Diamond 
Syndrome 
SBDS, ELF1, 
SRP54, DNAJC21 

Variable MDS: 5–42 
(8) 

Children – 
Adults 

TP53 (>50% of cases with 
SBDS germline mutation), 
EIF6, PRPF8, CSNK1A1, 
U2AF1, IDH1, RUNX1, 
SETBP1, NRAS, KRAS, BRAF, 
DNMT3A, TET2, ASXL1 

isochromosome 
7q, 
− 7, del(20q) 

++ (+) 

Telomere Biology 
Disorders 
DC: TERC, TERT, 
DKC1, RTEL1, 
TINF2, ACD, CTC1, 
NHP2, NOP10, 
NPM1, PARN, 
WRAP53 
Pulmonary fibrosis: 
POT1, ZCCHC8, 
NAF1 
CLL/Melanoma: 
POT1 

Moderate 
(mostly 
adults) 

19-61 (35) Adults Somatic revertant mosaicism 
(UPD of TERT/TERC allele, 
or activating TERT promoter 
mutations – very rare);  

+ +

Leukemia mutations 
uncommon 

Down syndrome and rasopathies 
Trisomy 21 Moderate 1-4 (1.5) Children GATA1 short, cohesin 

(RAD21, STAG2, NIPBL, 
SMC1A, SMC3), CTCF, EZH2, 
KANSL1, BCOR, WT1, 
DCAF7 TP53, NRAS, KRAS, 
PTPN11, JAK2, JAK3, SH2B3 

MLL gene 
rearrangements, 
complex 

++ (+) 

(continued on next page) 
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life, MDS and leukemia develop as a secondary disease after a latency of years to decades from diagnosis of the underlying condition [5, 
11–16]. Clonal evolution is usually associated with a number of recurrent somatic mutations, for example RUNX1 in FA, CSF3R and 
RUNX1 in SCN, TP53 in SDS, GATA1 short and cohesin genes in Down syndrome [5,7,10,12,16–23]. Additional mutations can involve 
typical leukemia drivers including RAS pathway genes, SETBP1, ASXL1, EZH2, and others. Recurrent karyotype abnormalities are also 
found, particularly loss of chromosome 7 (monosomy 7 (− 7), del(7q), der(1; 7), isochromosome 7q), trisomy 8 (+8), or trisomy 21 
(+21). While most of the somatic mutations are known leukemia drivers (RUNX1, RAS pathway, TP53), others might represent benign 
adaptive responses (EIF6, CSF3R). In addition, revertant somatic events including back mutations or uniparental disomy have been 
reported in FA and TERT/TERC mutated telomere biology disorders [24–27]. 

The identification of germline mutations in RUNX1 (1999) and CEBPA (2004) initiated a new era for the discovery of monogenic 
disorders predisposing to MN [28,29]. For the most part these “new” syndromes result from heterozygous mutations in haematopoietic 
transcription factors or regulators (GATA2, RUNX1, CEBPA, ETV6, DDX41, SAMD9, SAMD9L, and TET2, Table 1) [31–37,52,147]. 
These syndromes often pose unique diagnostic challenges. First, the full spectrum of clinical and genetic manifestations is not yet fully 
defined, forcing us to adopt the “expect the unexpected“ approach for the workup of such cases. Second, unlike the classical inherited 
BMF syndromes which are often diagnosed based on medical history, these new entities can often manifest with MN without preceding 
clinical problems. And finally, many patients have negative family history (even in families with multiple mutated individuals) which 
can be attributed to incomplete penetrance/variable expressivity and a considerable rate of de novo germline mutations. Despite these 
challenges, there are genetic and phenotypic patterns that can serve as diagnostic red flags. These can include certain types of mu-
tations that are identified on a somatic sequencing panel, for example variants with allelic frequency nearly 50% in a patient without 
significant blast increase, DDX41 somatic hotspot mutation that co-occurs with germline DDX41 alterations, bi-allelic CEBPA mutation 
with one mutation positioned at 3′-end, and finally the domain-specific localization such as missense GATA2 mutations in zinc finger 2. 
In addition, certain clinical signs can be syndrome-specific, i.e. lymphedema, hydrocele, and congenital deafness in GATA2, ataxia in 
SAMD9L, adrenal hypoplasia in SAMD9, or preceding thrombocytopenia in individuals with RUNX1/ETV6/ANKRD26 mutations. 

GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are the most frequent predisposing conditions in children and adolescents 
with primary MDS and are associated with the development of − 7 karyotype: collectively they account for at least 50% of paediatric 
MDS with − 7 [37–39,52]. The following text will discuss in detail the clinical and genetic spectrum of GATA2 and SAMD9/9L 
syndromes. 

GATA2 deficiency 

GATA2 is a key transcription factor critical for ontogenesis of haematopoietic system, including haematopoietic stem cell (HSC) 
activity and self-renewal, myeloid and myelo-erythroid progenitor cell differentiation, and erythroid precursor cell maintenance 
[40–44]. In the past decade, heterozygous germline GATA2 mutations have been identified in a number of cohorts with cellular de-
ficiencies (immunodeficiency syndromes initially referred to as MonoMAC syndrome, DCML deficiency, Emberger syndrome, chronic 
neutropenia) [45–48], and in patients with familial MDS and acute myeloid leukemia (AML), as well as paediatric MDS [47–53]. To 
date, approximately 150 unique GATA2 germline mutations have been identified in roughly 550 patients (Fig. 1). 

Table 1 (continued ) 

Disease/Gene Risk for MN Age of MN 
onset,  
years * 

Population at 
High Risk for 
MN 

Reported somatic mutations Reported 
karyotypes 

Congenital 
anomalies 

Immune 
deficiency 

Rasopathies 
NF1, CBL, PTPN11, 
NRAS, KRAS 

Moderate CBL: 0.1–3.6 
(1.1) 

Children Duplicaton of mutant allele 
(via UPD), additional RAS 
pathway mutations 

− 7 ++ – 

DNA repair syndromes 
ERCC6L2 High 14-65 (38) Adults TP53, IDH1 − 7, +20, − 18, del 

(5q) 
+ – 

Xeroderma 
pigmentosum C 
(XP-C) 

Low 7-29 (25) Adults TP53, CSF3R, TET2, RAD21 − 7, del(5q), 
complex 

+ – 

Other 
TP53, CMMRD, 

Werner/Bloom 
syndrome, NBS, 
AT, Ligase IV 
deficiency 

MN are 
rare 

All ages Children – 
Adults 

Chromothripsis − 7, complex + +

Abbreviations: DC, dyskeratosis congenita; CMMRD, Constitutional Mismatch Repair Deficiency; NBS, Nijmegen Breakage Syndrome; AT, Ataxia 
telangiectasia; MN, myeloid neoplasms. 
+, present; (+), possibly present; ++, commonly present; -, absent. 
*Approximate age range (median) assessed from literature reports; CLL chronic lymphocytic leukemia; ALL, acute lymphoblastic leukemia; UPD, 
uniparental disomy; LOH, loss of heterozygosity. 
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Penetrance and prevalence 

GATA2 deficiency follows an autosomal dominant inheritance pattern with the majority (up to 80%) of cases arising de novo [49, 
52–55]. Although the lifetime penetrance for the development of MN is very high, incomplete penetrance is possible, as suggested by 
the presence of several asymptomatic mutation carriers of various ages within affected families [50,52,53,56–58]. Recently, distinct 
patterns of GATA2 promoter methylation leading to disbalance in allelic expression have been identified in 2 patients and proposed as 
a mechanism for reduced clinical expressivity [59,60]. 

Summarizing published cohort studies and smaller case series, approximately 75% of GATA2 mutation carriers develop MN at an 
estimated median age of 20 years (Table 1). The spectrum of MN includes primary paediatric MDS, AML, chronic myelomonocytic 
leukemia (CMML) and myeloproliferative neoplasms [47,49–55,61]. In children and adolescents with primary MDS, GATA2 deficiency 
is a predominant germline predisposition accounting for 7% of all MDS cases, 15% of patients with advanced MDS, and 37% of patients 
with MDS and − 7 karyotype [52,62]. Among children, the prevalence of GATA2 deficiency increases with age, and 2/3 of adolescents 
with MDS and monosomy 7 carry germline GATA2 mutations. In adult MDS, GATA2 deficiency is rare and present in less than 0.5% of 
individuals [52], however the true prevalence in various age groups has yet to be defined. 

Clinical presentation 

The initial haematological presentation in patients with GATA2 deficiency can be very variable, ranging from cytopenias and 
hypocellular BMF-like picture, severe immunodeficiency to myeloid neoplasms. Many patients often lack family history of MDS and 
exhibit mild initial symptoms with preceding cellular deficiencies [49,52,62]. However, MDS can also manifest as a stand-alone 
diagnosis without preceding cytopenia. GATA2-deficient patients often suffer from preexisting monocytopenia, B-cell and NK-cell 
lymphopenia, reduction/lack of CD56bright NK cells and dendritic cells, inverted ratio of CD4:CD8 cells, and chronic neutropenia 
[48,53,58,61–65]. Immune deficiency is typically recorded as a consequence of profound cytopenias and loss of functional stem cells 
[66]. When compared to other marrow failure conditions in children, reduction of progenitor and mature B-cells are the most constant 
feature of GATA2 deficiency [62]. Notably, monocytosis has been observed at diagnosis in GATA2 patients with MDS and is likely 
attributed to disease progression [52,53], although transient monocytosis in infancy has been also observed (unpublished own 

Fig. 1. Clinical characteristics of GATA2 deficiency and SAMD9/9L syndromes. 
Key information referring to phenotypes, prevalence and genetics are summarized in the outside coloured boxes; clinical manifestations are depicted 
in the middle. Abbreviations: MonoMAC, Monocytopenia and Mycobacterium avium complex infection syndrome; DCML, Dendritic cell, Monocytes, 
B/NK Lymphocytes deficiency; MDS, Myelodysplastic Syndrome; MDS-EB, MDS with Excess of Blasts; AML, Acute Myeloid Leukemia; − 7, mono-
somy 7; LOF, loss of function; ADHD, Attention Deficit Hyperactivity Disorder; PAP, Pulmonary Alveolar Proteinosis; NTM, Nontuberculous 
mycobacteria; VUR, Vesicoureteral Reflux; IUGR, Intrauterine Growth Restriction; MIRAGE, Myelodysplasia, Infection, growth Restriction, Adrenal 
hypoplasia, Genital phenotypes, and Enteropathy; CANDLE, Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and Elevated temper-
aturę; ICUC, idiopathic cytopenia of unknown cause (denotes children with unclear cytopenia and suspected bone marrow failure); GOF, gain 
of function. 
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observations). The immunological phenotypes are heterogeneous. Many patients can initially present with HPV-related infections 
(warts, generalized verrucosis, cervical intraepithelial neoplasia), disseminated nontuberculous mycobacterial, as well as systemic 
bacterial and fungal infections [50,53,67]. Recurrent respiratory tract infections can result in a development of pulmonary alveolar 
proteinosis (PAP) or interstitial lung disease [50,53]. Moreover, compromised function of the immune system may contribute to 
malignant transformation of HPV- or EBV-related neoplasia and increased occurrence of other solid tumors [47,50,53,68]. Further-
more, GATA2 mutated patients have been repeatedly shown to suffer from autoimmune dysregulation such as autoimmune cytopenia, 
arthritis, panniculitis, erythema nodosum, psoriasis, lupus-like syndrome and autoimmune hepatitis [53,56,63,69–71]. 

GATA2-MDS patients demonstrate heterogeneous morphological features involving hypocellular marrow with cytopenias, or 
normal to hypercellular marrow in case of advanced MDS. Frequently recognized dysplasia is seen in megakaryocyte lineage, but other 
lineages are also affected [50,63]. 

Apart from haematological and immunological symptoms, at least 50% of GATA2-deficient patients present with constitutional 
abnormalities affecting different organ systems (Fig. 1). In addition to lymphedema, hydrocele and congenital deafness, abnormalities 
of pulmonary, cardiovascular, urogenital and neurological systems have been repeatedly observed [48,50,52,53,56,62,63]. This in-
cludes i.e. PAP, thrombosis, pulmonary embolism, vesicoureteral reflux, hypospadias, hydrocele, developmental delay, or behavioral 
disorders/ADHD. The presence of both immune deficiency and typical constitutional features, especially in context of MDS should 
trigger genetic workup for GATA2 mutations. 

GATA2 germline mutations 

De novo or inherited heterozygous loss of function mutations have been identified as the genetic basis of GATA2 deficiency. These 
mutations are thought to lead to loss of function of GATA2 protein (through loss of one allele or malfunctioning protein) specifically 
abolishing the DNA-binding function of the C-terminal zinc finger (ZF2) [39,47,49,72–77,79]. Overall, 3 main mutation categories can 
be distinguished i.e. null (frameshift, nonsense, splice site and whole gene deletions) located prior or within ZF2 and accounting for 
around two thirds of all reported variants, missense substitutions clustered within ZF2 representing one third of GATA2 mutations and 
intronic alterations affecting +9.5 kb enhancer element (EBOX-GATA-ETS) detected in ~4–10% of cases (Fig. 1). Additionally, rare 
changes including in-frame deletions/insertions and missense mutations downstream of ZF2 were found [39]. Most recently, we 
identified 5 heterozygous synonymous GATA2 mutations (p.Thr117Thr, p.Leu217Leu, p.Gly327Gly, p.Ala341Ala, p.Pro472Pro) in 9 
patients with GATA2 deficiency that led to selective loss of mutated copy of GATA2 mRNA [81]. The hotspot p.Thr117Thr mutation 
has been also described by others [77,82] and mechanistically was found to introduce a new splice donor resulting in premature 
translation termination associated with nonsense-mediated decay. 

Experimental studies found impaired ability of mutant GATA2 protein to bind DNA and activate transcription of target genes. This 
was shown for several mutations (p.Arg330X, p.Ala345delinsALLVAALLAA, p.Thr354Met, p.Thr355del, p.Thr358Asn, p.Arg361Leu, 
p.Cys373Arg, p.Arg396Gln, p.Arg396Leu, p.Arg398Trp) [47,49,73–76,79]. Moreover, some of the mutations were shown to affect 
proliferation, differentiation and apoptosis in haematopoietic cells [49,74]. Variable expressivity of GATA2 ZF2 germline mutations is 
common. The most recurrent mutations p.Thr354Met, p.Arg396Gln and p.Arg398Trp all predispose to myeloid malignancies, however 
p.Thr354Met was shown to be associated with MDS as initial presentation, while p.Arg396Gln and p.Arg398Trp mutations were 
suggested to correlate with a phenotype of immunodeficiency manifesting prior to malignant transformation [75]. Although, reduced 
DNA-binding/transactivation ability has been shown to be causal of GATA2 haploinsufficiency, this does not explain the genoty-
pe/phenotype correlation for individual ZF2 mutations. One possible explanation could be the altered interaction between GATA2 and 
other proteins, as shown for GATA2 p.Thr354Met and p.Cys373Arg mutations that compared to wild type GATA2 protein bind more 
strongly to the haematopoietic differentiation factor PU.1 [75]. Hence, detailed mechanistic studies are paramount to understand 
these phenotypic differences and functional consequences of germline GATA2 mutations. Genotype-phenotype correlative analyses 
have thus far been unsuccessful and potential associations seen in some studies were not validated in other cohorts. In a recent study 
encompassing 79 French patients with GATA2 deficiency, patients harboring missense mutations (14 out of 38) were more likely to 
develop leukemia than patients with frameshift mutations (2 out of 28; p = 0.007) [53]. However, an analysis conducted by our group 
in a large cohort of paediatric MDS (N = 137) did not confirm this association (own unpublished observations). 

Somatic GATA2 mutations compared to germline mutations show different localization within the protein and are associated with 
other haematological phenotypes. Of the roughly 50 reported somatic mutations, the majority are found within the boundaries of N- 
terminal zinc finger (ZF1), but some mutations also occur in ZF2 [83]. These mutations are generally rare and were identified in 
paediatric and adult AML (predominantly accompanied by biallelic CEBPA mutations), chronic myeloid leukemia in blast crisis, as well 
as acute erythroid leukemia [84–93]. In contrast to germline variants, acquired GATA2 mutations were characterized as either LOF (p. 
Pro304His, p.Leu321Val, p.Leu321Pro, p.Arg330Gln, p.Arg362Gln, p.Ala341_Gly346del) or gain-of-function (GOF; p.Gly320Asp, p. 
Leu359Val). It is interesting to note that certain somatic GATA2 ZF2 mutations in adults with MN can “phenocopy” symptoms of 
GATA2 germline disorder, i.e. immunodeficiency (monocytopenia, low B-/NK-cells, recurrent infections) accompanied by lymphe-
dema or PAP [94,95]. 

Acquired cytogenetic and genetic aberrations 

The most common karyotype abnormalities are monosomy 7 or der(1; 7) that can occur in up to 80% of GATA2-related MDS 
patients, with average estimate across all published studies of ~41% (Fig. 2) [39]. Trisomy 8 is the second most common aberration 
identified in up to 40% of patients in single cohorts, and an average of 15% across published studies. Additional common abnormality 

S.S. Sahoo et al.                                                                                                                                                                                                        



Best Practice & Research Clinical Haematology 33 (2020) 101197

6

is trisomy 21, while complex karyotypes are generally not encountered. GATA2-related MDS is also associated with acquired 
MDS/leukemia driver mutations (Table 1). Recurrent oncogenic alterations were identified in genes ASXL1, SETBP1, RUNX1, STAG2, 
CBL, EZH2, NRAS, KRAS, JAK3, PTPN11. [51,54,58,96–100] Furthermore, single GATA2-MDS cases were also reported to harbor 
somatic mutations in IKZF1, CRLF2, HECW2, GATA1, GATA2, ATRX, BRCA2, GPRC5A, IDH2, TP53, WT1 [97,99,101]. 

Therapeutic considerations 

There are no consensus guidelines on management of GATA2 deficiency and the surveillance strategies are individually tailored. 
Most patients are being followed by haematologists, immunologists or transplant physicians and general recommendations include 
periodic assessment of complete blood counts and immune status, yearly bone marrow evaluation with cytogenetics and somatic 
mutational testing, as well as screening for HPV-related cancers and pulmonary symptoms. Haematopoietic stem cell transplantation 
(HSCT) is the only curative treatment with reported outcomes ranging from 54% (4 year overall survival (OS)) in adults transplanted 
for MDS/AML or immunodeficiency [50], to 66% (5 year OS) in children transplanted for MDS with -7 [52], or 62% (5 year OS) in a 
French GATA2 cohort [53], and 86% (2 year disease-free survival) in young adults with MDS [68]. Because − 7 karyotype is associated 
with a high risk of progression to more advanced MDS, patients with this cytogenetic category should undergo HSCT as soon as possible 
[102]. While myeloablative conditioning is preferred in MDS with -7 (independent of blasts) as well as advanced MDS/AML, reduced 
intensity conditioning might be preferred option in patients with hypocellular MDS without high risk somatic alterations, as well as 
patients with immunodeficiency alone. HSCT was shown to reverse HPV-related lesions as well as respiratory problems (PAP) [68, 
103–105]. Patients with stable disease course, without relevant infections, bone marrow dysplasia and transfusion-dependency might 
qualify for a watch & wait strategy [106,107]. However, it can be assumed that most GATA2-deficient patients show progressive 
disease and even with careful watching the best opportunity for low risk HSCT might be missed. Currently, transplant indications 
include progressing immunodeficiency with recurrent infections, respiratory complications (PAP), transfusion-dependency, and MDS 
[50,52,104,105,108]. The optimal point in time for performing HSCT would be the stage of hypocellular MDS or immunodeficiency 
prior development of MDS/leukemia evolution or severe organ dysfunction. 

SAMD9 and SAMD9L syndromes 

Sterile alpha motif domain-containing protein 9 (SAMD9) and the paralogue gene SAMD9-like (SAMD9L) are located side-by-side 
on chromosome 7q21. Initial study describing acquired microdeletions of 7q21 in patients with MN drew preliminary attention to 
these poorly characterized genes [113]. SAMD9/9L are IFN and TNF-α responsive proteins that were shown to play a role in antiviral 
response [109–112], tumor suppression [113,114], inflammation [115,116], development [117–119] and endosomal fusion [118, 
120]. Samd9l-deficient mice develop myeloid disease resembling human MDS with − 7 [120]. The first link to human disease was a 
description of biallelic LOF SAMD9 mutations (p.K1495E and p.R344X) in several consanguineous Jewish-Yemenite families with 
normophosphatemic familial tumor calcinosis (NFTC), however no further NFTC cases with SAMD9 mutations were found [115,116]. 
In 2016, heterozygous missense SAMD9 mutations with GOF effect were linked to a severe early-onset condition with Myelodysplasia, 
Infections, Restriction of growth, Adrenal hypoplasia, Genital phenotypes and Enteropathy (MIRAGE) [118,119]. At the same time, 

Fig. 2. Monosomy 7 driven mechanisms of clonal evolution in MDS predisposition syndromes. 
Malignant transformation of GATA2 deficiency (outside left box), SAMD9/9L disorders (middle boxes) and other predisposing syndromes (outside 
right box) is associated with loss of whole chromosome 7 or its long (7q) arm followed by acquisition of somatic mutations in leukemia-related 
genes. Loss of chromosome 7 is non-random in SAMD9/9L syndromes and leads to disappearance of germline SAMD9/9L mutation. Revertant 
clonal haematopoietic in SAMD9/9L syndromes arise from UPD7q or acquired truncating SAMD9/9L mutation (middle right box). Abbreviations: 
MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; UPD, uniparental disomy. 
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missense GOF mutations in SAMD9L were described as a cause of a syndrome with progressive neurological phenotype, pancytopenia 
and hypocellular bone marrow (Ataxia Pancytopenia (ATXPC)) [117,121]. Both conditions have a unifying phenotype of early onset 
myelodysplasia with monosomy 7. Following the first discoveries in syndromic cohorts, a number of studies reported germline 
missense SAMD9 and SAMD9L mutations in paediatric cohorts with MDS (often without syndromic manifestation) [122–125]. 
Recently, germline frameshift SAMD9L mutations were also discovered in several children presenting with autoinflammatory pan-
niculitis resembling Chronic Atypical Neutrophilic Dermatosis with Lipodystrophy and Elevated Temperatures (CANDLE) syndrome 
[126]. 

Penetrance and prevalence 

SAMD9/9L syndromes are autosomal dominant syndromes resulting from GOF, mostly missense mutations with variable pene-
trance. SAMD9 mutations are associated with a high rate of de novo cases with very high penetrance especially in pedigrees presenting 
with MIRAGE syndrome. For SAMD9L mutations, the penetrance for haematological disease is incomplete and has been estimated at 
70% [[123]]. Similarly, low penetrance for neurological phenotypes (that might increase with age) has been observed [117]. 

Germline SAMD9/9L mutations account for a large proportion of primary childhood MDS and the prevalence was shown to range 
from 8% (43/548) in a large multi-institutional consecutive cohort of the European Working Group of Childhood MDS (EWOG-MDS) 
[37] to 17% (8/46) in a single institution report [122]. Interestingly, in a French cohort of patients with idiopathic cytopenia of 
unknown cause (“ICUC”), 18.6% (16/86) of patients carried germline SAMD9/9L mutations [125]. 

Clinical presentation 

Multiple organ systems can be affected in SAMD9/9L syndromes, with predominant haematologic, immunologic, endocrine, 
genital and neurologic involvement (Fig. 1). Initial clinical presentation is heterogeneous and can range from severe disease with high 
infant mortality, to transient cytopenia and immune dysfunction. Patients with MIRAGE (SAMD9) phenotype present with early onset 
adrenal hypoplasia and primary adrenal insufficiency, intrauterine growth restriction, genital phenotypes (46XY females, bifid shawl 
scrotum, testicular dysgenesis, intra-abdominal or inguinal testes, clitoromegaly), gastrointestinal issues (enteropathy, reflux, acha-
lasia), severe systemic infections, as well as thrombocytopenia and anaemia at birth - which in some patients can be self-limiting during 
infancy [37,118,119,128–139]. Patients with SAMD9L mutations might show disease-specific neurological findings with very variable 
age of onset and dynamics of progression. Severe cerebellar ataxia is observed in some but not all cases [117]. Some patients might 
show cerebellar atrophy, dysmetria, nystagmus, white matter abnormalities, and loss of Purkinje cells [117,140,141]. 

Of note, haematological phenotype is the “common denominator” of both syndromes manifesting in the majority of patients [117, 
121–123,125,142]. The haematological spectrum involves single lineage cytopenia (mostly thrombocytopenia) or pancytopenia with 
hypocellular marrow, and MDS with − 7 or del(7q). In a large paediatric MDS cohort the majority (90%) of SAMD9/9L-mutated pa-
tients presented with refractory cytopenia of childhood (RCC), while MDS with excess blasts was found in 10% of cases [37]. In a small 
subset of patients advanced leukemic disease (AML, CMML) can be diagnosed [37,122–124]. The median age at diagnosis in paediatric 
MDS with SAMD9/9L was shown to be 9.6 years (0.2–17.6) which is comparable with GATA2-related MDS [37]. The most widespread 
aberrant karyotype is − 7/del(7q) and shows a unique non-random pattern where the chromosome 7 with mutant SAMD9/9L copy is 
always lost, which by itself can be considered a pathognomonic sign of SAMD9/9L syndromes (Fig. 2). 

Immune dysfunction is not well defined and shows varying phenotype and severity. Mostly in patients with MIRAGE phenotype 
(SAMD9) but also in several SAMD9L-mutated patients, severe invasive infections have been described. The causative organisms were 
bacteria (pseudomonas aeruginosa, Clostridium difficile, Staphylococcus, Serratia marcescens, Enterococcus faecium, Escherichia coli, 
Klebsiella pneumoniae, Stenotrophomonas maltophilia, Streptococcus pyogenes), viruses (MRSA, CMV, EBV, rhinovirus, coronavirus, 
varicella), and fungi (aspergillus, candida) causing sepsis, meningitis, otitis, sinusitis, laryngitis, hepatitis, bronchiolitis, pneumonia, 
neonatal necrotizing enterocolitis, pancolitis, gastroenteritis, enteropathy, urinary tract infections, otitis media, ecthyma gan-
grenosum, warts, dental abscesses, and urethritis [118,119,121,124,125,128–133,136–139,141,143–145]. However, the majority of 
non-syndromic SAMD9/9L-MDS patients generally do not appear to have high risk to develop immune dysfunction and severe in-
fections. Decreased peripheral B/NK-cells, low IgG and IgM or increased TNF-alpha and IL-6 levels were documented in cases with 
SAMD9/9L mutations [121,125,128,131,135,143]. Other rare dysmorphic features documented in single patients include skeletal 
abnormalities (scoliosis, joint contracture at wrist and ankles), hearing loss, dysmorphic facial features, camptodactyly, arach-
nodactyly, glomerular proteinuria, dysautonomia and speech delay [129,131]. 

SAMD9/9L genetics 

Thus far 38 distinct SAMD9 and 26 SAMD9L mutations have been identified in 110 symptomatic patients as mutually exclusive 
events [118,119,121,122,124,126,129–134,140–143,145,146]. The majority of these patients exhibit haematological phenotype with 
cytopenias, and/or MDS with − 7. Most germline mutations are missense and occur predominantly in the second half (C-terminus) of 
SAMD9/9L proteins, encompassing the predicted P-LOOP_NTPase domain. Six cases with truncating germline mutations in SAMD9L 
were also reported in children with CANDLE phenotype [126]. 

Thus far, all functionally evaluated germline missense SAMD9/9L mutations were shown to inhibit cell growth in 293 cellular 
overexpression assay [118,119,123]. Of note, many mutated amino acids show moderate or weak conservation across species, thus 
posing a risk of being scored as ‘likely benign’ based on in silico predictors. The current state-of-art for assessment of pathogenicity 
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includes functional validation on a research basis. However, such testing must be interpreted with caution since sensitivity and 
specificity have not been defined and various groups utilize different readouts [118,119,122,123]. 

Clonal evolution and somatic reversion 

The unique aspect of SAMD9/9L disease mechanism is ‘adaptation by aneuploidy’ that is achieved by the non-random loss 
chromosome 7 (− 7/del(7q)) which contains mutated SAMD9/9L gene copy (Fig. 2)[118,119,121–125,129,134,135,141–145]. The 
decrease of mutant allele in haematopoiesis poses a diagnostic challenge, since germline SAMD9/9L mutations show decreased variant 
allele frequency (VAF), with VAF even below 5% (own observations), necessitating germline validation in non-haematopoietic 
specimens, i.e. fibroblasts. 

Several case reports documented complete disappearance of − 7 clones, thus far seen exclusively in young children, a phenomenon 
previously referred to as transient monosomy 7 syndrome [121–124,141–143]. However, − 7 is a high risk lesion with malignant 
propensity (i.e. due to loss of several tumor suppressor genes such as EZH2). Clonal evolution to advanced MDS/AML is a recurrent 
complication in SAMD9/9L-related MDS with − 7 and was shown to be accompanied by somatic driver mutations in SETBP1, ASXL1, 
RUNX1, PTPN11, KRAS, CBL, EZH2, ETV6, BRAF, and RAD21 [122–124,142]. 

Somatic revertant mosaicism with expansion of benign, corrected haematopoiesis represents another unique feature of SAMD9/9L 
syndromes (Fig. 2). The two mechanisms observed so far are the acquisition of truncating SAMD9/9L mutations or an independent 
uniparental disomy of 7q (UPD7q). Somatic SAMD9/9L mutations are acquired in cis (on the same allelle) and are thought to exert a 
LOF effect and “neutralize” the GOF germline mutation, as documented in cellular growth assays [119,121,123,124,131,134,142]. 
Missense somatic SAMD9/9L are rarely encountered but were also shown to modify germline mutant function [121]. A true genetic 
reversion with replacement of the mutant SAMD9/9L allele via UPD7q has been thus far reported in 11 patients who experienced 
spontaneous remission [121–125,141–143]. This reversion likely arises through non-allelic homologous recombination in a del(7q) 
clone, where the wild type 7q arm is duplicated. Strikingly, the reversion seems to be definitive, as shown in patients who normalized 
their blood counts and marrow cellularity with normal findings up to over 20 years after diagnosis [123,125]. UPD7q can be 
considered a protective mechanism against the development of MDS, but it is not clear how it arises and how it outcompetes − 7/del 
(7q) clones. 

Therapeutic considerations 

SAMD9/9L are newly described MDS predisposition syndromes where clinical outcome data is derived from retrospective studies 
and no guidelines exist on prospective management. The current practice for patients mild haematological phenotypes is guided by the 
morphological subtype (as recommended by the EWOG-MDS working group). For example, patients with RCC without severe neu-
tropenia and no transfusion dependency can be followed with a watch & wait strategy with periodic assessment of blood counts and 
yearly marrow evaluation aiming at detection of high-risk somatic changes (− 7, somatic driver mutations). A very careful consid-
eration must be given to patients with SAMD9/9L syndromes and − 7, where not enough data exists to deviate from the general 
recommendation for paediatric MDS with − 7 where HSCT is performed in a timely manner [102]. Children with severe multi-organ 
involvement in context of MIRAGE syndrome who received HSCT were shown to have rather poor outcome complicated by 
syndrome-related comorbidities [128,145]. On the other hand, children with SAMD9/9L germline mutations who were transplanted 
for MDS had satisfactory outcomes with a 5 year OS of 85% [37]. Going forward one might speculate that young children with 
clinically stable disease (MDS and − 7 without severe cytopenias and without somatic leukemia mutations) might benefit from careful 
watching with repeated molecular studies to document loss of monosomy 7 clone and emergence of revertant UPD7q clones. At the 
same time however, the patients might be exposed to the risk of clonal evolution to a more advanced disease where HSCT outcome 
might be inferior compared to initial disease state. 

Practice points  

• Recently described autosomal dominant syndromes predisposing to myeloid neoplasms often manifest without preexisting features 
or family history and show variable expressivity and incomplete penetrance  

• GATA2 and SAMD9/SAMD9L syndromes are most common germline drivers of paediatric MDS and account for at least half of 
paediatric MDS with monosomy 7  

• HSCT is indicated in patients with transfusion dependency, neutropenia, immunodeficiency, morphologically advanced disease, 
and high-risk cytogenetic and genetic lesions  

• GATA2 deficiency is a highly penetrant disease with progressive course necessitating HSCT, while SAMD9/SAMD9L syndromes can 
show diverse outcomes ranging from spontaneous remission (in young children) to clonal progression. 

Research agenda  

• Prospective monitoring of patients with hereditary predisposition to MN might reveal risk factors for clonal evolution  
• It remains to be answered if a careful watch & wait strategy in stable patients with SAMD9/9L-related MDS and monosomy 7 might 

identify patients with spontaneous genetic reversion and disappearance of monosomy 7, and eventually become a standard 
approach. 
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• Collaborative studies are required to address the question of incomplete penetrance in syndromes predisposing to MN. 
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