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Abstract: In order to improve vibration energy harvesting, this paper designs an arc-shaped
piezoelectric bistable vibration energy harvester (ABEH). The bistable configuration is achieved
by using magnetic coupling, and the nonlinear magnetic force is calculated. Based on
Lagrangian equation, piezoelectric theory, Kirchhoff’s law, etc., a complete theoretical model of
the presented ABEH is built. The influence of the nonlinear stiffness terms, the electromechanical
coupling coefficient, the damping, the distance between magnets, and the load resistance on the
dynamic response and the energy harvesting performance of the ABEH is numerically explored.
More importantly, experiments are designed to verify the energy harvesting enhancement of
the ABEH. Compared with the non-magnet energy harvester, the ABEH has much better energy
harvesting performance.
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1. Introduction

Nonlinear vibration energy harvesting techniques via various mechanisms have been widely
researched because of their great application potential for powering wireless sensors and small portable
devices [1–6]. Especially, piezoelectric vibration energy harvesting from base vibrations, flow-induced
vibrations, human motions, has been receiving more and more attention [7–12]. In order to improve
energy harvesting performance, many different kinds of linear resonance-based piezoelectric vibration
energy harvesters were designed. Erturk and Inman [13] firstly derived the exact distributed parameter
model for the cantilever beam-based energy harvesters with experimental verification. In order to
power cardiac pacemakers, Karami and Inman [14–16] designed piezoelectric energy harvesters
based on zigzag structures. Wickenheiser [17] presented a transfer matrix method for obtaining
analytical solutions of beam-based structures with pointwise discontinuities, bends, or lumped inertias
between members or the tip of the structures. For enhanced multi-directional energy harvesting,
Zhou et al. [18,19] designed a flexible longitudinal zigzag energy harvester and derived an exact
theoretical model which was checked by finite element method and experiments. Yang et al. [20]
designed an arc-shaped piezoelectric energy harvester to improve energy harvesting efficiency.
The design can also efficiently harvest energy from multi-directional vibrations.

Although the above linear energy harvesters work well when the frequency of ambient vibrations
matches their natural frequencies, the energy harvesting efficiency will sharply decrease for the
broadband excitations [21,22]. However, many application environments have broadband or random
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vibrations, which bring difficulty of energy harvesting. This challenging issue inspires new designs of
high-efficiency energy harvesters based on nonlinearities [23–30]. The bistable energy harvester (BEH)
whose snap-through behavior can greatly enhance energy harvesting performance is one of most
well-known nonlinear energy harvesters. One enhanced energy harvesting characteristic is from the
stochastic resonance of bistable systems [31,32]. Based on this, a BEH was designed and tested under
random excitations, and the excellent performance was experimentally verified [33]. The detailed
enhancement of the BET based on stochastic resonance was numerically and experimentally analyzed
by Litak et al. [34,35]. Vocca et al. [36] digitally simulated output power of the BEH to random vibrations
from non-equilibrium thermal noise up to machine vibrations and the superior performance was
obtained. He and Daqaq [37] used statistical linearization, direct numerical integration of the stochastic
differential equations, and the Fokker–Plank–Kolmogorov equation to reveal the influence mechanism
of the potential energy function on mean output power of the BEH under white noise. The comparison
of nonlinear monostable energy harvester and the BEH demonstrates that the performance of BEH is
better under some random excitations [38,39].

Under harmonic excitations, the snap-through behavior induces high-energy interwell oscillation
of the BEH, which greatly enhances the energy harvesting performance. This was experimentally
verified by Erturk and Inman [40,41]. Stanton et al. [42] derived a complete distributed parameter model
for the magnetic coupled BEH to predict its output voltage and nonlinear dynamic behavior. Under
different harmonic excitations, broadband characteristics and multi-solution range can be numerically
and experimentally observed [43]. Based on the harmonic balance method, the analytical solutions and
corresponding stability analysis conditions of the BEH could be derived [44,45]. Other kinds of BEHs also
has high-energy interwell oscillations and large-amplitude output voltage [46–48]. When it connects with
self-powered nonlinear interface circuits, the output power of the BEH can still surpass the traditional
linear ones [49,50]. More importantly, experimental tests show that the BEH has excellent performance
for energy harvesting from the human body to power embedded medical devices [51,52].

In order to enhance vibration energy harvesting, this paper designs an arc-shaped piezoelectric
bistable vibration energy harvester. In Section 2, a theoretical model is built. In Section 3, the influence
of system parameters and excitation conditions on the dynamic response and energy harvesting
performance of the ABEH is numerically explored. In Section 4, experimental verification is provided.
Finally, key conclusions are addressed.

2. Theoretical Modeling

2.1. Nonlinear Magnetic Force Model

As shown in Figure 1, the presented arc-shaped piezoelectric bistable vibration energy harvester
(ABEH) consists of an arc-shaped piezoelectric cantilever beam [20], a load resistance, a tip magnet
and an external magnet. The ABEH is installed in a base structure which transfers the base excitation
z(t) to the harvester. Thus, the deformation direction of the beam is in the z direction. The flexible
piezoelectric material polyvinylidene fluoride (PVDF) covers the whole beam to convert vibration
energy into electric energy. The length of the horizontal part of the arc-shaped beam is L, and the mass
of the tip magnet is m. w(x, t) is used to describe the vibration displacement of the ABEH.

Figure 1 shows that large transverse vibration and axial stretching vibration of the ABEH will
be generated under base excitations. To improve the precision of the theoretical model, this paper
fully considers the magnetic nonlinearity and the structural nonlinearity of the ABEH in the modeling
process. Several assumptions should be given: The ABEH complies with the Euler Bernoulli beam
theory. The shear deformation and the rotary inertia will be neglected because the thickness of the
ABEH is much smaller than its length. The cross section of the ABEH keeps in a plane when it deforms
and is perpendicular to plane of geometric axis.

Without magnetic coupling, the piezoelectric beam is simplified for calculating its strain.
Considering the axial deformation of the beam, the geometric relationship before and after deformation
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is shown in Figure 2 [53]. u(x, t) and w(x, t) are the vibration displacements of the piezoelectric beam
along x axis and z axis, respectively. The element segment is represented by a and b, and a1 and b1

stand for the piezoelectric beam after movement. The x axis displacement and the z axis displacement
caused by deformation are expressed by u and w, respectively.
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The deformed section of the piezoelectric beam is ds, and rotation angle is α. The relation between
u(x, t) and w(x, t) can be expressed as:
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√
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The strain along with the x axis caused by the stretching force can be expressed as:
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The bending strain in the z axis can be defined as:

Sz = −z
dα
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= −z
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Thus, the geometric deformation relationship of strains is:
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∂2ω(x, t)

∂x2 +
1
2

(
∂ω(x, t)

∂x

)2
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where z is the distance from the surface of the piezoelectric beam to the neutral layer. Then:

z =
hs

2
+ hp (5)
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Assuming that the PVDF is completely attached to the upper surface of the cantilever beam,
and the electric field intensity is uniformly distributed. The electric field intensity can be represented as:

E3(t) = −
v(t)
hp

(6)

where v(t) denotes the output voltage, and hp is the thickness of the PVDF.
The geometric relationship between two permanent magnets is shown in Figure 3 [54].

Considering the position vector from magnet B to magnet A, the assumed model between magnetic
dipoles is used to analyze the nonlinear magnetic force.
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The intensity of magnetization generated by magnet B on magnet A is:

BBA =
µ0

4π
[
3(mB·rBA)rBA

|rBA|5
− mB

|rBA|3
] (7)

where µ0 = 4π× 10−7 H/m is the magnetic permittivity. mA
(
mAx, mAy, mAz

)
and mB

(
mBx, mBy, mBz

)
are the magnetic dipole moment of magnets A and B, respectively. rBA(xi + yj + zk) is the position
vector from magnet B to magnet A. The inclination angle of magnet A is α, and ω(x, t) is the vibration
response amplitude. mA, mB and rBA can be expressed as: mA = [MAVA cos α, MAVA sin α, 0], mB =

[−MBVB, 0, 0], rBA = [−d, w, 0]. MA and MB are the magnetization of magnets A and B, respectively.
VA and VB are the volume of magnets A and B, respectively.

Therefore, the relationship among magnet A, deflection angle α and amplitude ω(x, t) can be
defined as:

tan α(t) =
∂ω(x, t)

∂x
(8)

Thus, the magnetic potential energy is:

UMt = −BBA·mA =
µ0MAVA MBVB

(
2d2 − 3dω(x, t) ∂ω(x,t)

∂x −ω(x, t)2
)

4π

√(
∂ω(x,t)

∂x
2
+ 1
)
(ω(x, t)2 + d2)

5/2
(9)

2.2. Modal Shape for Bending Vibrations

In order to obtain the governing equations of the ABEH, we should firstly get the modal shape.
The transverse vibration displacement ω(x, t) in the z direction of the modal shape can be expressed
as [1]:

ω(x, t) =
N

∑
i=1

∅i(x)ri(t) (10)

where ∅i(x) is the mode shape. ri(t) is the modal coordinates. N is the number of the mode shape.
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∅i(x) is defined as [13]:

∅i(x) = Ai

[
cos

λi
L

x− cos h
λi
L

x + ζi

(
sin

λi
L

x− sin h
λi
L

x
)]

(11)

At the clamped end, the displacement and the rotation angle should be zero: ∅i(x) = 0 and
∅i
′(0) = 0.

Based on the boundary conditions at the free end, ∅i(x) can be simplified as [13]:

∅i(x) = 1− cos [
(2i− 1)πx

2L
] (12)

The first vibration mode of the cantilever-based energy harvester was theoretically and
experimentally verified to play an overwhelming role [1,13,18,19]. Therefore, this paper only considers
the first vibration mode. Therefore, ω(x, t) and the modal shape can respectively be expressed as:

ω(x, t) = ∅1(x)r1(t) (13)

∅1(x) = 1− cos
(πx

2L

)
(14)

Based on Equations (9), (13) and (14), the potential energy function can be represented as:

UMt =
µ0MAVA MBVB

4π
×
(
2d2 − 3d∅1(x)r1

2(t)∅1
′(x)−∅1

2(x)r1
2(t)

)√(
∅1
′(x)2r1

2(t) + 1
)(

∅1
2(x)r1

2(t) + d2
)5/2

(15)

The parameter r1
2(t) is set as an independent variable and the Taylor series expansion of

Equation (15) is given by:

UMt =
µ0MAVA MBVB

2πd3 − 1
2

K1r1
2(t) +

1
4

K2r1
4(t) (16)

The derivative of Equation (16) is:

δUMt = −K1r1(t) + K2r1
3(t) (17)

where:

K1 =
µ0MAVA MBVB

4π
×

(
12∅1

2(L) + 2∅1
′(L)2d2 + 6∅1(L)∅1

′(L)d
)

d5 (18)

K2 = µ0 MAVA MBVB
4π ×

(
45∅1

4(L)+15∅1
′(L)∅1

3(L)d
d7 + · · ·

12∅1
′(L)2∅1

2(L)d2+6∅1
′(L)3∅1(L)d3

d7 + 3∅1
′(L)4d4

d7

) (19)

The strain S1 and the electric field strength E3 can be simplified as:

S1(x, z, t) = −z∅1
′′ (x)r1(t) +

1
2
∅1
′(x)2r1(t)

2 (20)

E3(t) = −
v(t)
hp

(21)

2.3. Complete Governing Model

Based on Hooke’s law, the stress-strain relationship of the cantilever beam is expressed as:

T1 = YsS1 (22)
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where Ys is the Young’s modulus of the substrate layer. T1 and S1 are the stress and the strain
components along the x direction, respectively.

When the harvester vibrates in the z direction, the second type piezoelectric equation is given by:

T1 = cE
11S1 − e31E3 (23)

D3 = e31S1 + εs
33E3 (24)

where T1 and S1 are the stress and strain components along the x direction of PVDF, respectively. cE
11 is

the Young’s modulus of PVDF. e31 is piezoelectric coupling coefficient. E3 and D3 are the electric field
and the electric displacement vector, respectively. εs

33 is the dielectric permittivity at constant stress.
When the mechanical dissipation effect is ignored, the internal electric energy is defined as:

δS =

t2∫
t1

(δL + δWnc)dt = 0 (25)

where L = T −U + Wie is Lagrange function and δL = δT − δU + δWie. T, U and Wie are the total
kinetic energy, potential energy and electric energy of the system, respectively. Wnc is the virtual work
of non-conservative mechanical force and electric charge in the system.

The total kinetic energy T is composed of the kinetic energy of the substrate TS, the kinetic energy
of PVDF Tp and the kinetic energy of the permanent magnet at the free end of the ABEH TMt.

Thus, the kinetic energy TS is:

TS =
1
2

ρS

∫
VS

(
∂u(x, t)

∂t

)2
dVS =

1
2

ρS As

L∫
0

( .
ω(x, t) +

.
z(t)

)2dx (26)

where ρS and AS are the density and cross-sectional areas of the substrate, respectively. u(x, t) denotes
the vibration amplitude at the free end of the ABEH.

.
z(t) is the velocity of the base excitation. ω(x, t)

is the vibration amplitude of the ABEH in the z direction.
The kinetic energy Tp is:

Tp =
1
2

ρp

∫
Vp

(
∂u(x, t)

∂t

)2
dVp =

1
2

ρp Ap

L∫
0

( .
ω(x, t) +

.
z(t)

)2dx (27)

where ρp and Ap are the density and cross-sectional areas of PVDF, respectively.
The kinetic energy TMt is:

TMt =
1
2

Mt
( .
ω(x, t)/x=L +

.
z(t)

)2 (28)

where Mt is the mass of magnet A.
Consequently, the total kinetic energy T is given by

T = TS + Tp + TMt = 1
2 ρS As

L∫
0

( .
ω(x, t) +

.
z(t)

)2dx + · · ·

1
2 ρp Ap

L∫
0

( .
ω(x, t) +

.
z(t)

)2dx +
1
2 Mt

( .
ω(x, t)/x=L +

.
z(t)

)2
(29)
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Based on Equation (23), the potential energy of substrate is represented as:

Us =
1
2

∫
VS

S1T1dVS =
1
2

Ys As

∫ L

0

(
−z

∂2ω(x, t)
∂x2 +

1
2

(
∂ω(x, t)

∂x

)2
)2

dx (30)

where Ys, T1 and S1 are the Young’s modulus, the stress and the strain of the substrate, respectively.
The potential energy of PVDF can be given by the combination of Equations (20), (23) and (24):

Up = 1
2

∫
Vp

S1T1dVp = 1
2

∫
Vp

S1
(
cE

11S1 − e31E3
)
dVp = · · ·

1
2 cE

11 Ap
∫ L

0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)2

dx + · · ·

1
2 e31 Ap

v(t)
hp

∫ L
0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)

dx

(31)

The total potential energy of the ABEH is:

U = Us + Up + UMt =
1
2 Ys As

∫ L
0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)2

dx + · · ·

1
2 cE

11 Ap
∫ L

0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)2

dx + · · ·

1
2 e31 Ap

v(t)
hp

∫ L
0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)

dx + UMt

(32)

Combined Equations (21), (23) and (24), the electric energy generated by PVDF is:

Wie =
1
2

∫
vp

E3D3dvp = 1
2 Ap

∫ L
0 E3(e31S1 + εs

33E3)dx = · · ·

− 1
2 e31 Ap

v(t)
hp

∫ L
0

(
−z ∂2ω(x,t)

∂x2 + 1
2

(
∂ω(x,t)

∂x

)2
)

dx +
1
2 cpv2(t)

(33)

where E3 is the electric field intensity of PVDF in the z direction. D3 is the electric displacement
of PVDF. The internal capacitance of PVDF cp is given by:

cp = εs
33

Ap

hp
(34)

In this paper, a linear damping with damping coefficient c is assumed [55]. The virtual work of
non-conservative mechanical force is:

wc =
∫ L

0

(
−cω(x, t)

∂ω(x, t)
∂x

)
dx (35)

The virtual work of the electric charge is mainly caused by the external load resistance of
the ABEH, which can be expressed as:

WR = Q(t)v(t) (36)

Thus, the virtual work of non-conservative mechanical force and electric charge is:

Wnc =
∫ L

0

(
−cω(x, t)

∂ω(x, t)
∂t

)
dx + Q(t)v(t) (37)

where v(t) and Q(t) are respectively the voltage and the quantity of electric charge generated by PVDF.
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Combined Equations (13), (14), (29), (32), Equations (33) and (37) can be simplified as:

T = 1
2
(
ρS As + ρp Ap

) ∫ L
0

(
∅1(x)2 .

r1(t)
2 + 2∅1(x)

.
r1(t)

.
z(t) +

.
z(t)2

)
dx + · · ·

1
2 M
(
∅1(x)2 .

r1(t)
2 + 2∅1(x)

.
r1(t)

.
z(t) +

.
z(t)2

) (38)

U = 1
2
(
Ys As + cE

11 Ap
) ∫ L

0

(
z2∅1

′′ (x)2r1(t)
2 − z∅1

′′ (x)∅1
′(x)2r1(t)

3 + 1
4∅1

′(x)4r1(t)
4
)

dx + · · ·
1
2 e31 Ap

v(t)
hp

∫ L
0

(
−z∅1

′′ (x)r1(t) + 1
2∅1

′(x)2r1(t)
2
)

dx + UMt

(39)

Wie = −
1
2

e31 Ap
v(t)
hp

∫ L

0

(
−z∅1

′′ (x)r1(t) +
1
2
∅1
′(x)2r1(t)

2
)

dx +
1
2

cpv2(t) (40)

Wnc =
∫ L

0

(
−c∅1(x)2r1(t)

.
r1(t)

)
dx + Q(t)v(t) (41)

Therefore, the Lagrange function can be expressed as:

L = T −U + Wie =
(

1
2
(
ρS As + ρp Ap

) ∫ L
0 ∅1(x)2dx +

1
2 M∅1(x)2

) .
r1(t)

2 − · · ·
1
2

((
Ys As + cE

11 Ap
) ∫ L

0 z2∅1
′′ (x)2dx

)
r1(t)

2 − 1
2 e31 Ap

v(t)
hp

∫ L
0 ∅1

′(x)2dxr1(t)
2 + · · ·

1
2
(
Ys As + cE

11 Ap
) ∫ L

0

(
z∅1

′′ (x)∅1
′(x)2

)
dxr1(t)

3 − 1
8
(
Ys As + cE

11 Ap
) ∫ L

0 ∅1
′(x)4dxr1(t)

4 + · · ·

e31 Apz 1
hp

∫ L
0 ∅1

′′ (x)dxv(t)r1(t) +
((

ρS As + ρp Ap
) ∫ L

0 ∅1(x)dx + M∅1(x)
) .

r1(t)
.
z(t) + · · ·(

1
2
(
ρS As + ρp Ap

)
L + 1

2 M
) .

z(t)2 + 1
2 cpv2(t)−

(
µ0 MAVA MBVB

2πd3 − 1
2 K1r1

2(t) + 1
4 K2r1

4(t)
)

(42)

Equation (42) is simplified as

L = 1
2 M

.
r1(t)

2 − 1
2 Kr1(t)

2 − 1
2 ϑ1v(t)r1(t)

2 + 1
3 N1r1(t)

3 − 1
4 N2r1(t)

4 + ϑ2v(t)r1(t) + · · ·
β

.
r1(t)

.
z(t) + 1

2 Γ
.
z(t)2 + 1

2 cpv2(t)−
(

µ0 MAVA MBVB
2πd3 − 1

2 K1r1
2(t) + 1

4 K2r1
4(t)

) (43)

The Lagrangian electromechanical equation based on the extended Hamiltonian principle is:

d
dt

(
∂T
∂

.
r1

)
− ∂T

∂r1
+

∂U
∂r1
− ∂Wie

∂r1
= F(t) (44)

d
dt

(
∂T
∂

.
v

)
− ∂T

∂v
+

∂U
∂v
− ∂Wie

∂v
= Q(t) (45)

The simplified form is:
d
dt

(
∂T
∂

.
r1

)
− ∂L

∂r1
= F(t) (46)

d
dt

(
∂T
∂

.
v

)
− ∂L

∂v
= Q(t) (47)

where F(t) is the function of non-conservative mechanical forces. Q(t) is the quantity of electric charge
generated by PVDF. According Equation (35), F(t) = −

∫ L
0 c∅1(x)2dx

.
r1(t). The generalized current

.
Q(t) = −v(t)/R is given by Kirchhoff’s law when the impedance resistance of PVDF is assumed to
be R.

Based on Equations (43), (46) and (47), the electromechanical coupled equation of the ABEH can
be expressed as:

M
..
r1(t) + C

.
r1(t) + Kr1(t) + ϑ1v(t)r1(t)− N1r1(t)

2 + N2r1(t)
3 − ϑ2v(t)− · · ·

K1r1(t) + K2r1(t)
3 = −β

..
z(t)

(48)

− ϑ1
.

r1(t)r1(t) + ϑ2
.

r1(t) + cp
.
v(t)− v(t)/R = 0 (49)
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where M, C and K are the modal mass, the modal damping and the modal stiffness of the ABEH,
respectively. They are represented as:

M =
(
ρS As + ρp Ap

) ∫ L

0
∅1(x)2dx + Mt∅1(x)2 (50)

C =
∫ L

0
c∅1(x)2dx (51)

K =
(

Ys As + cE
11 Ap

) ∫ L

0
z2∅1

′′ (x)2dx (52)

ϑ1, N1 and N2 are the electromechanical coupling term, the quadratic nonlinear term and the
cubic nonlinear term coefficient, respectively.

ϑ1 = e31 Ap
1
hp

∫ L

0
∅1
′(x)2dx (53)

N1 =
3
2

(
Ys As + cE

11 Ap

) ∫ L

0
z∅1

′′ (x)∅1
′(x)2dx (54)

N2 =
1
2

(
Ys As + cE

11 Ap

) ∫ L

0
∅1
′(x)4dx (55)

ϑ2, β are respectively the electromechanical coupling coefficient and the fundamental
excitation coefficient

ϑ2 = e31 Apz
1
hp

∫ L

0
∅1
′′ (x)dx (56)

β =
(
ρS As + ρp Ap

) ∫ L

0
∅1(x)dx + Mt∅1(x) (57)

Assuming ω1 =
√

K
M , ζ1 = C

2Mω1
, the governing equations of the ABEH can be defined, as follows:

..
r1(t) + 2ζ1ω1

.
r1(t) + ω1

2r1(t) +
ϑ1
M v(t)r1(t)− N1

M r1(t)
2 + N2

M r1(t)
3 − ϑ2

M v(t)− K1
M r1(t) + · · ·

K2
M r1(t)

3 = − β
M

..
z(t)

(58)

− ϑ1
.

r1(t)r1(t) + ϑ2
.

r1(t) + cp
.
v(t)− v(t)

R
= 0 (59)

In order to nondimensionalize Equations (58) and (59), the variables are standardized as:

r1(t) = Lx(τ), t =
τ

ω1
, v(t) = eu(τ), e =

Lϑ2

cp

where L, e are standardization coefficients. Their units are meter (m) and volt (V), respectively. τ is the
standardization time. Then, the governing equations become:

..
x(τ) + 2ζ1

.
x(τ) + x(τ) + ϑ1ϑ2L

Kcp
u(τ)x(τ)− N1L

K x(τ)2 + N2L2

K x(τ)3 − ϑ2
2

Kcp
u(τ)− K1

K x(τ) + · · ·
K2L2

K x(τ)3 = − β
KL

..
z(t)

(60)

.
u(τ)− 1

Rω1cp
u(τ) +

.
x(τ)− ϑ1L

ϑ2

.
x(τ)x(τ) = 0 (61)

To simplify the equations, we present the following transformations:

θ1 = ϑ1ϑ2L
Kcp

, η1 = N1L
K , η2 = N2L2

K , θ2 = ϑ2
2

Kcp
, κ1 = K1

K , κ2 = K2L2

K , f = − β
KL , Ω = ω

ω1
,

α = 1
Rω1cp

, Θ = ϑ1L
ϑ2

.
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The dimensionless governing equations of the ABEH are:

..
x(τ) + 2ζ1

.
x(τ) + x(τ) + θ1u(τ)x(τ)− η1x(τ)2 + η2x(τ)3 − θ2u(τ)− κ1x(τ) + κ2x(τ)3 = f

..
z(t) (62)

.
u(τ)− αu(τ) +

.
x(τ)−Θ

.
x(τ)x(τ) = 0 (63)

where x is the dimensionless displacement. ζ1 is the dimensionless linear damping. η1, η2, κ2

are the dimensionless nonlinear stiffness coefficients. θ2 and θ1 are the dimensionless linear
electromechanical coupling coefficient and the dimensionless nonlinear electromechanical coupling
coefficient, respectively. κ1 is the dimensionless linear stiffness coefficient. Θ is the dimensionless
nonlinear damping coefficients.

3. Influence Mechanism

3.1. Influence of the Nonlinear Stiffness Terms

In order to analyze the influence of the quadratic nonlinear stiffness coefficient η1 and the cubic
nonlinear stiffness coefficient κ2 on the response characteristics of the ABEH, the time-domain response
displacement and the output voltage, frequency spectrum and phase trajectory of the ABEH with
different η1 and κ2 are numerically obtained, as shown in Figures 4 and 5.
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It is noted that sine wave excitations are used to stimulate the ABEH in both simulations and
experiments. It can be found that, the quadratic nonlinear stiffness coefficient η1 has less effect on
the response characteristics of the ABEH, when the multiple nonlinear stiffness term coefficients
(the quadratic nonlinear stiffness coefficient η1 and cubic nonlinear stiffness coefficient κ2) appear
simultaneously. There are a variety of harmonics in the response of the ABEH, when the cubic nonlinear
stiffness coefficient κ2 increases from 1. As κ2 increases, the amplitudes of both displacement and
output voltage decrease gradually. This indicates that the nonlinear stiffness coefficient and response
of the ABEH are mutually coupled. In addition, as κ2 gradually increases from 1, the response of the
ABEH firstly changes from a large-amplitude interwell oscillation to a small-amplitude oscillation.
This is a common nonlinear phenomenon [56–59]. It can be concluded that the cubic nonlinear stiffness
coefficient κ2 plays a key role in the dynamic response and the energy harvesting performance of
the ABEH.

3.2. Influence of the Electromechanical Coupling Coefficient

The influence of nonlinear electromechanical coupling coefficient θ1 and linear electromechanical
coupling coefficient θ2 on the response characteristics of the ABEH is analyzed. The time-domain
response displacement and output voltage, frequency spectrum and phase trajectory of the ABEH with
different θ1 and θ2 are shown in Figures 6 and 7. It is found that, θ1 and θ2 has a small effect on the
response displacement and output voltage of the ABEH. As θ2 increases from 0, the peak value of the
output voltage of the ABEH slightly increases. As θ1 increases, phase trajectory of the ABEH changes.
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3.3. Influence of the Damping

In order to analyze the influence of nonlinear damping coefficient Θ on the response of the ABEH,
the corresponding results are shown in Figure 8.
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It can be seen that, the output voltage of the ABEH decreases along with the increase of Θ.
The reason is that the increase of Θ damps the vibration amplitude of the ABEH and more mechanical
energy will be converted into heat energy. This will bring a negative influence on the energy harvesting
performance of the ABEH.

3.4. Influence of the Relative Positions of Magnets

Above numerical results show that the relative positions of magnet play a key role in the nonlinear
response characteristics of the ABEH. Therefore, in order to improve the output power, it is necessary
to select a reasonable distance d. It is assumed that the excitation frequency Ω = 1 and amplitude A = 2.
In addition, 15, 17.5, 20, 22.5 and 25 mm are five selected values of d. As the results shown in Figure 9,
the displacement amplitude and the output voltage of the ABEH for d = 20 mm, are significantly larger
than others. This means that there is an optimal d which make the ABEH have best output voltage and
output power.

Sensors 2018, 18, x FOR PEER REVIEW  14 of 21 

 

It can be seen that, the output voltage of the ABEH decreases along with the increase of ߆. The 
reason is that the increase of ߆	damps the vibration amplitude of the ABEH and more mechanical 
energy will be converted into heat energy. This will bring a negative influence on the energy 
harvesting performance of the ABEH.  

3.4. Influence of the Relative Positions of Magnets 

Above numerical results show that the relative positions of magnet play a key role in the 
nonlinear response characteristics of the ABEH. Therefore, in order to improve the output power, it 
is necessary to select a reasonable distance d. It is assumed that the excitation frequency Ω = 1 and 
amplitude A = 2. In addition, 15, 17.5, 20, 22.5 and 25 mm are five selected values of d. As the results 
shown in Figure 9, the displacement amplitude and the output voltage of the ABEH for d = 20 mm, 
are significantly larger than others. This means that there is an optimal d which make the ABEH have 
best output voltage and output power. 

  
(a) (b) 

(c) (d) 

Figure 9. Response of the ABEH with different magnetic distance d: (a) Displacement; (b) output 
voltage; (c) frequency spectrum; (d) phase trajectory. 

3.5. Influence of the Load Resistance 

It is well known that the external load resistance must match the impedance of the energy 
harvester to obtain the maximum output power. However, the impedance of the ABEH is not 
constant, which is related to the frequency and amplitude of the excitation [13]. Therefore, the 
numerical calculation method can be used to obtain the variation curve of the output power with 
load resistance for different excitation conditions. The results are shown in Figures 10 and 11. It is 
found that the optimal load resistance changes along with the change of the excitation frequency, 

Figure 9. Response of the ABEH with different magnetic distance d: (a) Displacement; (b) output
voltage; (c) frequency spectrum; (d) phase trajectory.

3.5. Influence of the Load Resistance

It is well known that the external load resistance must match the impedance of the energy
harvester to obtain the maximum output power. However, the impedance of the ABEH is not constant,
which is related to the frequency and amplitude of the excitation [13]. Therefore, the numerical
calculation method can be used to obtain the variation curve of the output power with load resistance
for different excitation conditions. The results are shown in Figures 10 and 11. It is found that the
optimal load resistance changes along with the change of the excitation frequency, while the excitation
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amplitude has a very small influence on the optimal load resistance. Therefore, we should pay more
attention on the excitation frequency when the ABEH is designed.
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4. Experimental Verification

Experimental Setup

In order to further verify the design, a prototype of the ABEH is fabricated and shown in Figure 12.
The distance d between the tip magnet and the external magnet can be adjusted, thus, the nonlinear
characteristics of the ABEH can be changed. The ABEH is fixed on a rigid plastics support frame.
Figure 13 shows the whole experimental setup. In detail, there are an ABEH, a laser doppler vibrometer,
a laser controller, an acceleration sensor, a vibration exciter, a power amplifier, a vibrator control box
and a computer.
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Firstly, the influence of the distance d on the energy harvesting performance of the ABEH is
investigated. It can improve the energy capture efficiency and effective working frequency band of the
system. For the experiments under the constant frequency excitation, it is set as 14 Hz and the excitation
amplitude is set as A = 2 mm. In addition, the frequency-swept experiments are also performed to
obtain the displacement amplitude over a wide frequency range. In accordance with numerical
simulation, 15, 20 and 25 mm are three selected values of d. Time-domain response displacement and
output voltage, displacement amplitude versus excitation frequency, and phase trajectory are shown
in Figure 14. It is found that, the ABEH with d = 20 mm has a much wider effective frequency range
where the displacement amplitude is large, compared with the cases of d = 15 mm and d = 25 mm.
For the piezoelectric energy harvesting, the large displacement amplitude means the large output
voltage, which can be also verified by Figure 14a,b,d. Therefore, the ABEH with d = 20 mm has the
best energy harvesting performance among the three cases. This is further verified by Figure 15.
In addition, the experimental results in Figures 15 and 16 and Figure 18 are obtained from sine wave
sweep excitations, which are produced by the vibration exciter. More importantly, this conclusion is
same with numerical simulation.
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It is well known that the excitation level has an obvious influence on the response characteristics
of nonlinear systems. 0.5, 1 and 2 mm are selected as the values of the excitation amplitude A is.
The excitation frequency changes from 10 to 20 Hz while the value of d is 20 mm. It is found that
the high-energy interwell oscillations of the ABEH can be induced only when A is large enough.
The output voltage from high-energy interwell oscillations is much larger than that from intrawell
oscillations, as the results shown in Figure 16.

In order to verify the energy harvesting enhancement of the ABEH, the comparison with the
non-magnet energy harvester is also provided. Once the external magnet is removed, the ABEH
will become a non-magnet harvester, as the structural diagram shown in Figure 17. In experiment,
the excitation amplitude A is set as 2 mm, and the excitation frequency is ranging from 10 Hz to 20 Hz.
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The ABEH with d = 20 mm is tested and compared with the non-magnet energy harvester, as the
output voltage shown in Figure 18. It can be found that the maximum output voltage generated of
the non-magnet energy harvester is only about 5 V, and the effective working frequency range is very
narrow. On the contrary, the ABEH produces a maximum output voltage of 18 V, which is 3.5 times
of that from the non-magnet energy harvester. The nonlinear hardening behavior of the non-magnet
energy harvester is caused by the structural nonlinearity. In addition, the effective operating frequency
range of the ABEH is more than 3.1 times of that from the non-magnet piezoelectric energy harvester.
Therefore, the energy harvesting performance of the ABEH is improved a lot from its non-magnet
version. Yang et al. originally designed the linear arc-shaped piezoelectric energy harvester, and they
experimentally verified the high-efficiency energy harvesting performance [20]. This work further
develops bistable arc-shaped piezoelectric energy harvester to enhance vibration energy harvesting.
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energy harvester.

5. Conclusions

This paper designs an arc-shaped piezoelectric bistable vibration energy harvester (ABEH) based
on the arc-shaped cantilever beam and magnetic coupling. By using Lagrangian equation, piezoelectric
theory, Kirchhoff’s law, etc., a complete theoretical model of the presented ABEH is built. In simulations,
it is found that the quadratic nonlinear stiffness coefficient and the cubic nonlinear stiffness coefficient
have obvious influence on the response characteristics and the energy harvesting performance of
the ABEH. Meanwhile, the output voltage increases and decreases along with the electromechanical
coupling coefficient and the damping, respectively. The distance between the tip magnet and the
external magnet plays a key role for determining the nonlinear characteristics of the ABEH. At different
excitation frequencies, the optimal load resistance of the ABEH is different. Experimental results verify
that the distance between the two magnets influences the energy harvesting performance of the ABEH.
More importantly, the ABEH has much better energy harvesting performance than the non-magnet
energy harvester. The future work will focus on optimizing strategy for both the shape of the beam,
and the magnetic parameters of bistable energy harvester under different excitations for improving
vibration energy harvesting performance.
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